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Abstract: Autonomous underwater vehicles (AUVs) have increasingly played a key role in monitoring
the marine environment, studying its physical-chemical parameters for the supervision of endangered
species. AUVs now include a power source and an intelligent control system that allows them to
autonomously carry out programmed tasks. Their navigation system is much more challenging than
that of land-based applications, due to the lack of connected networks in the marine environment.
On the other hand, due to the latest developments in neural networks, particularly deep learning
(DL), the visual recognition systems can achieve impressive performance. Computer vision (CV)
has especially improved the field of object detection. Although all the developed DL algorithms
can be deployed in the cloud, the present cloud computing system is unable to manage and analyze
the massive amount of computing power and data. Edge intelligence is expected to replace DL
computation in the cloud, providing various distributed, low-latency and reliable intelligent services.
This paper proposes an AUV model system designed to overcome latency challenges in the supervision
and tracking process by using edge computing in an IoT gateway. The IoT gateway is used to connect
the AUV control system to the internet. The proposed model successfully carried out a long-term
monitoring mission in a predefined area of shallow water in the Mar Menor (Spain) to track the
underwater Pinna nobilis (fan mussel) species. The obtained results clearly justify the proposed
system’s design and highlight the cloud and edge architecture performances. They also indicate the
need for a hybrid cloud/edge architecture to ensure a real-time control loop for better latency and
accuracy to meet the system’s requirements.

Keywords: AUVs; underwater Internet of Things; cloud computing; edge computing; artificial
intelligence; object detection; marine environment monitoring

1. Introduction

The world’s seas, as a precious asset and an essential element of its ecology, must be protected
as an important source of life, wealth and food. This requires monitoring systems to control their
condition and ensure their sustainable management, which involves monitoring physical and chemical
parameters related to water quality, such as salinity, temperature, dissolved oxygen, nitrates, density,
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and chlorophyll levels, among others. Other motives for monitoring the seabed are the detection and
conservation of archaeological artefacts and the monitoring of the status of marine flora and fauna,
particularly sensitive endangered species [1]. Studies have been carried out in different areas of the
Mediterranean, in particular in the Mar Menor, an area of special interest due to its unique environment.
The Mar Menor in southeast Spain, with unique salinity and temperature characteristics, is Europe’s
largest salt lake, with an area of 180 km2. It is separated from the Mediterranean by a narrow band of
sand 22 km long (La Manga), interrupted by several Golas (natural or artificial channels that connect it
to the open sea). It has five islands of volcanic origin and is surrounded by several wetland areas. The
Mar Menor is a valuable resource with a unique ecosystem and a wide range of habitats for endangered
species. It was the subject of numerous scientific studies when recently contaminated chemically and
biologically by torrential rains containing large amounts of freshwater and agricultural runoff from
surrounding farmland, affecting its flora and fauna [1]. It also sustains considerable phytobenthic
and plankton populations during the warm season. All these processes have affected many of its
indigenous species.

In the Mar Menor and its surroundings, 27 types of habitats of special interest have been
inventoried, eight of which are priorities [2]. Protected species are also abundant and include seagrass
meadows (Cymodocea nodosa and Ruppia cirrhosa), marine fauna of special interest, such as seahorses
(Hippocampus ramulosus) or the toothcarp (Aphanius iberus), large amounts of fan mussels (Pinna nobilis)
and a wide range of marine birds [3]. The fan mussel is an endemic bivalve mollusc, the largest in the
Mediterranean and the world’s second largest. The International Union for Conservation of Nature
(IUCN) has included Pinna nobilis in its updated list of species in critical danger of extinction from
parasitic disease [4].

The Spanish Ministry of Agriculture and Fisheries, Food and Environment, the Spanish Institute of
Oceanography, and the Department of Environment of the Balearic Government and the Autonomous
Communities of the Mediterranean coast are carrying out studies to protect the fan mussel in areas of
Andalusia, Murcia, Valencia, the Balearic Islands and Catalonia [5]. The discovery of some specimens
in the Mar Menor in 2019 confirmed that this natural space was a refuge for this threatened species on
the verge of disappearing along the entire Mediterranean coast and therefore required monitoring.
Although this can be done from manned vessels, this is time-consuming, laborious and expensive and
can be done much more effectively by AUVs [6].

AUVs are now widely applied for various tasks, including de-mining, oceanographic investigation,
mine clearance and bathymetric data collection in marine and fluvial environments [7]. They are useful
for photographing underwater environments and are playing an increasingly important role in marine
development [8]. They now dispose of power sources and a smart control system that can carry out
autonomously programmed tasks with proper decision making capabilities [1]. Advances in sensor
technology, computer technology, new materials and advanced algorithms have significantly boosted
their performance, although there are still many issues to be overcome [8,9].

In this paper, we propose and evaluate an AUV system designed to collect and interpret underwater
images in Mar Menor to track the fan mussel population in real time, using georeferenced mosaics
generated from the images by an automatic processing method.

Besides the challenges and difficulties of an autonomous robot navigating in an unstructured
environment, the marine environment has its own particular limitations, not only due to currents but
also to the difficulty of geopositioning the submerged AUV. The lack of communication networks and
the complexity of connecting to others in real time is also a disadvantage and could be critical not only
for transmitting exploration results but also for taking advantage of increased computational capacity
and information management when required, such as the artificial intelligence (AI) provided by cloud
computing services.

Certain AUV architectures involve the technological challenge of high processing, communication
and connection capacity. This requires an architecture that can integrate with a nearby base station,
the Internet and cloud architectures. The information gathered during an operation also requires
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interpretation, which may be crucial for decision making. This means that not only is the local
connection important but also the connection with web services (cloud computing, data centres, etc).
This latter one can be used to create assistants for a specific purpose and processes to which complex
and specific tasks can be delegated.

Distributed control architectures can help to solve many of these issues. These can be incorporated
into AUV hardware to speed up the transfer of the collected information to the other side (cloud servers)
(Figure 1). Higher intelligence capacity can also help to respond to the needs of the sensor side,
especially for very high-speed decision-making, which is impeded by the cloud’s high latency. However,
new architectures have recently been proposed to address this deficiency of latency. The present cloud
computing system is increasingly unable to cope with the massive amount of data it receives [10]. Edge
computing, which is composed of intelligent nodes and could take the place of cloud processing, is
expected to solve this issue since it is closer to users than the cloud. These smart nodes range from
intelligent gateways to ruggedized outdoor nodes, on-premise heavy storage nodes and edge data
center servers.
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The main advantage of having a smart node is mainly for local analysis and control, not miles or
thousands of miles away, but as close as possible to the measurement point. A quick answer is often
required from a smart node instead of high latency, and this justifies having an intelligent node such as
edge computing in the same network.

Public clouds have emerged as a new opportunity to deliver compute-intensive applications.
A public cloud refers to a networked set of computers that furnish a variety of computing and storage
resources and offer the appearance of unlimited computing capacity on demand at a nominal price and
under a flexible pricing model [11,12]. DL technology is popular nowadays thanks to its good results in
the fields of object detection, image classification and natural language processing. The easy availability
of powerful data sets and graphic processing units are the main reasons for DL’s present popularity.

Several smart DL-based applications and services have changed all kinds of people’s lives because
of the significant advantages of deep learning in the computer vision (CV) fields [13,14]. CV seeks
to enable computer systems to automatically identify and understand the visual world, simulating
human vision [15]. Algorithms for visual perception tasks have been developed, including (i) object
recognition to identify specific objects in image data, (ii) object detection to locate semantic objects of a
given class, and (iii) scene understanding, to parse an image into meaningful segments for analysis [16].
All these algorithm techniques can be deployed in the cloud.
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Edge computing is progressively being merged with artificial intelligence (AI) and is intended
to migrate DL computation from the cloud to the edge, thereby enabling distributed, reliable and
low-latency intelligent services [14]. DL services are implemented nearby the service requests and the
cloud is only involved when extra processing is needed [17]. Both the cloud and edge computing are
considered adequate platforms to incorporate artificial intelligence approaches. This paper primarily
focuses on issues related to the real-time constraints of using AI cloud services and compares DL
inference in both environments.

We also propose and evaluate an AUV system designed to collect and interpret underwater
images to track the fan mussel population in real time, using georeferenced mosaics generated from
the images by an automatic processing method. This automated approach is based on DL image
processing techniques such as convolutional neural networks (CNN) to detect the position of a possible
specimen in a captured photo. An algorithm on the IoT gateway establishes the connection between
the AUV control system and cloud image processing techniques. The results of the suggested system
are then compared with cloud image processing methods in terms of latency and certainty.

The rest of the paper is structured as follows. Section 2 outlines the current state of the art and
related works. Section 3 describes the proposed AUV-IoT platform. Section 4 describes the AI and
vision-based object recognition system. The visual servo control and distance estimation systems are
outlined in Section 5, the performance is appraised in Section 6, and Section 7 describes a case study in
the form of an exploration project.

2. Related Work

The Internet of Things Ocean (IoT), often described as a network of interconnected intelligent
underwater objects, is seen as a promising technology for the systematic management of diverse
marine data [18–20]. Areas of application for IOT-based marine environmental monitoring comprise:
(1) ocean detection and monitoring; (2) coral reef monitoring; (3) marine fish farm monitoring (offshore
or open ocean); (4) water quality monitoring; and (5) wave and current monitoring [21].

Underwater robots are widely used in various marine applications: aquaculture [22], visual
inspection of infrastructures [23], marine geoscience [24], marine biodiversity mapping [25], recovery
of autonomous underwater vehicles [26] and visual monitoring of marine life [27]. Due to their large
number of possible applications and high efficiency, AUVs are of significant interest to oceanographers
and navies for marine research and reconnaissance. Autonomous marine systems, including AUVs
and underwater gliders, are revolutionizing our capability to survey the marine world [28–30].
Marine scientists and robotic engineers now have at their disposal a heterogeneous collection of robotic
vehicles, including AUVs, deep-sea landing vehicles, unmanned/autonomous surface vehicles, remotely
operated vehicles, and gliders/drifters [31]. These robotic vehicles are untethered, self-propelled,
self-navigating vehicles that can operate autonomously from a shore or vessel for a period of hours to
a few days and carry scientific payloads to perform sampling in the marine environment [32]. These
platforms can now move around freely, faster and more easily. They are able to collect significant
numbers of images from the seabed in a single deployment [33]. For instance, a 22-h AUV dive can
provide more than 150,000 images of the seabed and 65 different types of environmental data [34].

Real progress has been made in modern deep-sea research and development, with recent advances
in sensors, microelectronics and computers. Direct vision or camera vision is the simplest way to
acquire a wealth of information from aquatic environments and plays a vital role in underwater robots.
AUVs equipped with the most recent cameras are now capable of collecting massive amounts of
data from the seabed [35]. Computer vision algorithms for underwater robotic systems are attracting
attention due to significant advances in vision capacities. This opens up a diverse range of applications,
from marine research [36] to archaeology [37] and offshore structural monitoring [38,39]. It could soon
be routinely used to investigate marine fauna and flora and will provide a significant increase in the
data available for research on biodiversity conservation and management [40].
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The previous computer vision systems required a long painstaking process whose results are now
insufficient [41]. This process (feature engineering) consists of filters or features designed manually
that act as filters on an image. If an image is activated above a certain threshold by certain handcrafted
filters, it is given a certain class. This unscalable, inaccurate process requires engineers’ intervention
and takes up their precious time [41]. Currently, with effective available cloud services and deep
learning algorithms that can be deployed in the cloud, we can put into effect a consistent cloud
computing system able to manage and analyze the massive amount of submarine data and images.

Underwater images present specific features that need to be taken into account during their
collection and processing. They present a serious challenge and provide an added difficulties and
common issues, for instance, scattering, non-uniform lighting, shadows, colour shades, suspended
particles, light attenuation and the abundance of marine life [42]. Some of these issues can be handled
by underwater image processing methods. Basically, such approaches can be divided into two
categories: software-based methods and hardware-based methods [43–45]. The authors of [46] propose
a stereo-imaging technique for recovering underwater images by considering the visibility coefficients.
This stereo-imaging approach was realized using real-time algorithms and was implemented in AUVs.
The authors of [47] propose the new Qu index, which is used to assess the similarity of structures
and colours in underwater images. The authors of [48] introduce a human perception technique,
the High-Dynamic Range Visual Difference Predictor 2, to predict both overall image quality and
artefact visibility. The authors of [49] propose a real-time system for object recognition in acoustic
images. A 3D acoustic camera is implemented to produce range images of the underwater area [50].
The authors of [51] propose a system for automatic interpretation of 3D objects based on 2D image
data generated by a sector scanning sonar unit. Their overall interpretation achieves a success rate of
86% for underwater objects seen in various conditions.

On the other hand, the main constraint on the development of underwater vision algorithms is the
insufficient availability of large databases, particularly for DL methods, in which synthetic data sets
are usually produced [52,53]. Some data sets are available for object detection [54,55], restoration [56]
and visual navigation [57]. Nevertheless, image conditions differ widely between environments,
as scattering and light attenuation in water depend on various parameters, such as salinity, water
temperature and suspended particles [58]. In fact, the growing trend towards using AUVs for seafloor
investigations will only escalate the scientific challenge. Processing the huge amount of data detected
by AUVs requires new advanced technologies. Artificial intelligence and machine learning have been
proposed to enhance AUV missions and analyse their data. The authors of [59] describe a system
for automatically detecting pipelines and other objects on the seabed. Artificial neural networks
are applied to classify, in real time, the pixels of the input image of the objects into various classes.
The authors of [60] propose CNN to learn a matching function that can be trained from labelled sonar
images after pre-processing to produce matching and non-matching pairs. The authors of [61] describe
a DL method to assist in identifying fish species on underwater images.

Multiple potential commercial applications and the presence of new open software tools are
pushing new advances in AI (e.g., neural networks and DL). As a result, the deployment of AI in
scientific research is likely to change [62,63]. New data science software and image analysis can more
effectively integrate a variety of tools into the research process, starting from data gathering to the
final scientific or public outreach material [64]. AI can assist scientists in shedding new light on the
diversity of species living on the ocean floor. Due to significant developments in neural networks
and AI, especially DL, computer vision systems can provide remarkable performance in this field of
applications. Collaboration between the QUT University of Australia, Google and the Great Barrier
Reef Foundation developed the world’s first underwater robotics system specifically designed for
coral reef environments. Using real-time computer vision, processed on board the robot, it can identify
harmful starfish with 99.4% accuracy [65]. Marine researchers and robotics specialists tested the
effectiveness of a CV system in identifying sea creatures and found it be around 80% accurate. The
system can even be 93% accurate if enough data is used to train the algorithm [66].
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Vision and image processing applications can benefit from cloud computing, as many are data-
and compute-intensive. By remotely locating storage and processing capabilities in the cloud, image
processing applications can be deployed remotely and paid for by the user in pay-as-you-go or
pay-per-use business models. For developers of machine vision and image processing systems, such
cloud computing infrastructures pose challenges. While, ideally, cloud-based systems should attempt
to automatically distribute and balance processing loads, it remains the developer’s role to guarantee
that data is transferred, processed and returned at speeds that satisfy the application’s needs. Several
of these implementations adopt algorithms that take advantage of machine learning (ML) and neural
networks [67], used to create (i.e., train) the classifiers used by the algorithms. Since real-time creation
of these classifiers is not necessary and such training requires significant processing capabilities, it is
usually done in advance using cloud-based hardware. Subsequent real-time inference, which implies
taking advantage of these previously trained parameters to classify, recognize and process unknown
inputs, takes place entirely on the client, at the edge [68]. A hybrid processing topology can be used for
some computer vision applications to maximize the benefits of both cloud and edge alternatives [69].

Overall, cloud, edge and hybrid vision processing solutions each provide both strengths and
weaknesses; assessing the capabilities of each will allow the selection of an optimal strategy for any
specific design situation.

3. Proposed AUV-IoT Platform

The AUV surveillance platform was developed as an autonomous underwater monitoring system
to inspect marine life in the Mar Menor (Spain). An approach overview is depicted in Figure 1.
The suggested AUV-IoT architecture is structured in three layers, with the AUV in the data generation
and pre-processing layer. The first layer involves an AUV composed of different sensors and blocks
for data generation, conversion and pre-processing. The pre-processing system is deployed in an
IoT gateway installed in the head box and connected to the camera via a switch. The IoT gateway is
defined as an edge node. The second layer is the data communication layer with the cloud through
Wi-Fi or 4G networks. The last layer is a back-end cloud with image processing techniques.

The three layers are made up of different electronic devices with access to software services.
As shown in Figure 2, the physical layer is constituted by a variety of electronic devices interconnected
by three different networks according to their functionality: the CAN (controller area network), the
Ethernet network and Internet/cloud network. The CAN network is composed of four slave nodes
and one master. Each node consists of an electronic card specifically designed for this vehicle and its
assigned tasks, and has as a core a PIC 18F4685 microcontroller, working at a frequency of 25 MHz.
The main functions of each node are:

• Node 1 (in the head of the vehicle) manages its movement, lighting, camera power, tilt reading
(pitch and roll) and the acquisition of inertial unit variables.

• Node 2 (DVL: Doppler velocity logger) manages data acquisition and body tilt reading (pitch
and roll).

• Node 3 governs GPS reading, engine management and control (propulsion, rudder and dive).
• Node 4 monitors marine instrumentation sensors (side-scan sonar, image sonar, microUSBL) and

their energy management.
• The master node consists of a National Instrument single-board Remote Input/Output (NI sbRIO)

9606 (the main vehicle controller). Its function in this network is to collect process information
from each of the nodes and send commands. It is the link with the superior Ethernet network.
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The CAN network is the field bus for interconnecting the elements dedicated to instrumentation,
measurement and actuation. It connects equipment dedicated to specific processes (inputs/outputs,
sensor reading, motor control). The CAN network responds to a master/slave configuration, and the
elements of this network communicate through the CAN field bus, using the CANopen protocol at
a speed of 250 kbps, sufficient for the exchange of process information in real time. This protocol is
particularly robust and immune to electromagnetic interference, which makes it ideal for this vehicle.

The Ethernet network allows higher data transfer rates between devices and is formed by the IP
camera, IoT gateway, the AUV sbRIO control system and the 4G router. All of these are connected
to the buoy through an umbilical cable. Ethernet/DSL (Digital Subscriber Line) gateways are used
due to the number of wires in the umbilical cable connecting the vehicle to the surface buoy (only two
wires are available for data). As at least four cables are used with Ethernet, and only two with DSL,
the Ethernet protocol is converted to DSL before and after the umbilical cable by the DSL to Ethernet
gateways. The local bandwidth is 100.0 Mbps, with latencies of less than 1 ms.

The Internet/cloud network allows the vehicle to be connected to the cloud. The 4G router
embedded in the surface buoy allows the connection to the cloud. The purpose of this network is the
communication of the IoT gateway with the cloud and communication of sbRIO control system with
IUNO (Interface for Unmanned Drones) fleet management software. The IUNO software platform
was designed at the Automation and Autonomous Robotics Division (DAyRA) of the Polytechnic
University of Cartagena. The platform is intended to manage the integrated control of multiple
unmanned marine vehicles with the aim of simplifying maritime operations. The results obtained
from each vehicle, regardless of its characteristics, facilitate the success of the operation with a high
degree of automation [1]. AEGIR is the name of the AUV developed by DAyRA, and it is the main
vehicle used in this paper; its structure is described in Figure 2.

There follows an insight description of the critical elements related to edge/cloud computing and
the vehicle’s core control system: first, with an in-depth description of the edge node, the IoT gateway,
the main AUV controller, and the mission management.

3.1. The AUV-IoT Architecture Development

In this section, we outline and itemize the development of the above-mentioned IoT-AUV
autonomous system and its network protocols, portraying five main blocks, namely, the IoT gateway,
the IP camera, the AUV control system, the AUV control station and the cloud.

The overall mission is triggered in the AUV control station by setting the desired waypoints and
activating the AUV engines and IP camera streaming. The IoT gateway in the head box connects the
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AUV nodes and the IP camera with cloud services. The IoT gateway receives image data from the IP
camera in the submarine’s head box and sensor data from the body box. Likewise, the IoT gateway
seizes the image processing results from the cloud for each sent photo. If a fan mussel is detected,
the results contain its delimitation box in the image and the percentage of image accuracy. When a
fan mussel is detected using the cloud API (Application Programming Interface), the IoT gateway
links up with the main controller to modify the submarine’s mission and track the specimen detected.
The submarine’s new mission is based on the results received from the cloud API and the algorithm
processed in the IoT gateway. The algorithm implemented in the IoT gateway is in charge of adjusting
AUV movements to keep the targeted specimen in the centre of the field of view. The distance to
the detected specimen is computed using the cloud API and a triangular similarity algorithm [70,71]
(Section 5).

The desired mission modifications are routed to the main controller to handle the engines and
vehicle heading. In this case, the AUV’s manual tracking control is replaced by an automatic specimen
detection system using the cloud APIs and the distance measurement algorithm implemented in the IoT
gateway. A specific area is explored based on a specific mission with settled waypoints. The tracking
algorithm in the IoT gateway is triggered automatically if the forward camera detects a specimen
(Figure 3).
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The IoT gateway’s main function is to acquire the camera image, timing the shot according to the
AUV’s depth and speed, to obtain photographic mosaics with overlapping images. The IoT gateway
receives the captured images and forwards them to the cloud, which uses advanced learning techniques
to analyse the results and send them to the IoT gateway. The obtained results from the cloud are
exploited to adjust the new underwater mission to pinpoint the specimen’s exact location. This is
described in Algorithm 1, as well as in the flowchart in Figure 3.
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Algorithm 1. Specimen tracking algorithm

Start ()
Step 1:

While (mission has not started) {}
Step 2:

If (mission has ended)
{End()}

Else
{Acquire frame and send to cloud}
{Get the answer}
If (accuracy > 20%)

{Go to step 3}
Else

{Go to step 2}
Step 3:

{Calculate the bounding box centre of detected object}
{Calculate the distance between the centre of the detected nacre bounding box (C1) and

the center of the captured frame (C2)}
{Conversion of distance (C = C2 − C1) into degrees (new heading and tilt setpoint)}
{Send command to sbRIO with new heading and tilt setpoint.}
If (C==0)

{Go to step 4}
Else

{Go to step 3}
Step 4:

{Send the command to sbRIO to set the speed (fixed speed setpoint)}
{Take images I1 and I2 in two different positions, where P1 and P2 are the pixel widths

of the objects detected in both images}
{Calculate the distance using the following equations.

D + ∆d = (W × F)/P1

D = (W × F)/P2

where F = 2.34 mm is the focal distance, W is the width of the real detected object
If (the distance D calculated > 2 m)

{Go to step 4}
Else

{Go to step 5}
Step 5:

{Get accuracy of the specimen image}
If (accuracy ≥ 80%)

{Save point, save picture and resume mission}
{Send command to sbRIO to save specimen’s position}

Else
{Go back to the main mission without saving. It is not a specimen}
{Go to Step 2}

End ()

3.2. IoT Gateway: The Edge Node and Connection to the Cloud

The implemented IoT gateway is capable of connecting the sensor network to the cloud computing
infrastructure, performing edge computing and serving as a bridge between the sensor networks
and the cloud services [72]. Experiments were carried out using Python installed in the IoT gateway.
The Python program employed serves as an interface to communicate with the submarine sensors
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and actuators, the cloud computer vision APIs and the underwater controller (Figure 4). Python has
a built-in support for scientific computing. Its use is growing fastest in data science and machine
learning [73]. Versatility, the stability of libraries with great support, and ease of use are its main
benefits [74]. The IoT gateway also features Open-source Computer Vision (OpenCV) which is a library
of programming functions mainly for real-time CV. In our application, OpenCV is used for live video
streaming over an Ethernet network connected to the prospective IP camera (model Sony SNC-CH110)
installed in the head box. All the Python cloud libraries required for image recognition are installed in
the IoT gateway.
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Whereas the Python program in the IoT gateway is started (Algorithm 1), connection is established
with the camera by the Real-Time Streaming Protocol (RTSP). The Python program in the IoT gateway
is executed to run four threads (tasks) at the same time (Figure 4).

The first thread is tasked with capturing and streaming video images from the IP camera to the IoT
gateway internal memory. If a specimen is detected using the cloud object detection service, the AUV’s
movements are adjusted to focus the camera on the object. The distance between the detected specimen
and the vehicle is computed in the IoT gateway and employed to steer the AUV to track its position.
The AUV’s heading and mission control commands are routed via TCP/IP (Transmission Control
Protocol/Internet Protocol) to the sbRIO controller in the head box, which is connected to several nodes
via a CAN bus protocol. Each node is connected to a different group of sensors and actuators.

The cloud service used in this case is the vision object detection service, which allows training
of customized machine learning models that are able to detect individual objects in a given image
along with their bounding box and label. There are many different cloud APIs for computer vision,
e.g., IBM, Google, Microsoft Azure and Amazon. They all provide fairly similar capabilities, although
some emphasize object recognition, Amazon, or building custom models, like Microsoft Azure
and IBM. The strength of these cloud APIs is their ability to develop custom models rapidly and
download trained custom models to deploy them on the edge for real-time applications and low-latency
requirements [75,76].

To appraise the effectiveness of the suggested platform, we assessed its overall latency, in order to
act quickly when an underwater specimen is detected and control the AUV mission according to the
cloud results of each photo. The Python program is divided into four threads; however, the response
time of the cloud services takes significantly longer, depending on different factors. Figure 4 presents
the connection between the IoT gateway and the different systems. Each thread of the IoT gateway is
responsible for synchronously triggering a task and ensures maintenance of the connection.
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3.3. AUV Control

The most relevant characteristics of the AUV used in the experiment are as follows: the vehicle
is physically divided into two compartments (head and body), consisting of five thrusters (two for
propulsion, two for depth control and one for the rudder) and weighs 170 kg. This vehicle is capable
of submerging to 200 m and has 7-h autonomy. Its two battery blocks (one supplies power to the
electronics and sensors and the second to the thrusters) are reconfigurable to 24 V for greater autonomy
or to 48 V for greater power and cruising speed. It can move at 4 knots and perform long-term missions
while locating and identifying submerged targets, photogrammetry and sonar inspection of the seabed.
It is equipped with the following devices: image sonar, side scan sonar, micro-USBL (UltraShort
BaseLine) for acoustic positioning, an inertial unit, GPS (Global Positioning System), a DVL (Doppler
Velocity Logger) for measuring underwater movements, a camera and a depth meter.

As shown in Figure 4, our underwater vehicle has a number of elements and devices interconnected
through different networks. While the IoT gateway is in charge of recognition and communications
with the camera and the cloud, the sbRIO controller is the AUV’s main control backbone. The National
Instrument sbRIO 9606 embedded controller integrates a real-time processor with a reconfigurable
FPGA through its LabVIEW environment [77–79]. It comprises Ethernet, CAN and I/O connectivity,
as well as a 400-MHz CPU, 256 MB DRAM, 512 MB storage, and other features listed in [77,78].
A consistent code for the sbRIO controller was fully developed in the LabVIEW environment for AUV
management, control and command.

The modules in the sbRIO’s vehicle control program comprise these operations:

• CAN bus (reading and writing interface): There are a number of nodes connected to the vehicle’s
CAN bus, whose network master is the sbRIO. Each of the nodes has a series of sensors and
actuators connected. The function of these blocks is to receive information and send commands to
the different nodes through the CANopen protocol. The type of data received or sent will depend
on the function of the node.

• TCP/IP (reading and writing interface): This manages TCP/IP communications for receiving
commands from IUNO and the IoT gateway, as well as sending navigation information from the
vehicle to the rest of the equipment on the Ethernet network.

• Data manipulation: This is responsible for adapting the data formats from the different sources
(CAN, inertial unit, IUNO) to a common format within the program and vice versa: e.g., conversion
of latitude received through the CAN network interface (UINT8 array type, extracted from a
buffer) to I32 data type.

• Data saving: This saves the process and navigation information in the sbRIO in TDMS (Technical
Data Management Streaming) format files. TDMS is a binary measurement file format, focused
on storing information in the smallest possible space. It can be exported to several formats (csv,
xls, txt, etc.).

• Heading control/depth control/velocity control/heading tilt control: Management of the different
control loops for heading, depth, velocity and head tilt. These take on special importance in
automatic or semi-automatic navigation modes.

• Thruster control: As a result of the previous timed loop, a heading, depth or position setpoint is
obtained. In this module, they are processed to obtain as a result a PWM (Pulse-Width Modulation)
value to be applied to each of the vehicle’s engines.

• Automatic (IUNO)/manual mode navigation: AEGIR developed at the Division of Automation
and Autonomous Robotics (DAyRA) of the Polytechnic University of Cartagena, and the Ocean
Server AUV IVER2. IUNO’s capabilities and characteristics. An AEGIR vehicle can be handled in
both modes: manual and automatic. This timed loop is in charge of selecting the appropriate
navigation source. Only the automatic mode is considered in this paper.

• Mission management: Once the mission created in IUNO is downloaded, this module manages
each of the waypoints to which the vehicle must navigate, dispatching the different navigation
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commands for the heading control/depth control/position control timed loops. This module also
handles the main navigation mode in normal operations and the specimen tracking navigation
mode, as described in Section 7.

4. Artificial Intelligence and Vision-Based Object Recognition

4.1. Deep Learning for Object Detection

In the last decade, prominent applications like robotics, video surveillance, scene understanding,
and self-driving systems have initiated a significant amount of computer vision research. Thanks to the
advancement of neural networks, particularly deep learning, visual recognition systems have achieved
impressive outcomes, especially in object detection.

Object detection is the process of identifying the instance of the class to which the object belongs
and estimating its location by outputting the bounding box around the object [80]. Although object
detection and image classification both share a common technical challenge, they must handle significant
numbers of highly variable objects. Object detection is more complex than image classification due
to the fact that it must identify the precise location of the object of interest [16]. Being one of the
main computer vision issues, object detection is capable of providing useful insights for the semantic
understanding of images and videos [81]. Object detection, i.e., the detection of the positions and
categories of multiple instances of objects in a single image, is a major challenge in a diverse set of
applications such as self-driving vehicles and robotics [82–84].

Object recognition efficiency is steadily increasing, with advanced computer vision techniques
working successfully on a wide range of objects. Most of these techniques are based on deep learning
with convolutional neural networks, and have achieved impressive performance improvements in a
variety of recognition problems [85].

4.2. Convolutional Neural Network for Object Recognition

Applying computer vision to automatically detect objects is an extremely challenging task. Noise
disturbance, complex background, occlusion, scale and attitude changes, low resolution, and other
factors strongly influence object detection capabilities. Conventional object detection methods, based
on the hand-crafted feature, are not robust to lighting changes, occlusions and variations in scale or
lack of good generalization ability [86]. Unlike handmade features, which are designed in advance
by human experts to extract a particular set of chosen properties, the features extracted by CNN are
learned from the data. The core idea behind this is to learn object models from raw pixel data rather
than using hand-set features, as in traditional recognition approaches. Training these deep models
usually requires large training datasets, although this problem has also been surmounted by new
large-scale labelled datasets such as ImageNet [87].

CNN-based methods have achieved significant advances in computer vision. In the 2012 ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [88], Hinton and his student Krizhevsky [87]
applied CNN to image classification and achieved a winning top-5 test error rate of 15.3%, compared
to the 26.2% achieved by the second-best entry. Applying various convolutional filters, CNN models
can capture the high-level representation of the input data, making it highly popular for CV tasks. The
breakthrough and rapid adoption of DL in 2012 brought into existence modern and highly accurate
object detection algorithms and methods, such as the regions with CNN features (R-CNN) method [89],
fast R-CNN [90], faster R-CNN [91], RetinaNet [92] and fast yet highly accurate methods like SSD [93]
and YOLO [13]. CNN-based methods can provide more accurate target boxes and multi-level semantic
information for identification and localization. However, handcrafted features are complementary and
can be combined with CNN for improved performance [94].

By using the cloud infrastructure, it becomes possible to apply CNN techniques which are used in
most object detection cloud services [80]. There are two ways that can help leverage these techniques
for a particular application. The first one consists of employing our own data and a framework in
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our own machine and training our custom model for custom object detection. The second is to use
cloud services through an API, which is a suite of machine learning (ML) products and CV software
development services that allows developers with limited ML expertise to train high-quality models
specific to the needs of their project.

4.3. Object Detection Training in the Cloud

Besides the general object detection models provided by cloud services, certain others can be used
to create their own custom object detection model to identify items and their location in an image.
Object detection models can be trained to recognize objects that are important to the user in specific
domains. Object detection training data is the set of object labels and locations in each trained image.
The tag or label identifies what the object is. The location identifies where it is in the image. It is also
possible to identify more than one object in an image. Cloud services offer users a friendly interface to
develop and deploy custom CV models. We identify the location by drawing a bounding box around
the object and providing the top and left pixel coordinates of that box, along with the width and height
in pixels (Figure 5).
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Figure 5. Fan mussel recognition training: defining a fan mussel bounding box in different cloud services.

In the case study, we trained about 90 photos on the same data set in Azure, Google and IBM
Watson cloud services, all of which offer nearly the same service for custom object detection. The
training photos are a mix of our own photos and others from Creative Commons sources [95] (Figure 6).
The system is very similar to custom classification, except that this service identifies the location of
the items in the image. The response also includes a classification label for each item detected and an
identification confidence score.

Remote Sens. 2020, 12, 1981 13 of 30 

 

of the items in the image. The response also includes a classification label for each item detected and 
an identification confidence score. 

 

 
Figure 6. Pictures used for custom CV model training. 

After creating a custom object detection model and completing the training, we tested its fan 
mussel detection capacity in other images using the Python cloud API, as shown in Figure 7. 

The trained vision model successfully identified a new specimen in the image and also its 
location and its probability percentage score. The blue bounding box is drawn by the Python program 
using the results received from the cloud. According to the results and the AUV navigation sensor 
data, the proposed Algorithm 1 can estimate the distance between the AUV head box and the 
detected specimen. 

 

Figure 7. New specimen detection using the IBM Python API. 

4.4. The Cloud AI at the Edge 

The Mar Menor, as the largest saltwater lake in Europe with a wide range of flora, requires 
constant monitoring. The 4G network covers the entire zone and connects a large area to the Internet 
to take full advantage of cloud computing services. As described above, AUVs are a complete fan 
mussel monitoring system thanks to being interconnected to the latest cloud computing services. 

The advantages of cloud-based API services include simplified training and evaluations to 
improve and deploy models based on our own data. However, despite its advantages, edge 

Figure 6. Pictures used for custom CV model training.



Remote Sens. 2020, 12, 1981 14 of 31

After creating a custom object detection model and completing the training, we tested its fan
mussel detection capacity in other images using the Python cloud API, as shown in Figure 7.
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The trained vision model successfully identified a new specimen in the image and also its location
and its probability percentage score. The blue bounding box is drawn by the Python program using
the results received from the cloud. According to the results and the AUV navigation sensor data, the
proposed Algorithm 1 can estimate the distance between the AUV head box and the detected specimen.

4.4. The Cloud AI at the Edge

The Mar Menor, as the largest saltwater lake in Europe with a wide range of flora, requires
constant monitoring. The 4G network covers the entire zone and connects a large area to the Internet
to take full advantage of cloud computing services. As described above, AUVs are a complete fan
mussel monitoring system thanks to being interconnected to the latest cloud computing services.

The advantages of cloud-based API services include simplified training and evaluations to
improve and deploy models based on our own data. However, despite its advantages, edge computing
has certain drawbacks, including privacy protection, context awareness, low latency, bandwidth
consumption and energy efficiency [96,97].

To address these challenges, edge computing has recently been envisioned to push cloud computing
services closer to IoT devices and data sources. Edge computing is designed to drive low-latency
data processing by migrating computing capacity from the cloud data centre to the edge [75,76].
Influential cloud computing vendors, such as Google [98] and Microsoft Azure [99], have released
service platforms to drive intelligence to the edge, allowing end devices to execute machine learning
inference locally with pre-formed models.

Figure 8 describes the six different ways of using edge intelligence for ML applications, in which
the edge can be combined with the cloud or used alone for the entire application process. In this paper,
we adopt two main methods: the cloud intelligence method, in which training and inferencing are
both performed in the cloud, and the Level 3 method, with on-device inference and cloud training.
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5. Visual Servo Control and Distance Estimation

Visual servo control consists of computer vision data usage to control the AUV’s motion [100].
Related works on underwater vision tracking and visual servo control for autonomous underwater
vehicles have shown that vision and visual servo control are imperative in developing AUV systems,
as the vision–AUV combination yields substantial benefits. Several studies on underwater tracking
focus on visual servoing, such as autonomous alignment and dynamic positioning [101,102], pipeline
following and planet target tracking [103]. With the advent of machine vision and deep learning, it
is currently viable to specify the object to be tracked. ML object tracking has already been tested in
different underwater applications, such as fish tracking and diver following and tracking [104,105].

To perform underwater vision tracking in Mar Menor and track the underwater Pinna nobilis
species, the fan mussel tracking algorithm is solved using the object recognition cloud API incorporated
in the AUV control loop. Through this algorithm, we verify that a specimen has been detected, and
from there we calculate the coordinates of its center (x, y). In this scenario, the AUV reduces speed,
and a PID (Proportional–Integral–Derivative) controller will keep the object in the centre of the frame
by adjusting AUV yaw and head tilt to keep the camera centred on the object detected [106,107].

When more than one specimen is detected, the system follows the one with the highest score. The
x and y coordinates are adopted as information in the object tracking process. To make the system
effectual, the port and starboard engines and AUV head tilt are adjusted to track the object using
the object’s coordinates as feedback. The thrust motors follow the position changes of the object’s
coordinates by means of PID controllers. When the detected object is centred, its distance from the
AUV camera is computed using the cloud API results and a triangular similarity algorithm [70,71]:

D = (W × F)/P (1)

where P is the width of the object in pixels and W is the width of the object itself.
The camera focal distance F is fixed and the apparent P is obtained from the cloud results. To obtain

W and estimated distance D, a minimum of two pictures are required at different distances from the
object for calibration, as presented in Figure 9 and Algorithm 1.
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The cloud object detection API and the tracking algorithm are fully implemented using Python.
The entire Python program is processed in the IoT gateway while yaw and tilt are processed in
the sbRIO main controller. The output data coordinates from the cloud are used to keep the AUV
automatically focused on the object itself in the desired position.

The sbRIO main controller drives the robot’s movements to keep the target’s bounding box in
the centre of the camera image. The IoT gateway continuously sends coordinate errors (distance,
X position, Y position) to this controller, so that these data become the input for the closed loop for tilt,
heading and speed adjustments (Figure 10).
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Figure 10 presents the modules and process involved in detecting and tracking the target. In the
object detection algorithm block, the system aims to keep the target in the centre of the image. When
the relative size of the target has been obtained from the object detection API, these control loops are
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kept operative while the speed is gradually increased to calculate the estimated distance by means of
the similarity triangulation algorithm. From then on, tilt, heading, speed and control loops keep the
target in the centre until the vehicle is at the desired distance. The tilt and heading closed control loop
were successfully tested in calm waters and slow currents, although difficulties were encountered with
stronger currents.

Servo Control Latency

The visual system is required to provide real-time results from the control loop with very low
latencies. The principal concern is the ability to detect the target and aim the camera at the centre of
the image. To obtain effective real-time control, the delays involved in initially detecting the target
and those of the sensor and actuator while tracking the object must be minimised (Figure 11) [108].
Three distinct types of delay are involved. The first is actuator delays, which occur in the feedforward
loop when the delay is in the robot itself. The second type is sensor delays in the feedback path of a
closed-loop system, derived from a sensor delay. This delay is present in any real-time control system
with visual feedback and depends on the amount of visual processing required. The third type is
transportation delays, or pure time delays, usually due to long-distance communications.
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To reliably assess the servo control latencies, we modelled the basic closed-loop system with
sensor and actuator delays, as shown in Figure 11. Y(s) is the output signal and R(s) is the reference
signal. The sensor and actuator delays are represented, respectively, as e−sTs and e−sTa in the frequency
domain, the (undelayed) sensor dynamics by H(s), the (undelayed) plant dynamics by G(s), and the
controller by C(s).

The most important delays in a control loop with visual feedback are those caused by the sensor,
and the delay time directly affects the dynamic stability of the control system. System stability is
determined by the poles of the input/output transfer function, i.e., the roots of the denominator. For a
single-input–single-output (SISO) system, the denominator (characteristic equation of the system) is
simply 1+ the loop gain, so that any stability analysis would incorporate the total actuator and sensor
delay to determine stability bounds.

Y(s)
R(s)

=
C(s)G(s)e−s(Ta)

1 + C(s)G(s) e−s(Ta)H(s) e−s(Ts)
(4)

and the characteristic equation is:

1 + C(s)G(s)H(s) e−s(Ta+Ts) = 0 (5)

The effects of stability can be analysed by studying the conditions of marginal stability. From the
above equation, the following expressions are deduced:
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∣∣∣C( jω)G( jω)H( jω)
∣∣∣∣∣∣e− jωT

∣∣∣ = 1 (6)

L(C( jω)G( jω)H( jω))L
(
e− jωT

)
= 180◦ (7)

As e− jωT = 1 for all ω, the magnitude of the system is not affected by the delay. However, as L
(e− jωT) = −ωT radians, it is clear that the phase margin for a system with a time delay decreases as the
time delay increases, leading to instability and thus constraining the bandwidth achievable in the face
of delays.

One way to deal with the pernicious effect of known or unknown delays is to detune first-order
gains. With a PID controller, this is performed by reducing the proportional gain (P) to levels where the
system remains stable. This approach has the disadvantage that the resulting response is slowed down
and, therefore, the overall performance of the system is worsened. The servo control must ensure a
compromise between performance and stability. The performance is proportional to the value of the
gain of the corrector; however, above a certain value, the corrector tends to destabilize the system.

6. Performance

Cloud and edge computing are considered adequate platforms to incorporate artificial intelligence
approaches. This paper primarily focuses on the issues related to the real-time constraints of using
an AI cloud in both environments. Our AUV system is designed to collect and interpret underwater
images to track the fan mussel population in real time by an automatic processing method. This
automated approach is based on DL image processing techniques, such as CNN, to detect the position
of a possible specimen in a captured photo. The IoT gateway algorithm establishes the connection
between the AUV control system and cloud image processing techniques. The results of our proposed
system are compared with cloud and edge image processing in terms of latency and certainty. Therefore,
we aim to compare the response time between the cloud and edge inference.

Microsoft Azure cloud was first compared with IBM and Google clouds, as shown in
Figure 12 [98,99,109]. The second comparison evaluated the same cloud service with inference
in the edge and comparing the same results in the cloud.
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We describe the various network connections and the performance metrics for the architectures
given in Figure 12. We first assessed the delay between the different terminals in the cloud architecture
and then compared it to that of the edge computing architecture. We evaluated the performance of each
trained model in the cloud and in the edge. Below, we compare the performance of each architecture,
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using LattePanda as an IoT gateway, with a 1.8-GHz Intel quad-core processor, 4 GB RAM and 64 GB
on-board flash memory.

6.1. Delay Assessment in the Proposed Platforms

Figures 13 and 14 exhibit the different data flows via the various communication networks for
the cases of cloud and edge computing. From data acquisition (sensors) to actuators, the information
flow goes through different networks: CAN and Ethernet in the case of edge architecture, and the
Internet and DSL for the cloud architecture. This represents the difference in latency between the two
modes and highlights the critical points in each case. The highest latency expected in the case of edge
computing is Tinference, and the Tcloud is the one expected in the cloud.
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6.1.1. Cloud Architecture

In the adopted cloud architecture, all the generated images are sent to the cloud services and
the inference is performed entirely in the cloud. This makes the application fully dependent on the
cloud results in order to make the necessary adjustments, which are crucial in the case of intermittent
connectivity. Figure 13 shows the different delays in the use case process.
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The response time in the system can be divided into delays, as modelled in Equation (8):

T = Tnav + Tsb1 + Tgt1 + Tby1 + Tcloud + Tby2 + Tgt2 + Tsb2 + Tact (8)

where:

(1) Tnav is the navigation sensor time,
(2) Tsb1 is the acquisition time of the sensor data in sbRIO,
(3) Tgt1 is the processing time of the first and second threads in the IoT gateway presented,
(4) Tby1 is the transmission time from the AUV to the buoy,
(5) Tcloud is the time needed to send photos to the cloud and receive the response results,
(6) Tby2 is the transmission time of cloud results to the AUV,
(7) Tgt2 is the processing time of the first, second, and third threads in the IoT gateway presented,
(8) Tsb2 is the IoT gateway data acquisition time in sbRIO, and
(9) Tact is the actuation time.

When the AUV starts up the IP camera stream, the Tsens value can be expressed in two ways
depending on the data stream, according to Equations (9) and (10):

Tsens =

{
Tnav + Tsb1 if Tnav + Tsb1 > Tcamera

Tcamera if Tnav + Tsb1 < Tcamera
(9)

T = Tsens + Tgt1 + Tby1 + Tcloud + Tby2 + Tgt2 + Tsb2 + Tact (10)

Tcloud is composed of three different delays: Trequest is the transmission time of each photo to the cloud,
Tinference is the processing time of the transmitted photo in the cloud service, and Tresponse is the time
from the cloud to the buoy.

Tcloud = Trequest + TIn f erence − Tresponse (11)

6.1.2. Edge Architecture

In the edge architecture, the data remains in the local machine and the images are not sent
to the cloud; however, the application needs a minimal connection to the cloud to report usage,
which is suitable for intermittent connectivity. The cloud connection is almost negligible; instead of
sending photos to the cloud for processing, the model uploads to the local IoT gateway and performs
the treatment. We therefore neglect the cloud connection in this architecture and only consider the
connections in the AUV.

In the edge model deployed in the IoT gateway, the overall response time of the edge architecture
in the AUV over the Ethernet and CAN networks is modelled as:

T = Tsens + Tsb1 + Tgt + Tsb2 + Tact (12)

where Tsens is expressed as:

Tsens =

{
Tnav + Tsb1 if Tnav + Tsb1 > Tcamera

Tcamera if Tnav + Tsb1 < Tcamera
(13)

Tgt, in this case, depends on Tthreads executing the four threads in the IoT gateway and the custom
model Tinference uploaded from the cloud.

Tgt = Tthreads + Tin f erence (14)
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6.2. Metrics

The Azure Custom Vision, Google cloud and Watson IBM services allow users to load a set of
image data and define the bounding box of each desired object in the image. To train the model
effectively, the images must be varied and as close as possible to the data on which the predictions will
be made. Camera angle, blurring, background, lighting, size, low resolution and type are all important
variations of the image that affect the training process.

Once the training was completed, we calculated the model’s performance using new image
datasets (i.e., not included in the training dataset), shown in Table 1. Precision indicates the fraction of
identified classifications that are correct, while recall indicates the fraction of actual classifications that
are correctly identified. IoU (intersection over union) is a metric of how successfully a model predicts
the objects’ locations and is gauged using the area of overlapping regions of the predicted and ground
truth bounding boxes, defined as:

IoU =
Area o f Overlap
Area o f Union

(15)

Table 1. Accuracy measurement in different platforms.

TP FP FN Precision Recall IoU

IBM 28 2 8 0.933333 0.777778 0.82506
Google 22 3 13 0.916666 0.611111 0.83364
Azure cloud 33 4 3 0.891892 0.916667 0.86601
Azure edge 24 3 11 0.888889 0.666667 0.678634

Unlike IBM in Azure Custom Vision and Google cloud, the AI model can be exported in different
formats (TensorFlow, Docker) specially adapted to edge devices, as opposed to in the cloud. The model
trained for cloud use is different from that trained for the edge as regards accuracy and response time.
We used the same photos to train and test the trained models for both edge and cloud use in the trials.
Figure 15 shows some differences in terms of the accuracy of new photos not used in the training
phase. The five tests clearly show the limits of each example; for instance, in test 3, the picture was
blurred, and Google cloud could not detect the mussel, while Microsoft detected it with 83% accuracy
and IBM only 15% accuracy. In test 2, all three clouds detected an unknown red object stuck in the
sub-bottom as a mussel with different percentages, which shows the limitation of the models regarding
colour changes.

In order to evaluate the performance of the proposed object detection models, in both the cloud
and edge, we used the following standard performance metrics:

precision =
TP

FP + TP
(16)

recall =
TP

FN + TP
(17)

where precision indicates the fraction of identified detections that were correct and recall indicates the
fraction of actual detections that were correctly identified. FP (False Positive) represents the number of
negative samples judged to be positive, TP (True Positive) is the number of positive samples judged to
be positive, and FN (False Negative) is the number of positive samples judged to be negative.

The accuracy measurement tests were performed on all three cloud platforms. We also adopted
the Azure edge model as it shows a better IoU metric score than Google. The accuracy test was
performed on more than thirty photos of mussels detected by our AUV camera, using the same photos
in the three different clouds. The results given in Table 1 clearly show the difference between the AI
cloud services.
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6.3. Latency Evaluation

Since most of the cloud APIs are based on the HTTP protocol, we performed a total of 100 HTTP
throughput tests using SpeedTest between the web server and the IoT gateway installed in the AUV.
The tests were performed in the Mar Menor experimental area through the 4G connection. The average
results of the tests carried out in this experimental area were as follows: round trip delay: 66 ms;
download: 16.6 Mbps; upload: 19.3 Mbps. The average size of the image sent from the AUV to the
cloud was approximately 194 kb.

The local network which connects the vehicle and the buoy presents a low fixed latency. This was
measured by a 100-automated-delay measurement campaign. The average latencies between the IoT
gateway and the different devices in the vehicle’s Ethernet network were as follows: sbRIO: 0.9 ms;
camera: 1.1 ms; 4G router (buoy): 1.2 ms.

The latency results are summarized in Table 2, where average, minimum and maximum response
time values are calculated for each endpoint architecture. The experimental set-up was based on
Azure and IBM cloud architectures, plus another edge architecture using a custom model formed
by Azure and processed by the IoT gateway. Although IBM Watson and Azure custom vision are
available worldwide, the locations of the deployments differ; Watson is deployed in the U.S. and South
Korea [109], while Google cloud and Azure are deployed in various locations around the world [98,99].
In this case, the Azure and Google cloud services are deployed in Western Europe, while IBM is
in Dallas, USA. All the samples in each architecture were thoroughly verified in an experimental
campaign with over 100 valid samples. The experiments carried out were based on Equations (10) and
(12) and Python software. The latter was employed to measure the overall latency.
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Table 2. Latency measurement in different platforms.

Total Response Time
(ms)

Cloud Response Time
(ms)

IoT Computing Time
(ms)

Capturing and Writing
Time (ms)

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

IBM 1407 4060 2064 1280 3896 1935 0 0 0 93 192 129
Google 1291 4384 1696 1160 4071 1520 0 0 0 92 196 130
Azure 1298 4572 1703 1171 4435 1571 0 0 0 92 196 131

Azure edge 623 687 634 0 0 0 523 595 532 93 194 130

The results reported in Table 2 show the differences between the proposed architectures in terms of
latency. Despite the fact that image processing in edge computing is performed on the IoT gateway, the
total response time is significantly lower than the latency obtained with cloud computing. The faster
running time of the custom AI detection model ensures real-time tracking and navigation adjustment.
Edge average response time is almost three times less than that of the cloud. However, the edge model
is less accurate than the cloud model; in fact, the edge model loaded from the cloud is optimized as far
as possible to meet the requirements of tiny device platforms.

7. Exploration Case Study

The experimental exploration mission was carried out with the objective of determining the
viability of the previously described approaches in detecting fan mussel specimens in an area of
250 m × 100 m in the Mar Menor (with the coordinates of Table 3). A cloud architecture approach
(Figure 12a) and a hybrid approach, a combination of cloud architecture (main mission) and edge
architecture (tracking mission) were adopted (Figure 12b). The aim of the hybrid approach was to take
advantage of edge architecture’s lower latency and favourable cloud precision. The tests achieved in
the previous section lead us to conclude that the results of Azure custom vision are more pertinent to
our use case application (in terms of latency and accuracy); therefore, we decided to adopt both the
cloud and edge Azure models for the mission described below.

Table 3. GPS coordinates of the area explored.

Corner Latitude Longitude

North east 37.697635◦ −0.780121◦

North west 37.697635◦ −0.782876◦

South west 37.696825◦ −0.782876◦

South east 37.696825◦ −0.780121◦

Our sailing operation started in a vessel equipped with a robotic arm that placed the vehicle in
the water. After defining the coordinates of the inspection area, the mission was planned on IUNO
software (Figure 16) according to the weather forecast, the time available and the width of the vehicle’s
search path.

The AUV employed for the experiment was connected to the buoy as shown in Figure 17.
The control station on board the vessel was connected to the AUV by 4G communications. The
different systems were checked before the AUV was placed in the water: control, lighting, thrusters,
4G communications, vision, etc. After successfully validating the systems, the vehicle was launched
and the mission was transferred from IUNO to the AUV.

We initiated the main mission using the first approach (cloud architecture for detection and
tracking). The AUV started to explore the area for possible specimens. The average depth of the
inspection area was 5.02 m and the vehicle remained at an average height of 2.01 m above the seabed.
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the edge model is less accurate than the cloud model; in fact, the edge model loaded from the cloud 
is optimized as far as possible to meet the requirements of tiny device platforms. 

7. Exploration Case Study

The experimental exploration mission was carried out with the objective of determining the 
viability of the previously described approaches in detecting fan mussel specimens in an area of 250 
m x 100 m in the Mar Menor (with the coordinates of Table 3). A cloud architecture approach (Figure 
12a) and a hybrid approach, a combination of cloud architecture (main mission) and edge architecture 
(tracking mission) were adopted (Figure 12b). The aim of the hybrid approach was to take advantage 
of edge architecture’s lower latency and favourable cloud precision. The tests achieved in the 
previous section lead us to conclude that the results of Azure custom vision are more pertinent to our 
use case application (in terms of latency and accuracy); therefore, we decided to adopt both the cloud 
and edge Azure models for the mission described below. 

Table 3. GPS coordinates of the area explored. 

Corner Latitude Longitude 
North east 37.697635º −0.780121º
North west 37.697635º −0.782876º
South west 37.696825º −0.782876º
South east 37.696825º −0.780121º

Our sailing operation started in a vessel equipped with a robotic arm that placed the vehicle 
in the water. After defining the coordinates of the inspection area, the mission was planned on 
IUNO software (Figure 16) according to the weather forecast, the time available and the width 
of the vehicle’s search path. 

Figure 16. Mission generated in IUNO and uploaded into AUV. Figure 16. Mission generated in IUNO and uploaded into AUV.

Remote Sens. 2020, 12, 1981 23 of 30 

The AUV employed for the experiment was connected to the buoy as shown in Figure 17. The 
control station on board the vessel was connected to the AUV by 4G communications. The different 
systems were checked before the AUV was placed in the water: control, lighting, thrusters, 4G 
communications, vision, etc. After successfully validating the systems, the vehicle was launched and 
the mission was transferred from IUNO to the AUV. 

We initiated the main mission using the first approach (cloud architecture for detection and 
tracking). The AUV started to explore the area for possible specimens. The average depth of the 
inspection area was 5.02 m and the vehicle remained at an average height of 2.01 m above the seabed. 

The first of the six sweeps (Figure 16) was completed without detecting any possible specimens. 
The first fan mussel was detected with 63% accuracy in the second track, when the AUV switched to 
the secondary mission mode to track it (object location in the frame and distance 
calculation). However, this turned out to be quite impractical due to the high latency of the cloud 
connection. A timeout exception occurred during the tracking mission and the algorithm chose 
to ignore it and resume the main mission. As described in Section 6, the detection fails if a 
deadline is missed due to transmission delays, which affects the dynamic stability of the control 
system. The technical team therefore decided to abort the mission, return to the starting point and 
launch the same mission in the “hybrid” mode. 

Figure 17. Deploying the platform to initiate the mission. AUV submarine connected to a buoy via a 
DSL cable. 

The hybrid mission mode was initiated and the cloud connection was used to process the photos 
sent during the main tracking mission. On the second sweep, the cloud results in the gateway 
indicated the presence of a specimen with 64% probability. The vehicle switched to the tracking mode. 
At this point, the AUV began manoeuvring to place the target in the centre of the image, while the 
inference was switched to the edge model in the IoT gateway instead of the cloud to reduce latency. 
The AUV was able to follow the suspected specimen up to a distance of 2.13 m. The accuracy of the 
analysed image at this distance was 83.8%, using the trained edge model. For greater certainty, the 
inference was switched to the cloud for the last picture to confirm the find. In this hybrid mode, the 
edge was used to speed up tracking and AUV response. At this point, the AUV ended the secondary 
mission mode, registered the find as positive, saved its coordinates and resumed the main mission 
(Figure 18). 

Figure 17. Deploying the platform to initiate the mission. AUV submarine connected to a buoy via a
DSL cable.

The first of the six sweeps (Figure 16) was completed without detecting any possible specimens.
The first fan mussel was detected with 63% accuracy in the second track, when the AUV switched to
the secondary mission mode to track it (object location in the frame and distance calculation). However,
this turned out to be quite impractical due to the high latency of the cloud connection. A timeout
exception occurred during the tracking mission and the algorithm chose to ignore it and resume the
main mission. As described in Section 6, the detection fails if a deadline is missed due to transmission
delays, which affects the dynamic stability of the control system. The technical team therefore decided
to abort the mission, return to the starting point and launch the same mission in the “hybrid” mode.

The hybrid mission mode was initiated and the cloud connection was used to process the photos
sent during the main tracking mission. On the second sweep, the cloud results in the gateway indicated
the presence of a specimen with 64% probability. The vehicle switched to the tracking mode. At this
point, the AUV began manoeuvring to place the target in the centre of the image, while the inference
was switched to the edge model in the IoT gateway instead of the cloud to reduce latency. The AUV
was able to follow the suspected specimen up to a distance of 2.13 m. The accuracy of the analysed
image at this distance was 83.8%, using the trained edge model. For greater certainty, the inference
was switched to the cloud for the last picture to confirm the find. In this hybrid mode, the edge was
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used to speed up tracking and AUV response. At this point, the AUV ended the secondary mission
mode, registered the find as positive, saved its coordinates and resumed the main mission (Figure 18).Remote Sens. 2020, 12, 1981 24 of 30 
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No further specimens were detected until the fourth sweep, when another was detected with 38% 
probability. Once again, the vehicle switched to tracking mode, centred the target in the image and 
performed the approach manoeuvre as before. After halting at 2.06 m from the target, the recognition 
algorithm indicated that the target was a fan mussel with 59% probability. As the minimum 
confirmation requirement in terms of the probable detection threshold at this stage is 80%, the target 
was ignored, and the main mission was resumed. Due to the real-time communications, the target 
was in fact found not to be a fan mussel but a dark-coloured rock. On the sixth sweep, the mission 
and inspection were completed after detecting one target specimen and discarding another possible 
detection that turned out to be a rock. 
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This paper proposes an AUV model system designed to track a species of Mediterranean fan 
mussel, using cloud computing services with edge computing as alternative processing units. Edge 
computing topology reduces latency to support IoT performance in low-bandwidth environments 
and eases overall network congestion. An innovative algorithm was proposed to autonomously track 
the target species without human intervention by integrating the object detection system into the 
AUV control loop. The proposed model is capable of detecting, tracking and georeferencing 
specimens with IUNO software. 

The obtained results highlight the system’s effectiveness and feature the asset of combining an 
AUV with deep learning cloud services for processing and analysing photos. Although cloud-based 
architecture automatically distributes and balances processing loads, we overcame latency challenges 
in the tracking process by using edge computing in the IoT gateway. The IoT gateway installed in the 
AUV replaces the cloud processing unit by virtue of the interaction between the different AUV 
components. We integrated cloud-based ML services into the AUV system to achieve a completely 
autonomous pre-programmed search mission with relevant accuracy. Moreover, to ensure that data 
is transferred, processed and returned at speeds that meet the needs of the application, the two cloud 
object detection services were implemented and compared in terms of latency and accuracy. The 
obtained experimental results clearly justify the proposed hybrid cloud/edge architecture and 
highlight the combination of the system performances that ensure a real-time control loop for relevant 
latency and accuracy. 

To meet the system’s requirements, lower latency and favourable cloud precision, our proposed 
AUV servo control ensures a trade-off between performance and stability. The hybrid cloud/edge 
architecture is therefore recommended to ensure a real-time control loop and achieve consistent 
results. 
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Figure 18. Specimen detection and positioning in IUNO.

No further specimens were detected until the fourth sweep, when another was detected with
38% probability. Once again, the vehicle switched to tracking mode, centred the target in the image
and performed the approach manoeuvre as before. After halting at 2.06 m from the target, the
recognition algorithm indicated that the target was a fan mussel with 59% probability. As the minimum
confirmation requirement in terms of the probable detection threshold at this stage is 80%, the target
was ignored, and the main mission was resumed. Due to the real-time communications, the target
was in fact found not to be a fan mussel but a dark-coloured rock. On the sixth sweep, the mission
and inspection were completed after detecting one target specimen and discarding another possible
detection that turned out to be a rock.

8. Conclusions

This paper proposes an AUV model system designed to track a species of Mediterranean fan
mussel, using cloud computing services with edge computing as alternative processing units. Edge
computing topology reduces latency to support IoT performance in low-bandwidth environments and
eases overall network congestion. An innovative algorithm was proposed to autonomously track the
target species without human intervention by integrating the object detection system into the AUV
control loop. The proposed model is capable of detecting, tracking and georeferencing specimens with
IUNO software.

The obtained results highlight the system’s effectiveness and feature the asset of combining an
AUV with deep learning cloud services for processing and analysing photos. Although cloud-based
architecture automatically distributes and balances processing loads, we overcame latency challenges
in the tracking process by using edge computing in the IoT gateway. The IoT gateway installed in
the AUV replaces the cloud processing unit by virtue of the interaction between the different AUV
components. We integrated cloud-based ML services into the AUV system to achieve a completely
autonomous pre-programmed search mission with relevant accuracy. Moreover, to ensure that data is
transferred, processed and returned at speeds that meet the needs of the application, the two cloud
object detection services were implemented and compared in terms of latency and accuracy. The
obtained experimental results clearly justify the proposed hybrid cloud/edge architecture and highlight
the combination of the system performances that ensure a real-time control loop for relevant latency
and accuracy.

To meet the system’s requirements, lower latency and favourable cloud precision, our proposed
AUV servo control ensures a trade-off between performance and stability. The hybrid cloud/edge
architecture is therefore recommended to ensure a real-time control loop and achieve consistent results.
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