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Abstract: The “East Muddy Creek Landslide Complex” in Gunnison County, Colorado, USA destroyed
Colorado State Highway 133 from 1986 to 1987 and has been investigated over decades during different
periods of reactivation. This paper presents a case study of novel landslide activity recognition related
to the landslide complex using Advanced Land Observing Satellite-1 (ALOS-1) Interferometric
Synthetic Aperture Radar (InSAR) analysis. We compare the result from ALOS-1 InSAR analysis to
landslide recognition investigations from traditional field methods for ground motions at a watershed
scale. Line of Sight (LOS) velocity mapping is used to characterize displacement zonation, failure
modes, and hazard assessment activities. Mass wasting estimates using existing geological modeling
are discussed in terms of potential of landslide element dynamics. ALOS-1 InSAR analysis reveals
newly detected ground displacement at very slow to extremely slow velocities with a significantly
increased spatial extent. The implications of expanded displacement activity in the context of landslide
geomorphology, mountain denudation, exhumation, and future monitoring efforts for hazard and
risk assessment are also examined and discussed.
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1. Introduction

The “East Muddy Creek Landslide Complex” is located in the Muddy Creek drainage of the
Gunnison River basin on the western flanks of the Ragged Mountains in Gunnison County, Colorado,
USA (Figure 1). The active and reactivating landslide complex has been investigated over decades
during different periods of reactivation [1–4]. Previous studies identified the spatial extent of three slow
moving landslides [4–7] that destroyed Colorado State Highway 133 from 1986 to 1987. The landslide
complex is recognized by State of Colorado and federal agencies as a significant hazard, endangering
both transportation routes, the nearby Paonia Reservoir, and Paonia State Park, located immediately
downstream. The three active landslides form part of a larger hillslope with geomorphic features
indicative of historical landslide activity. Previous geological mapping of this larger hillslope noted
hummocky terrain, truncated drainage networks, and sag ponds [2,8,9]. These studies did not classify
temporal characteristics with regard to activity or dormancy. Such a temporal classification using
field mapping is difficult, especially when deformation activity is slow and over large regions of
spatial extent.
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Figure 1. Location of the “East Muddy Creek Landslide Complex” in Gunnison County, Colorado, USA.

This paper presents a case study of previously unknown landslide activity within the western
hillslope of the Ragged Mountains using Advanced Land Observing Satellite-1 (ALOS-1) Interferometric
Synthetic Aperture Radar (InSAR) between 2007 and 2011. We describe the interpretation of newly
detected very slow to extremely slow, creep style deformation with greatly expanded spatial extent
observed through InSAR analysis [10]. Using high resolution velocity mapping of the hillslope, we also
describe new geomorphological features detected with the radar imagery and present the advantages
and limitations of InSAR analysis in landslide recognition studies. We conclude with a discussion
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of the implications of this newly recognized activity to the geomorphic development of the Ragged
Mountain Range in Colorado, USA.

Figure 1 also shows the three active landslides identified by previous investigations [1–7], and the
investigation area of this study. The inserted photo of the western hillslope below the Ragged
Mountains has been provided by courtesy of L. Weyers.

1.1. Landslide Recognition and Radar Remote Sensing

Earth observation (EO) methods of radar interferometry, lidar remote sensing, and advanced
image processing are increasingly successful in estimating ground surface deformation either
occurred naturally or induced by human activities, e.g. [11–17]. These EO methods are powerful
in identifying and characterizing active slope deformations both in spatial scale and magnitude of
displacement [18–23]. Radar interferometric measurements provide landslide researchers with a
precision that is complementary to in-situ geotechnical instrumentation; additionally, the EO methods
provide continuous spatial coverage of the measurements [24]. A successful in-situ instrumentation
campaigns requires initial recognition of landslide activity to design a plan to monitor critical zones,
and can be limited by not siting instrumentation correctly, or the damage of the instrumentation
due to the mass movement of the slope [25,26]. InSAR imagery can play a vital role in assisting this
initial detection of spatial extents through the creation of continuous field of measurements, and in
identifying active and inactive zones for better instrumentation installation. The tasks of landslide
“recognition” comprises of three main categories [20]: (1) reconnaissance, recognition, and classification;
(2) monitoring and characterization; and (3) hazard and risk assessment.

The framework by Scaoini et al. [20] emphasizes the need for feature detection in spatial extents,
displacement magnitude, movement seasonality. Using InSAR methods to detect slow landslide
movement on the Ragged Mountains hillslope presents a unique opportunity to examine a case of EO
based landslide recognition. We contrast this approach with previous investigations and other methods
to monitor the ground displacement on the hillslope. This study area was selected based on InSAR
analysis of an area of previously known landslide activity in the East Muddy Creek Landslide Complex.

1.2. Geological Setting of the Study Area

The southwestern flanks of the Ragged Mountains in Gunnison County, Colorado consist of
a number of active and historical slope disturbances that have been investigated with a range of
studies [4,5,8]. These slopes are mapped as “inactive” landslide deposits of reworked glacial till [8,9]
or simply labeled “ancient” landslide deposits [9]. Natural hazard and transportation risk studies
were completed on three spatially distinct active landslides: “North”, “Central”, and “South” after
reactivations events in 1986 and 1987 [26]. The landslide materials rest upon the surficial Wasatch
Formation (Tw) that overlies the Ohio Creek Sandstone (Koc). The sedimentary rocks in the area of the
landslide complex are gently folded into a N-S trending syncline. The contact between the Tw and
the Koc is unconformable and has been recognized as a likely mechanism for “dip slip” landslide
slip planes [2,5,9]. The Ragged Mountain Lacolith (Tqmp) that abuts the hillslope of the complex is
interpreted as Eocene age possibly coeval with the Wasatch formation.

The Muddy Creek landslides caused significant damage to Colorado State Highway 133 from 1986
to 1987 [7]. The landslide complex is recognized by state and federal agencies as a significant hazard,
endangering both transportation routes as well as the nearby Paonia Reservoir, located immediately
downstream of the East Muddy Creek. The reservoir is vulnerable to impacts from sedimentation,
landslide damming, back flooding and overtopping seiches [6].

Particular concerns from increased reactivation are damage to the highway, the formation of
landslide dams, and channel sedimentation [1,3,7]. Three dimensional subsurface modeling and
geological investigation of the three reactivations were conducted to create a framework for further
study. Modeling efforts included determining the relative thicknesses of the landslide masses [2].
The landslides have been periodically monitored by the US Bureau of Reclamation (USBR) using



Remote Sens. 2020, 12, 1969 4 of 17

a prism-based survey measurement through 2007. Previous studies all note the high likelihood of
uncharacterized zones of landslide activity within the “Apron” of landslide deposits covering the
hillslope below the Ragged Mountains (Figure 2).
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Figure 2. Interpreted cross section of slope near the Ragged Mountains with regional geologic units of
Wasatch Formation (Tw), Ohio Creek Sandstone (Koc), against the tectonically active Ragged Mountains
Lacolith (Tqmp) (modified from [2]).

Residences and occupied structures exist on the slope above the known active landslides. Energy
infrastructures have been established in the area as recently as 2011 [27] including natural gas wells,
pipeline infrastructure, and liquefied natural gas gathering stations [28]. Even “extremely slow”
displacement velocities are hazardous to linear structures that penetrate slip planes in the subsurface
or shear zones on surficial installations.

1.3. Previous Evaluation of Landslide Movement

Among all the previous studies, the investigation by Stover and Cannon [1] is one of the
most thorough studies, which concluded that the landslides have reached an “equilibrium state”.
This description was used broadly to describe the much lower rate of movement observed in the years
after major movements in 1986–1987. However, no quantitative analysis of geotechnical or kinematic
modeling has been attempted. Stover and Cannon [1] cited their limited number of boreholes to define
as much of the spatial extent of the landslide geometry. Stover and Cannon [1] concluded “The structural
complexity of the Muddy Creek landslides and difficulties associated with over-consolidated materials
precludes the application of conventional slope stability analyses”. The “conventional slope stability
analyses” refer to factor-of-safety type analyses such as limit equilibrium analysis and method of
slices, used to evaluate the ratio between resisting and driving forces of a landslide. The problem
with applying these techniques is that Muddy Creek is a complex landslide system instead of a single
landslide. Though the behavior of individual elements is complex, the mechanism of overall instability
is well conceived: Stover and Cannon [1] suggested that the landslides moved with a “conveyor belt”
style of sliding. Muddy Creek removes toe material from the landslides and the landslides reactivate
as the buttressing effects of the toe material are removed.

Lowry [2] compiled data from various sources, including data from previous investigations,
monitoring data maintained by the USBR, and publicly available spatial and time series datasets into
an integrated geographic information system (GIS). The goal of that study was to conduct a subsurface
modeling based on material type and activity status. Figure 3 shows the locations of cross-section
and borehole used in that study. Figure 4 presents the oblique view of north, central, and south
landslide complex. The subsurface model and associated GIS of the Muddy Creek landslide complex
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is an effective tool for understanding the complexity and scale of the landslides. It updates previous
investigations, and arguably helps improving the understanding of how the landslides behave.
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Figure 4. Oblique view of north, central, and south active landslide complex (Alsc), showing thickness
of deposits with a vertical exaggeration of 3 times (modified from [2]).

2. Methods

2.1. Data Acquisition

The study area is location within the Rocky Mountain range. Due to its location in the Rocky
Mountains, snow can remain on the ground as early as November and as late as April in the study
area. There is only a single track of ascending scenes available, number of total scenes 10, during snow-off
conditions in the study area. Another challenge is the vegetated slopes in the Muddy Creek complex
during the snow-off season. Table 1 lists the ALOS-1 scenes available for the study area from 2007 to 2011.

Table 1. ALOS-1 Scene characteristics and suitability (orbit 194, frame 770, Fine Beam Mode).

Satellite Platform Scene Acquisition
Date

Snow Cover
Present

Used in
Analysis

Temporal Baseline
in SBAS in Days

ALOS-1 25/12/2006 Yes No Not Used
ALOS-1 27/06/2007 None Yes Not Used
ALOS-1 27/09/2007 None Yes 92
ALOS-1 28/12/2007 Yes No Not Used
ALOS-1 14/05/2008 None Yes 230
ALOS-1 14/11/2008 None Yes 184
ALOS-1 30/12/2008 Yes No Not Used
ALOS-1 02/01/2010 Yes No Not Used
ALOS-1 04/04/2010 None Yes 506
ALOS-1 20/05/2010 None Yes 46
ALOS-1 05/07/2010 None Yes 46
ALOS-1 20/08/2010 None Yes 46
ALOS-1 05/10/2010 None Yes 46
ALOS-1 20/11/2010 None Yes 46
ALOS-1 05/01/2011 Yes No Not Used
ALOS-1 20/02/2011 Yes No Not Used
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Based on the previous studies [1–7], Muddy Creek Landslides are in predominantly translational
E-W motion. With the ascending imagery of the right looking satellite (Figure 5a), we can assume that
the deformation is sensing Line of Sight (LOS) movements in predominate deformation as translational
movement. Figure 5b shows the Short Baseline Subset (SBAS) Network with perpendicular baselines
through Delaunay triangulation based on scenes listed in Table 1.
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2.2. ALOS InSAR

Slow to extremely slow or “creep” scale landslide displacement velocities (<60 mm per year) are
difficult to distinguish compared to higher activity features like shear zones, sag ponds, and scarp
formations. With such a large spatial extent, slow moving landslides are difficult to detect without
displaced linear features such as fence posts or roads using in-situ instrumentation method. Statistical
weights of evidence methods carried out over the Ragged Mountain hillslope area failed to recognize
or inventory the previously known active landslides, and mistakenly classified areas of known activity
as “low susceptibility” to landslide activity [29].

Satellite remote sensing, where suitable, has a significant advantage for mapping slow landslide
features because of its superior viewshed. The large footprint of satellite images allows for efficient
analysis of slope movements at a watershed scale. This study presents satellite InSAR measurements
through the ALOS-1 platform from 2007 to 2011. The ALOS-1 platform operated an L-band microwave
sensor known as the Phased Array type-L Synthetic Aperture Radar (PALSAR); characteristics of the
PALSAR sensor are summarized in Table 2. The ALOS-1 platform stopped operation in 2011 due to
loss of communication with the satellite, affording landslide monitoring during a short window from
2007 to 2011.

Table 2. ALOS PALSAR Sensor platform characteristics, adapted from [26].

Feature Mode Used for this Study

Beam Mode Single Polarization
Center Frequency and Wavelength L-Band (1.27 GHz, 23.6 cm)

Spatial Resolution ~10 m
Swath Width 250–350km

Off-Nadir Angle 27.1◦ (default)

Short Baseline Subset (SBAS) is a well-known advanced InSAR procedure, in which the
independent subsets of interferograms are combined to estimate the displacement history using
the minimum-length solution of the phase velocity obtained by singular-value decomposition [30].
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In this study, interferograms were created with a modified SBAS InSAR algorithm, which focuses on
temporal rather than spatial unwrapping of measurements, important for monitoring time-dependent
variable such as displacement of landslides, rather than single events such as an earthquake. The main
modification of this algorithm is the Digital Elevation Model (DEM) error correction method, which
operates in the time domain after the inversion of the interferograms [16]. Given the large baselines for
ALOS-1 InSAR stacks (Figure 5b), this method improves the DEM error correction over conventional
SBAS approaches.

The ALOS radar dataset has been recognized as s superior platform for detection of slow landslide
activity [31,32] due to its ability to create stable interferograms over long temporal and spatial baselines.
Persistent scatterer interferometry (PSI) was not attempted in this study due to the low number of
total scenes, 10, not meeting the PS suitability criteria of >25 per Ferreti et al. [33]. Lack of persistent
scatterers within the Muddy Creek hillslope may require advanced computer vision techniques such
as sub pixel offset tracking [34] or deployment of corner reflectors [35] for PSI to be effective on the
vegetated slopes such as those in the Muddy Creek complex. ALOS-1 InSAR analyses all suffer from
the shortened imagery availability from 2006 to 2011. Other platforms such as Sentinel-1 and Radarsat
scenes are decorrelated even in 12-day pairs due to the vegetated montane conditions of the terrain,
highlighting the capabilities of ALOS-1 L-Band capabilities of maintaining coherence over long spatial
and temporal baselines. Recent work with the Sentinel-1 platform notes the challenges of C-Band
interferometry for landslides in the “very slow” and “extremely slow” velocity class [36] despite
having more continuous monitoring campaigns. With the development of new approaches, such as
advanced DInSAR (A-DInSAR) or time series radar interferometry (TS-InSAR), these challenges may
be overcome for the study of majority of mass movement dynamic phenomena [36].

Initial displacements were detected in a period of less than one year based on interferograms of the
L-Band ALOS-1 imagery. Scene wide phase ramps were removed. Some DEM error can be observed in
steep gullies or ridges, but are generally coherent and stable on hillslope areas. As mentioned above,
InSAR processing was completed using a modified SBAS [30,37] time series processing algorithm.

SBAS velocity tracking relies solely on temporal unwrapping with no spatial unwrapping
considerations. This is an important method for landslide reconnaissance investigations which
increases capability in detecting new displacement features as the unwrapping process imparts no
neighborhood effects upon the slope motion estimates. This technique works well for uniform velocity
landslides but may introduce unwrapping errors at uneven faster velocity displacements or temporally
sparse scenes. Some researchers [20,31] noted that SBAS processed L-Band imagery is particularly
useful for landslide recognition and monitoring of wide area, slow moving landslides. As only a single
track of ascending scenes was available during snow-off conditions in the study area, LOS velocities
are presented in this paper.

2.3. Landslide Geomorphology and Mass Wasting Assessments

Landslide size and velocity characteristics are important to estimate denudation and sediment
transport, a vital task in understanding geomorphic evolution of montane landscapes [38]. Assessment
for landslide movement is typically deployed using topographic change analysis with differential
digital elevation models (DDEM) with lidar, photogrammetric, or structure from motion models [39–42].
These techniques can identify depletion and accumulation zones before and after reactivation events or
by integrating elevations over time with a time series of DDEM measurements [38–40]. DDEM based
methods derive mass displacement through mass balance modeling [38,39]. Material displacement
rates must then be modeled and are sensitive to the accuracy of the derived DEM products [42–45].
ALOS platform has been used in landslide mass wasting studies as by Chen et al. [46] tracking the post
seismic deformation field of a giant landslide, which uses DEM based analysis of pre and post event
topographies to constrain volumetric estimates of mass displacement. Schlögel et al. [47] presented
typical radar-based signatures of “Morpho-structures” for different types of landslide types (Figure 6).



Remote Sens. 2020, 12, 1969 9 of 17

Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 18 

 

analysis of pre and post event topographies to constrain volumetric estimates of mass displacement. 

Schlögel et al. [47] presented typical radar-based signatures of “Morpho-structures” for different 

types of landslide types (Figure 6). 

Without descending orbit scenes to create a true 3D decomposition of displacement [48,49], we 

have made some assumptions, such that displacements can be adjusted into reasonable spatial 

constraints that better estimate the actual downslope displacement. The phase change in scenes were 

negative, meaning a decreasing range to the sensor implying that translational E-W motion is 

predominant. With the ascending imagery of the right looking satellite, we can assume that the 

deformation is sensing LOS movements in predominate deformation as translational movement, 

indicated by previous interpretations of sliding mechanisms [1,2]. 

  

Figure 6. Displacement patterns, morpho-structures, and associated interferometric phase for 3 

landslide types (Adapted from [47]). 

3. Results 

Interferograms of the area display a visible deformation phase shift clearly indicating a moving 

landslide mass (Figure 7). Displacements are visible in most interferogram pairs and defined through 

SBAS phase unwrapping. Some phase anomalies are present in deeper incised valleys and likely 

caused by DEM error. Velocity maps (Figure 8) of the unwrapped displacements illustrate the rate of 

movement over the entire time frame of the ALOS-1 Imagery available to this study. Time series 

selected at points within the moving landslide (Figure 9) show the SBAS derived velocities ranging 

from 1 cm per year (Time series I) to 5.5 cm per year (Time series E).   

Areas of scene to scene decorrelation are coincident with water bodies like Tomahawk reservoir, 

Paonia Reservoir, and previous mapped landslide zones. Of particular note is the decorrelation near 

Figure 6. Displacement patterns, morpho-structures, and associated interferometric phase for 3 landslide
types (Adapted from [47]).

Without descending orbit scenes to create a true 3D decomposition of displacement [48,49],
we have made some assumptions, such that displacements can be adjusted into reasonable spatial
constraints that better estimate the actual downslope displacement. The phase change in scenes
were negative, meaning a decreasing range to the sensor implying that translational E-W motion
is predominant. With the ascending imagery of the right looking satellite, we can assume that the
deformation is sensing LOS movements in predominate deformation as translational movement,
indicated by previous interpretations of sliding mechanisms [1,2].

3. Results

Interferograms of the area display a visible deformation phase shift clearly indicating a moving
landslide mass (Figure 7). Displacements are visible in most interferogram pairs and defined through
SBAS phase unwrapping. Some phase anomalies are present in deeper incised valleys and likely
caused by DEM error. Velocity maps (Figure 8) of the unwrapped displacements illustrate the rate
of movement over the entire time frame of the ALOS-1 Imagery available to this study. Time series
selected at points within the moving landslide (Figure 9) show the SBAS derived velocities ranging
from 1 cm per year (Time series I) to 5.5 cm per year (Time series E).

Areas of scene to scene decorrelation are coincident with water bodies like Tomahawk reservoir,
Paonia Reservoir, and previous mapped landslide zones. Of particular note is the decorrelation near
the VOLK #12-89-21 #1—a gas production well within the study area, which underwent construction
during the acquisition period [50]. Movements of the previously known active landslide areas are
well correlated spatially indicating adequate geocoding of the ALOS imagery to the topography of the
terrain without radar image artifacts of overlay or foreshortening within the hillslope.
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Without contemporaneous field instrumentation or verification by independent methods of
remote sensing measurement, the velocities in this work must be treated as apparent velocities
from the ALOS-1 imagery interferometry and subject to verification with additional investigation.
The results of LOS velocity monitoring here are valuable in the characterization of spatial variation
over the hillslope, if not yet to the level of independently verified downslope velocities. The ALOS-1
imagery provides another comparison point with previous investigations, which also struggle on
contemporaneous acquisition and investigation of such a large area of movement, even at scales of
previously recognized displacements.

The hillslope topography is characterized by hummocky terrain with an interrupted drainage
pattern and immature fluvial mass wasting regime. Here, we are estimating mass wasting of the
internal to the hillslope only by mass displacement (landslide activity), which is then removed through
fluvial erosion at the toe of the higher active landslides.

Displacement mapping measures a continuous rate without evidence of strong seasonality, mass
transfer is calculated in a per year rate (Table 3). The LOS velocity is likely an underestimate of
translational displacement, so rates are adjusted with off-nadir right look angle to along slope direction
angles as outlined in Zhao et al. [31]. Azimuthal component of velocity vector is applied uniformly to
average downslope direction. 30 m resolution SRTM was used to generate the DEM for topographic
calculations. Velocity profiles indicate distinct areas of activity on each landslide, faster velocities
measured above these areas, indicating landslide progression upslope (Figure 10).

Table 3. Mass wasting estimates of landslide elements from previous and ALOS displacements.

Landslide Element Area (m2)
Average Annual Rate Mass

Displacement 2005–2007
(m3 per year)

Annual Mass Displacement with
Adjusted Velocities 2007–2011

(m3 per year)

North Landslide 2.94 × 105 8.05 × 105 8.38 × 105

Central Landslide 7.92 × 105 2.17 × 106 2.26 × 106

South Landslide 3.18 × 105 1.45 × 106 9.07 × 105

Ragged Mountain
Western Hillslope 1.93 × 107 Unknown 1.48 × 107
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4. Discussion

4.1. Landslide Geomorphology System and Mass Wasting Dynamics

Crozier [52] presented the “landslide geomorphology systems” framework for discussing
how landslide processes contribute to geomorphological development of different types of terrain.
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The Ragged Mountain western hillslope exhibits similarity to the “stratigraphically controlled hill
country” identified in the New Zealand [52]. If persistent over a multi decade period, the larger
zones of mass transfer will contribute to a much larger component of Earth’s surface denudation than
that from the episodic reactivations of landslides, which are more widely studied and characterized
in the literature. While sedimentation loading events will be increased with episodic reactivation,
investigation of the dynamic between zonal transitions needs continuously evaluation and monitoring.
Treating mass wasting events as those seen in 1986–1987 from landslides as alternately “active” and
“dormant” ignores the watershed scale of denudation and geomorphic development [39,44].

The spatiotemporal evolution of the Ragged Mountains western hillslope is more complex than
simple alternating active and dormancy of landslide deposits. This study reveals a more continuous
signal of mass movement, which would manifest in different parts of the hillslope at different periods
of relative reactivation and relative inactivity. The episodic reactivations of the north, central, and south
landslide elements are observed, as the spatially larger creeping zone of movement provides landslide
materials to the catchment of narrower, steeper paleo incised channels. The episodic nature of the
movement in these paleo valleys may therefore be controlled by this supply from the above larger
hillslope mass moving at much slower rates. This is compatible and evidence of a hypothesized direct
relationship between mountain formation and landslide rates in work by Roering [53] and Larsen
and Montgomery [54]. Specifically here in the Ragged Mountains, the landslide geomorphology
system appears directly connected with recently studies that high differential exhumation rates of
108–870 m/Ma in the Neogene [50,55,56], which would be partially explanatory of such a large landslide
complex system to be located on the western flank of the Ragged Mountains. Karlstrom et al. [20] used
fluvial incision rates to correlate denudation with tectonism, but this study implies that denudation
might be better represented with a combination of fluvial and landslide mass wasting as suggested
by Crozier’s model of landslide geomorphologies [46]. Mass balance analysis of mass transfer and
orogenic exhumation rates is therefore an important next step in understanding the dynamics of
geomorphic evolution for the Ragged Mountains.

4.2. Hazard and Risk Implications

Expansion of the recognized area of active landslides calls for further field mapping and damage
assessments that are necessary to verify remote sensing results with ground truth. The landslide
masses as detected in this study would most certainly damage penetrating structures like natural
gas wells and pipelines, known to exist within the bounds of the Ragged Mountain western hillslope
footprint. Valuable subsurface information could be attained during structure damage assessments
in the identification of slip plane depths. More granular understanding of local site or borehole
deformation could also prevent possible leaks and spills related to energy production in this basin.

This case study shows the success of combining historical field investigations with EO methods,
and we acknowledge that L-band ALOS InSAR archives were explored with previous knowledge
of displacements in the area. The prospect of unsupervised campaigns requests detecting and
recognizing landslide activity without a priori knowledge. L-band InSAR monitoring campaigns
capable of revealing landslide features is a valuable addition to other EO capabilities of landslide
study. Additional monitoring campaigns with L-Band wavelengths will contribute to both the ability
to recognize landslide patterns in radar imagery and to contribute to the growing understanding of
hillslope evolution.

L-band SAR has played an important role in EO studies by its inherent longer wavelength; as well
as capacity of penetrating and transmitting from the ground through the vegetated canopy. Future
L-band SARs, such as NISAR the joint mission by NASA-ISRO, will pave the way for boarder utilization
of L-band InSAR. This case study demonstrates the implications of the future L-Band SAR mission to
the area of landslide hazards assessment.
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5. Conclusions

Previous studies suggested that the Muddy Creek Landslide Complex is confined within a much
smaller area. As different components of the Muddy Creek Landslide Complex are known to change
rapidly and behave separately, the boundaries and activity states of landslide areas are particularly
ephemeral, due to complex reactivation and enlargement of surrounding landslide masses, which
themselves are made up of previously landslide material.

The recognition of the new zone of landslide creep on with ALOS-1 archives has important
implications in both practical and methodological considerations for landslide investigators of this
hillslope. These results enhance our understanding of the specific dynamics between different elements
of the landslide complex and their relation to previously assumed dormant materials.

Instead of considering the three landslides as separate distinct entities with episodic behavior,
investigations must now consider the interdependence of these elements as a whole hillslope in
constant interaction with one another. Given the slow velocity scale of displacement, the absence of
previous recognition through conventional field methods is understandable.

Estimated velocities of downslope motion are consistent with rates perceived in prism monitoring
from 2005–2007. Rates observed during the 1986–1987 reactivations are not comprehended anywhere
in the time period of L-band InSAR imagery. Velocity profiles indicate distinct areas of activity on each
landslide including interesting phenomena not previously recognized upslope from the known active
zones. Velocity profile mapping indicate faster velocities measured above these areas, indicating landslide
progression upslope. Patterns of velocity profiles and comparison with morpho-structures [45], indicate
that the translational regime of landslide motion is validated, with some evidence of complex movement
in the upper reaches of the 2500 m distance from the valley bottom. As the landslide mass narrows
downslope in the areas of depletion, the velocity increases rapidly indicating zones of mass translation.
Finally, the landslide transitions to lower LOS velocities near a spreading toe or accumulation zone,
which is in turn carried away by fluvial erosion.

Uncertainty associated with the velocity rates calculated in this study is difficult to quantify due to
the fact of only a single track of satellite acquisition. Here, the absolute magnitudes of displacements are
difficult to resolve against a model of landslide without contemporaneous, independent measurements.
Studies with earthquakes or groundwater subsidence can be modeled geomechanically and cross
validated against InSAR rates. The use of InSAR in this case is more valuable as qualitative and pattern
recognition than absolute measurements of displacement the landslide. Overall, the LOS velocity
mapping from the InSAR results invalidates the model of simple reactivation and dormancy; and instead
this study indicates dynamically linked elements of acceleration, deformation accommodation, and mass
transport. Punctuated events of reactivation expected throughout the slope depending on the
geotechnical properties of the soil.
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