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Abstract: Small target detection is a critical step in remotely infrared searching and guiding
applications. However, previously proposed algorithms would exhibit performance deterioration
in the presence of complex background. It is attributed to two main reasons. First, some common
background interferences are difficult to eliminate effectively by using conventional sparse measure.
Second, most methods only exploit the spatial information typically, but ignore the structural
priors across feature space. To address these issues, this paper gives a novel model combining
the spatial-feature graph regularization and l1/2-norm sparse constraint. In this model, the spatial
and feature regularizations are imposed on the sparse component in the form of graph Laplacians,
where the sparse component is enforced as the eigenvectors of their graph Laplacian matrices. Such an
approach is to explore the geometric information in both data and feature space simultaneously.
Moreover, l1/2-norm acts as a substitute of the traditional l1-norm to constrain the sparse component,
further reducing the fake targets. Finally, an efficient optimization algorithm equipped with linearized
alternating direction method with adaptive penalty (LADMAP) is carefully designed for model
solution. Comprehensive experiments on different infrared scenes substantiate the superiority of the
proposed method beyond 11 competitive algorithms in subjective and objective evaluation.

Keywords: infrared small target detection; spatial and feature graph regularization; l1/2-norm
constraint; LADMAP

1. Introduction

Small target detection is a pivotal technique in infrared search and tracking applications, such as
precise guidance and antimissile systems, maritime target search equipment, and small unmanned
aerial vehicle surveillance systems [1–3]. The main purpose of small target detection is to search and
locate potentially suspicious targets in the distance as early as possible, which facilitates people to
take adequate preparations for emergencies. In long-range infrared scenes, projected targets only
possess one or few pixels in size let alone other concrete discriminating features, i.e., texture, edge,
contour, and might even be buried in diverse interferences or heavy noise. Additionally, their visibility
varies greatly depending on target type and background environment. Although great advances
have been made for detecting small target in recent decades, it remains a formidable task due to the
above challenges.

Generally, relying on whether the prior information like target velocity and trajectory is applied
or not, existing detection algorithms can be roughly viewed as sequential detection or single-frame
detection. Traditional sequential detecting schemes present acceptable performance under given
conditions [4–6]. However, they degrade performance possibly in the absence of the priors. Small target
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detection in single frame, in comparison, has been attracting wide attention in view of the advantages
of easy implementation and few prior requirements. Current single-frame detection models are
mostly designed from background characteristics, target features or both of them in spatial domain.
For instance, methods based on background characteristics are driven by the assumption of local spatial
consistency, and essentially dominated by background prediction results [7–10]. They perform well for
uniform scenes, but are fragile to clutter and random noise in jumbled background. It mainly lies in
that the manner of background prediction based on spatial statistical distribution over pixel appearance
is incompetent to encode the mutated and irregular components, e.g., clutter, glints. On the other
hand, methods based on target regional saliency depict the difference between a target and its local
area as a contrast enhancement factor to protrude the target while suppressing background [11–14].
However, the sensitivity to strong edge and sporadic glint limits the robustness and scalability of
these algorithms for practical applications. It is because the saliency of a dim yet real target would be
covered by high brightness interferences, or be easily mixed by the saliency of random glitters.

Different from the methods derived individually on background or target characteristics,
there occurs a novel trend that is to integrate both of them to overcome the limitations of single
characteristics for improving detection performance [15–18]. Especially, a series of representative
approaches are based on the theory of low-rank recovery through using both background nonlocal
correlation and target sparsity [19]. For example, Gao et al. [18] initially proposed the infrared
patch-image (IPI) model in the fashion of patch vectorization, converting small target detection into a
low-rank and sparse matrices separation problem. Wang et al. [20] presented a multi-subspace learning
algorithm based on low-rank representation to overcome the drawbacks caused by the hypothesis
of single subspace. Dai et al. [21] generalized the patch-image model to an infrared patch-tensor
(IPT) model to mine more information from the nonlocal correlation in patch space. The low-rank
recovery-based methods present promising performance in slowly transitional and homogeneous
background, and show great potential for improving detection robustness in complex scenes. They,
however, still suffer from two deficiencies. First, the existing methods based on low-rank recovery
only consider the prior knowledge within background patch space, namely nonlocal correlation.
It essentially assumes that all patches can be expressed by a single subspace or a mixture of low-rank
subspace clusters. However, some rare components, such as sun flash, cloudy edges, and heavy
sea waves, deviate from the low-rank subspace and show analogous sparsity to small targets under
insufficient sample patches. Therefore, when the feature implied in patch space is only exploited,
the performance of the methods will be greatly limited. Second, l1-norm as a sparse measure may
cause a dilemma where either a dim small target may be missed due to the excessive shrinking
or the sparse glitter points remain in the target image due to inadequate constraints. Some recent
ameliorations [22–24] indirectly attribute the unsatisfactory phenomenon to the constant trade-off

parameter, and apply a weighted penalty to adjust the parameter invariance. However, the intrinsic
reason is that l1-norm as a loose approximation of l0-norm commonly introduces extra bias into the
sparse constraint when using minimum measurement [25].

In common, an observed matrix owns two spaces, namely column space and row space, separately
corresponding to patch space and feature space in our paper. The two spaces coincide in the matter of
the rank of a matrix. However, our key observation is that when estimating the rank of a corrupted
patch-image, the rank in one space, say in patch space, may not be as precise as that of another. It is
because the rank of the corrupted image will be relaxed in one space more than another one. Therefore,
another space becomes particularly useful in constraining the rank mutually, as illustrated in Figure 1.
Moreover, some researchers [26] have identified that the high dimensional data generally reside on
a nonlinear low dimensional manifold in data space, also in feature space. The manifold in feature
space is viewed as the feature manifold. Some published studies [27–30] have reported some models
that integrate all two spaces in the form of dual-graph regularization. Nevertheless, it is worth noting
that the dual-graph regularized pattern has not been designed for detecting infrared small targets.
Moreover, l1/2 regularization can provide a representative sparse solution among all lq regularization
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with q in (0,1), which has been verified by a phase diagram study, and its fast solution has also been
designed ingeniously in [25]. Therefore, using l1/2 regularization can better wipe out fake targets,
distinguishing a real small target precisely. Additionally, the sparse negative components obtained in
an iterative process is not related to a small target in actual physical sense. Given the above analysis,
we propose a novel model based on l1/2-norm combining dual-graph regularization for infrared small
target detection, in which the two graphs are constructed from the patch and feature space via k-nearest
neighboring manner.
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The main contributions of this paper are summarized in the following:
(1) We propose a novel model based on dual-graph regularization for infrared small target

detection, which simultaneously incorporates both the data and feature manifold in the form of
graph Laplacian.

(2) To eliminate fake targets effectively, l1/2-norm instead of l1-norm in traditional methods is used
to constrain the sparse part. Additionally, a non-negative constraint in sparse component is appended
to cater to the fact that targets have higher intensity.

(3) To accelerate the efficiency of the proposed algorithm, we skillfully design an efficient optimization
algorithm based on the linearized alternating direction method with adaptive penalty (LADMAP) [31],
which uses fewer auxiliary variables with convergence guarantee. Extensive experiments on various
scenes demonstrate the superiority of the proposed model compared with 11 competitive baselines.

The remainder of this paper is organized as follows. We have a brief review about graph
representation for data as well as about the methods related to infrared small target detection in
Section 2. The proposed dual-graph regularized method is given detailed in Section 3. We propose a
simple and feasible optimization algorithm to solve the proposed model in Section 4. The performance
of the proposed method is evaluated by extensive experiments in Section 5. Finally, our discussion and
conclusions are presented in Sections 6 and 7, respectively.

2. Preliminaries and Related Algorithms

2.1. Graph Laplacian

Suppose that X ∈ Rd×n resides on a potential manifold M, an undirected weighted graph
G(X, E, W) with n vertices can be constructed via k-nearest neighboring manner, as shown in Figure 2,
where E =

{
ei j

}
is the edge set with each edge ei j connecting vertices xi and x j. W =

{
wi j

}
denotes edge

weight set measuring the correlation between vertices, which can be calculated by binary method,
heat kernel, or correlation distance. If vertices xi and x j are not in a cluster set, then wi j

(
xi, x j

)
= 0.

The unnormalized graph Laplacian matrix L ∈ Rn×n corresponding to graph G is presented as
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L = H −W, where H is the degree matrix with each entry Hii =
∑

j Wi j. It can be expressed
mathematically as follows:

Li j
(
xi, x j

)
=

{
−wi j(xi, x j),∑
j, j,i wi j(xi, x j),

i f i , j
otherwise

(1)
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2.2. Related Algorithms

Significant advances in single-frame infrared small target detection have been made in recent
decades. Existing methods can be roughly classified into background prediction-based, local saliency-
based, transform domain-based, dictionary learning, multiple features integration, deep learning,
and subspace learning.

Background prediction-based methods model the appearance of each pixel by numerical statistics,
such as a filtering manner [8,9,32] or using a parametric probability density function, such as Gaussian
mixture function [7,33], and non-parametric algorithms, such as kernel density estimation functions [10].
These methods can locate small targets precisely when the background presents uniformity visually but
may fail to deal with abrupt structures in heterogeneous scenes. Local saliency-based methods delineate
the difference based on the local region around suspicious targets to enhance the target and suppress
background, such as local contrast measure (LCM) [11], novel local contrast method (NLCM) [34],
multiscale patch-based measure (MPCM) [12], derivative entropy-based contrast measure (DECM) [35],
weighted local difference measure (WLDM) [13], dual-window local contrast method [14]. Such types
of methods successfully enhance the dim small target and neglect the smooth areas of background,
increasing the detection rate. However, they are less robust to sun glints and high-contrast edges in
intricate sea backgrounds, causing high false alarm rates. Transform domain-based models explore
more useful features in different domains, such as Fourier domain [1], fuzzy space [36], gradient vector
field [37], to discriminate real target components from such target-like ones. The kind of methods
are computational friendly and can complete the task of target extraction in a clean scene with high
contrast. However, they are incapable of making a distinction between a dim small target and heavy
natural noise. Dictionary learning methods such as those proposed by Li et al. [38] and Wang et al. [39],
recognize the real target from several candidates derived from a given dictionary. These methods
can deal with different types of small targets well, yet rely heavily on the quality of the given target
dictionary. They would obtain unsatisfactory performance when actual targets cannot be represented by
a dictionary atom or their combination. Methods based on multiple features integration overcome the
drawbacks of the simple feature depicted by raw pixels. For example, Qin et al. [15] and Yao et al. [16]
gradually remove clutter interferences and highlight target by combining background consistency and
target singularity. Additionally, a multiscale adaptive difference and variance difference are jointly
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used to enhance small targets and alleviate the impact of background fluctuation [40]. Methods of this
type effectively eliminate the edge clutters and pixelwise noise with high brightness in heterogeneous
scenes. However, they become less effective when encountering dim small target scenes, resulting
in missing targets with high probability. Recently, deep convolutional neural networks have been
employed for the community of small target detection [41–44]. Lin et al. [42] designed a seven-layer
conventional neural network in an end-to-end way to automatically extract small target features and
eliminate clutter. With the help of massive training samples generation, Zhao et al. [43] suggested
a simple conventional network for modeling the background patches. Such methods show good
robustness even in some complex situations with heavy clutter but they require a great quantity of
labeled training data, which may not always be available in practice. In contrast, the proposed method
is unsupervised and does not need any labeled training data.

The proposed method falls into the category of a subspace learning model, so we review the
precious subspace learning methods based on robust principal component analysis (RPCA) for small
target detection. In [19], RPCA is initially applied to separate the outliers in data, which also is employed
for infrared small detection in [18], called infrared patch image model (IPI). Many researchers have
put forward effective optimization, enhancements, extensions, and ameliorations of the original IPI
model. For the model, one of the limitations is long consuming time due to the slow convergence of
the optimization based on accelerated proximal gradient (APG). The alternating direction method
of multiplier (ADMM) optimization scheme is used in the models proposed recently since it can get
same optimal solution under faster convergence [21,22], [45,46]. To mine more nonlocal self-correlation
information from patch models, some extended versions of the IPI model have been proposed,
including infrared patch-tensor model (IPT) [21], spatial-temporal patch-image model (STPI) [7],
spatial-temporal tensor model (STTM) [47], multi-subspace learning model (SMSL) [20]. Among them,
IPT and SMSL perform well in some complex scenes, but they may obtain high false alarms in sea
backgrounds with heavy waves and sun glint. The models in [7,47] take spatial-temporal information
into account and increase the detection probability of dim small targets in slowly changing backgrounds.
Some ameliorated versions are proposed to further improve the robustness of the initial IPI model.
For instance, Dai et al. [22] proposed a weighted IPI model (WIPI), which used the target likelihood
coefficient based on steering kernel instead of the constant weight. In [23,24], the nonconvex and
tighter rank surrogate acts as a substitute for the original nuclear norm to achieve better background
suppression. Besides, in the enhancement type of the IPI model, Wang et al. [45] used the total
variation regularization (TVPCP) to depict the background feature, which aimed to obtain good
target-background separation for some mild situations. In [46], we proposed a combination of
nonconvex rank approximation and graph regularization (GRLA) to take full use of the intrinsic
structure between patch images.

Difference to related existing subspace learning based methods: As a subspace learning method,
our proposed model differs from the aforementioned ones in several aspects. (1) Our method incorporates
prior information in both spatial and feature spaces of patch images simultaneously, whereas other
methods [21–24] only take the priors within the patch space into account, ignoring the feature space.
(2) Our method employs the sparser regularizer instead of commonly used reweighting manner [22–24]
to enhance the sparsity of small targets, so as to suppress target-like outlier better. (3) Our method
uses LADMAP to give the model solution, while other methods apply the traditional ADMM [45,46],
which will introduce too many multipliers, leading to increasing time consumption. The detailed
characteristics of the existing methods are summarized in Table 1.
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Table 1. Detailed characteristics of several related subspace learning based methods.

Methods Advantages Disadvantages

IPI [18] Perform well in uniform background Over-shrink leading to missing detection or
remaining residuals, time consuming

IPT [21] Perform well in relative complex scenes,
computational friendly Losing dim target, fails to eliminate target-like point

STPI [7] Achieve good performance for slowly
changing background

Sensitive to strong edges and clutters, difficult to
address non-Gaussian noise

STTM [47] Perform well for homogeneous and slowly
changing scenes

Difficult to address highly dynamic scenes, easily
leaving residuals

SMSL [20] Perform well for salient target scenes,
computational friendly

Hard to suppress strong edges, easily missing
weak target

WIPI [22] Works well for high contrast scenes Incapability to address the sparse noise,
time consuming

Reference [23] Eliminate sparse edges and noise,
computational friendly

Difficult to suppress the interferences with similar
appearance to targets

Reference [24] Preserve target structure, suppress
non-target residuals

Cannot completely suppress significant
edge structure

TVPCP [45] Recover homogeneous background well Sensitive to the ground disturbance with high
thermal, takes a long time

GRLA [46] Perform better in background suppression Weaken target energy, unable to maintain
target structure

3. Algorithm Description

In this section, we describe the major steps of the proposed model in detail and give its system
diagram in Figure 3. An infrared small target image is transformed into a patch image by using a
sliding window as the input matrix. The patch and feature graphs are constructed along the columns
and rows of the input matrix, and then, these Laplacian matrices of corresponding graphs are imposed
on the sparse component to preserve sparse structures. To better suppress sparse outliers, we employ
l1/2-norm as the surrogate of l1-norm. The novel objective function is formulated by incorporating these
sparse regularizations and solved by LADMAP effectively. Finally, a simple thresholding operator is
used to extract the real target from the target image reconstructed by the uniform average of estimator
re-projection (UAE).
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3.1. Patch and Feature Graph Regularizations

Herein, we present in detail that patch and feature structural regularizations on sparse component
are jointly introduced into an objective function. Constructing an infrared patch-image D ∈ Rp×n,
let GP = (D, EP, WP) whose vertices {d·1, d·2, · · · , d·n} are the column vectors of matrix D. WP is
the adjacency matrix, which encodes the edge weight and connectivity of the graph. The graph is
constructed based on k-nearest neighboring strategy by using heat kernel, which involves searching
for the closest neighbors of all the columns based on the Euclidean distance. In GP, WP contains the
edge weight of each node connecting to its k-nearest neighbors, which can be defined as

Wi j
P

(
d·i, d· j

)
=


exp

(
−
‖d·i−d· j‖

2
2

2σ2

)
, i f d·i ∈ Nk

(
d· j

)
ord· j ∈ Nk(d·i)

0, otherwise
(2)

where i, j = 1, . . . , n. Nk(d·i) represents the set of k-nearest neighbors of d·i. The patch graph constraint
on sparse component is designed as

1
2

k∑
i, j=1
‖t·i − t· j‖22wi j

P =
k∑

i=1
t>
·i t·ihP(i, i) −

k∑
i, j=1

t>
·i t· jw

i j
P

= Tr(THPT>) − Tr(TWPT>)
= Tr(TLPT>)

(3)

where Tr(•) is the trace function of matrix and hP(i, i) is a diagonal element of the degree matrix HP. t·i
and t· j are the column vectors of target patch-image T. The patch graph Laplacian matrix LP ∈ Rn×n is
calculated by Equation (1).

Similarly, the feature graph GF = (D, EF, WF) is built by using the row vectors di· and d j· of matrix
D. WF is formulated as

Wi j
F

(
di·, d j·

)
=


exp

(
−
‖di·−d j·‖

2
2

2σ2

)
, i f di· ∈ Nk

(
d j·

)
ord j· ∈ Nk(di·)

0, otherwise
(4)

where i, j = 1, . . . , p. Then, the feature graph constraint is denoted as

1
2

k∑
i, j=1
‖ti· − t j·‖

2
2wi j

F =
k∑

i=1
t>i· ti·hF(i, i) −

k∑
i, j=1

t>i· t j·w
i j
F

= Tr(T>HFT) − Tr(T>WFT)
= Tr(T>LFT)

(5)

where ti· and t j· are the row vectors of T. The information explored by the feature graph can refine the
rare structure in the sparse component. The feature graph Laplacian matrix LF ∈ Rp×p is computed by
WF similar to LP, as given by Equation (1).

3.2. l1/2-Norm Regularization with Non-Negative Constraint

In heterogeneous scenes, corrupted components not only contain a small target but also an
irregular flash point, which show similar sparsity to small targets under insufficient observation data.
These components cannot be constrained equally as l0-norm under l1-norm measurement, causing
biased suppression of sparse components. Then, some rare components will remain in the detection
result and increase false alarms, directly undermining the robustness for the practical applications.
Albeit employing lq-norm (0 < q < 1) to constrain the sparse component can achieve a detection result
with fewer false alarms, manual selection of q is an unwieldy process and reduces the adaptability of
the method [48]. Fortunately, Xu et al. [25] validated the representativeness of l1/2 regularization among
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all lq regularization (0 < q < 1) by a phase diagram study. They creatively pointed that whenever q
takes in [1/2, 1), the smaller the q, the sparser the solutions can be generated by lq regularization and for
q in (0,1/2), the performance of lq regularization has no significant difference. Herein, we introduce l1/2

regularization as a surrogate of l1-norm to constrain the sparse part. Nevertheless, l1/2 regularization
only enhances the sparsity of target but neglects the basic physical fact that pixel values of target
must be non-negative. Therefore, it is more reasonable to add a non-negative constraint on the sparse
component. The non-negative sparse constraint can be defined as

‖T‖1/2
1/2,≥0 =

∑
i, j

(
max

(
Ti j, 0

))1/2


2

(6)

Finally, integrating the geometric manifold in patch and feature spaces in the form of a graph
and l1/2 regularization with a non-negative constraint into an overall framework, we propose a novel
model for small target detection, which is formulated as

min
B,T
‖B‖∗ + λ‖T‖1/2

1/2,≥0 + γ1Tr(TLPT>) + γ2Tr(T>LFT),

s.t D = B + T, T ≥ 0
(7)

where λ, γ1, and γ2 are the tradeoffs to control the corresponding weight to each of the terms while
optimizing the objective function.

4. LADMAP for Solving the Proposed Model

In recent years, many categories have been developed for solving low-rank optimization
problems [49–51]. Especially, ADMM is frequently employed to handle the target-background
separation under RPCA framework in infrared small target detection community. It can update
the separable variables in convex programming by alternately minimizing, so that the optimization
problem can be simplified in this way. However, observing the model in Equation (7), one can find
that multiple auxiliary variables should be introduced to realize the separability of the augmented
Lagrangian function. The computational complexity of the algorithm will then be correspondingly
increased, because a certain amount of complexity is required to minimize each variable, and the
number of iterations, as a key factor of influencing the computational efficiency, may be increased.
It seriously erodes the algorithm in real time. To tackle this issue, we adopted a well-designed variant
of ADMM, called the linearized ADMM with adaptive penalty (LADMAP) [31], to solve the proposed
model effectively. For this purpose, the linear equality constraint in Equation (7) is removed by using
the following augmented Lagragian function:

L(B, T, Y,µ) = ‖B‖∗ + λ‖T‖1/2
1/2,≥0 + γ1Tr(TLPT>) + γ2Tr(T>LFT)

+〈Y, D− B− T〉+ µ
2 ‖D− B− T‖2F

(8)

where Y ∈ Rp×n is a Lagrangian multiplier, and µ > 0 assigns the penalty to the violation of the linear
constraints. LADMAP is used to directly optimize the primary variables B, T, and Y by solving each
variable alternatively while fixing other ones. It involves fewer auxiliary variables and converges faster
than the initial ADMM [52]. The detail procedure of solving Equation (8) by LADMAP is provided in
the following.
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4.1. Solution of the Proposed Method

Solving B: Assuming that T and Y are fixed, the solution of Bk+1 is provided by minimizing the
following objective function:

L(B, Tk, Yk,µk) = ‖B‖∗ + 〈Yk, D− B− Tk〉+
µk
2 ‖D− B− Tk‖

2
F

= 1
µk
‖B‖∗ + 1

2‖B− (D− Tk + Yk/µk)‖
2
F

(9)

The closed-form solution in Equation (9) can be obtained by singular value thresholding (SVT)
operator, which is defined as

Bk+1 = UkS1/µk
(Σ)V>k (10)

where U, Σ, V are obtained using singular value decomposition (SVD) of D− Tk + Yk/µk. Sτ(x) is the
thresholding algorithm written as Sτ(x) = max(|x| − τ)sign(x).

Solving T: Assuming that B and Y are fixed, the solution of Tk+1 is provided by minimizing the
following objective function:

L(Bk+1, T, Yk,µk) = λ‖T‖1/2
1/2,≥0 + γ1Tr(TLPT>) + γ2Tr(T>LFT)

+
〈
Yk, D− Bk+1 − T

〉
+

µk
2 ‖D− Bk+1 − T‖2F

(11)

which does not have a closed-form solution. In order to use the closed-form solution to the proximity
operator of l1/2-norm achieved by the half -thresholding operator [25], we take an ingenious strategy by
further linearizing the smooth component of Equation (11) to simplify the subproblem. The smooth
component of Equation (11) can be written as

s(Bk+1, T, Yk,µk) = γ1Tr(TLPT>) + γ2Tr(T>LFT)
+

〈
Yk, D− Bk+1 − T

〉
+

µk
2 ‖D− Bk+1 − T‖2F

(12)

Then, motivated by the spirit of LADMAP, solving Equation (11) can be replaced by minimizing
the following problem:

min
T
λ‖T‖1/2

1/2,≥0 +
〈
∇Ts(Tk), T − Tk

〉
+
η1

2
‖T − Tk‖

2
F (13)

where s(Bk+1, T, Yk,µk) can be approximated by the second-order Taylor expansion of the smooth
components at Tk. ∇Ts(Tk) is the gradient of s(Bk+1, T, Yk,µk) with respect to T. As long as
η1 > 2λ‖T‖2 + µ

(
1 + ‖Y‖22

)
, in which ‖T‖2 denotes the spectral norm of a matrix taking the largest

singular value, the above replacement is valid. The subproblem (Equation (13)) is transformed into the
minimization of l1/2- regularization, expressed as

min
T
α‖T‖1/2

1/2,≥0 + ‖T − Tk +∇Ts(Tk)/η1‖
2
F (14)

where α= 2λ/η1.
According to [25], the solution of Equation (14) with a non-negative constraint can be computed

with the help of half -thresholding operator, detailed as the following:

Tk+1 = max
(
Hα, 1

2
(Tk −∇Ts(Tk)/η1), 0

)
(15)

whereHα, 1
2

denotes the half -thresholding operator defined by Equations (16)–(19):

Hα, 1
2
(X) =

[
hα, 1

2

(
Xi j

)]
, X ∈ Rp×n (16)
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where

hα, 1
2

(
Xi j

)
=

 fα, 1
2

(
Xi j

)
,

∣∣∣Xi j
∣∣∣ > 3√54

4 (α)2/3

0, otherwise
(17)

with
fα, 1

2

(
Xi j

)
=

2
3

Xi j

(
1 + cos

(2π
3
−

2
3
φα

(
Xi j

)))
(18)

and

φα
(
Xi j

)
= arccos

α8

∣∣∣Xi j

∣∣∣
3

−3/2 (19)

Updating Y and µ:
Yk+1 = Yk + µk(D− Bk+1 − Tk+1) (20)

µk+1 = min(µmax,ρkµk) (21)

where µmax is a given positive constant, and

ρk =

{
ρ0,
1,

i f max
{
η1‖Tk+1 − Tk‖,µk‖Bk+1 − Bk‖

}
≤ ε1

otherwise
(22)

Convergence Criteria:
According to KKT condition, the stopping criteria is designed as

‖D− Bk+1 − Tk+1‖F
‖D‖F

< ε2 or max
{
η1‖Tk+1 − Tk‖,µk‖Bk+1 − Bk‖

}
≤ ε1 (23)

where ε1 and ε2 are the tolerance factors. Relying on the stopping criteria defined in Equation (23),
the sequences (B, T, Y) yielded by the revised LADMAP converges to an optimal solution of the
problem of Equation (7). The key steps of the proposed algorithm are summarized in Algorithm 1.

Algorithm 1: The revised LADMAP for Solving the Proposed Model

Input: Infrared small target image I, λ, γ1, γ2 and the number of nearest neighbors
Output: (Bk, Tk)

Initialize: Construct infrared patch-image D ∈ Rp×n; B0 = T0 = 0; Y0 = D
max(‖D‖2 ,M‖vec(D)‖inf)

; µ0 = 1.25
‖D‖2

; µmax = 107;

ρ = 1.1; ε1 = 10−6; ε2 = 10−14; k = 0; Compute LF ∈ Rn×n and LP ∈ Rp×p from graph GP and GF.
While not converged do

1: Compute Bk+1 by Equation (10);
2: Compute Tk+1 by Equation (15);
where ∇Ts(Tk) = 2(γ1TkLP + γ2LFTk) + µk(Bk+1 + T −D−Yk/µk);

η1= 2(λ1‖LP‖2 + λ2‖LF‖2) + µk

(
1 + ‖Yk‖

2
2

)
.

3: Compute Yk+1 by Equation (20) and µk+1 by Equation (21);
4: Check convergence condition according to Equation (23);
5: Update k: k = k+1

end

4.2. Complexity Analysis

The computational complexity of the proposed model is majorly dominated by the optimization
of the revised LADMAP and the construction of the patch and feature graph. The construction of
dual-graph based on nearest neighboring manner needs O

(
p2n + pn2

)
. Let k be the total number of

iterations and r be the lowest rank of B. In each iteration, SVT is employed to compute the low-rank
matrices in which its total complexity is O

(
rn2

)
under the usage of partial SVD. For half -thresholding

operator, the complexity is O(pn) since some productions between matrix and vector are only required.
The overall computational complexity in all iterations is O

(
pn2 + p2n + k

(
pn + rn2

))
. Hence, the primary

computational complexity is O
(
p2n

)
in the case of p > n or O

(
pn2

)
in the case of n > p.
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5. Experimental Evaluation and Analysis

In this section, extensive experiments are conducted to test the effectiveness and robustness of the
proposed model in terms of clutter suppression and sparse point elimination. Specially, we illustrate
the validity of the proposed patch and feature sparse regularizations and provide sensitivity analysis
of the parameters in the proposed model. After that, we also give the experimental comparisons with
11 competitive works on subjectively visual effect and objective indicators.

5.1. Datasets and Baselines

The experiments were carried out on numerous infrared images. Herein, 10 infrared small target
sequences are displayed, which cover four typical scenes: deep space, sky-cloudy, sea-sky, terrain.
To observe these sequences intuitively, Figure 4 exhibits representative frames randomly picked from
each sequence, where the designated target areas are zoomed in for better observation for a dim small
target. From the figures, it is easily found that these experimental scenes contain different interference
components, which make them more complex than clearly simple background. The detailed features
and scene classification of these sequences are presented in Table 2.
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dim target is enlarged for better observation. (a–j) represent Sequences 1 to 10.

Table 2. Detailed information of these real sequences.

Scenes Sequences Frames/Resolution Target Features Background Features

Deep-space 1, 2 100,100/320× 256,
320× 256

Very small and weak
with low contrast,

moving along the cloud
edge or buried in cloud.

Containing numerous
irregular strong cloud
clutter, and brightness

changes greatly.

Sky-cloudy 3, 4, 5
50,30,100/

128× 128, 256× 200,
256× 200

Small with irregular
shape, brightness

varies greatly.

Containing substantial
banded and floccus cloud

and background noise.
Low resolution.

Sea-sky 6, 7, 8
100,100,200/

320× 256,
320× 256, 320× 256

Target size changes
greatly. Relatively high
contrast. Emerging on

sea-sky line.

Background with strong
sea waves, bright glitters,

and artificial buildings.
Low signal-to-clutter.

Terrain 9, 10 100,100/128× 128,
256× 220

Small square target with
fuzzy contour, moving
fast. Contrast changes

obviously.

Background with heavy
noise, plants, mountains,
and manmade buildings.

Low contrast.

The performance of the proposed model is compared with 11 state-of-the-art methods, comprising
TDLMS [32], TopHat [9], MOG [7], MPCM [12], WLDM [13], FKRW [15], IPI [18], TVPCP [45], SMSL [20],
GRLA [46], RIPT [21]. Among these methods, TDLMS, TopHat, and MOG belong to the type of
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background prediction. MPCM and WLDM are the enhanced versions of LCM and achieve leading
performance. FKRW is viewed as a model of multiple features integration. TVPCP, SMSL, GRLA,
and RIPT are recently proposed methods based on subspace learning. For comparison, we used
the original codes of MOG, IPI, TVPCP, SMSL, GRLA and RIPT provided by the authors, while the
remaining methods were reimplemented according to their corresponding literature. Moreover,
the parameters in these tested methods were adjusted to obtain better performance, as summarized in
Table 3.

Table 3. All tested methods and their parameter settings.

No. Methods Parameter Settings

1 TDLMS Support size: 5× 5, step size: µ= 5× 10−8

2 TopHat Structure shape: square, structure size: 3× 3
3 MOG Patch size: 50× 50, step size: 10, noise component: 3, frames: 3, k = 0.05, vmin = 0.05
4 WLDM L= 4, m = 2, n = 2
5 MPCM N = 1, 3, . . . , 9
6 FKRW K = 4, p = 6, β = 200, window size: 11× 11
7 IPI Patch size: 50× 50, step size: 10, λ = L/min(m, n)1/2, L ∈ [2, 5], ε= 10−7

8 TVPCP Patch size: 50× 50, step size: 12, λ2 = L/min(m, n)1/2, L ∈ [1, 5], λ = 0.005, β = 0.025,
γ = 1.5, ε= 10−7

9 SMSL Patch size: 50× 50, step size: 50, λ = L/min(m, n)1/2, L ∈ [2, 7], ε= 10−7

10 GRLA Patch size: 30× 30, step size: 12, λ1 = L/max(m, n)1/2, L ∈ [2, 6], λ2 = G/min(m, n)1/2,
G ∈ [3, 5], γ = 0.01, ε = 0.01, ε= 10−7

11 RIPT Patch size:50× 50, step size: 10, λ = L/min(I, J, P)1/2, L ∈ [0.5, 5], h = 10, ε = 0.01,
ε= 10−7

12 Ours Patch size: 20× 20, step size: 10, λ = L/min(m, n)1/2, L ∈ (0, 2], γ1 = γ2= 3, ε1 = 10−6,
ε2 = 10−14

5.2. Evaluation Indicators

The signal-to-clutter ratio gain (SCRG) gives a measure of how much the complexity of the target
area varies, defined as follows:

SCRG =
SCRout

SCRin
(24)

where SCRin and SCRout denote the SCR before and after background suppression separately, and it
is defined as SCR =

∣∣∣Mt − µb
∣∣∣/(σb +ω). Mt is the maximum intensity of target area. µb and σb are

the average grayscale and standard deviation of the neighboring region around the small target.
ω = 0.01 denotes as a smoothing factor to avoid division zero. BSF gives some sense of how much the
background suppression effect is presented, which is formulated as

BSF =
σin

(σout +ω)
(25)

where σin and σout denote the standard deviation of target neighboring region in original and
suppressed images, respectively. Additionally, we introduce another metric to quantify the target
contrast enhancement, namely contrast gain (CG) defined as

CG =
CONout

CONin
(26)

where CONin and CONout denote the target local contrast before and after processing, respectively.
The CON is defined as

CON =
∣∣∣Mt − µb

∣∣∣ (27)

where Mt and µb are same as those in Equation (24). The higher the above three indicators, the better
the background suppression performance of the detection method is. Both the original image and
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the detection results are normalized to [0, 1] when calculating these indicators. The three metrics
are calculated in target local region, supposing that the target size is a × b and d is set to 20 as the
neighborhood width. Furthermore, the probability of detection (Pd) and false alarm rate (Fa) are also
very important indicators for wholly evaluating the detection performance, which are defined as

Pd =
number of true detections
number of actual targets

(28)

Fa =
number of false detections

number of images
(29)

In experiments, we deem that the detection of small target is correct under this case where there
are pixels within a 5× 5 window centering on the ground truth. A good detector owns high Pd under
low Fa. The receiver operating characteristic (ROC) displays the dynamic relationship between Pd
and Fa.

5.3. Validity of the Proposed Patch and Feature Sparse Regularizations

The importance of the patch and feature regularizations are validated with a series of experiments
in four different scenarios. For Equation (7), the proposed model degenerates into a simple model
with l1/2-norm non-negative constraint by setting γ1 = γ2= 0, whereas

{
γ1 > 0,γ2= 0

}
generates the

patch regularized model (PRM), and
{
γ1 = 0,γ2> 0

}
produces the feature regularized model (FRM).

Figure 5 shows the ROC results of four derived models for the tested scenes. From the figures, one can
easily discover that the full model achieves the highest performance among other three variants of
the proposed model, and the simple model without any regularizations obtains the lowest. For the
deep-space scene, PRM performs better than FRM, as shown in Figure 5a. It is because the patch
graph regularization can preserve clutter edges and recover them well, but the ability of feature
graph is limited resulting in the performance degradation. With a sky-cloudy background (Figure 5b),
FRM slightly outperforms PRM since the dim and weak target can be captured effectively by FRM but
be ignored by PRM. With a sky-sea background (Figure 5c), PRM achieves higher Pd under the same
Fa compared with FRM. The reason lies in that sea glitters that present similar sparsity to the small
target may disrupt the dimension of feature space. FRM cannot effectively restrain them, and they
then may be remained in the target images to raise the false alarm rate. For the terrain scenes, there is
no significant difference between the performance of PRM and FRM. However, their probability of
detection is prominently lower than that of the full model. By the above observations, it readily finds
that the integration of patch and feature sparse regularizations contributes to an improvement of the
detection performance in the proposed model.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 24 
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5.4. Sensitivity to Parameters

For the proposed model, there are several key parameters that affect its stability. Herein, we discuss
the influence of these parameters on the model performance by investigating the variation of the
detection probability with varying these parameters. The parameters include patch size, sliding step,
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sparse penalty λ, patch graph regularization weight γ1 and feature graph regularization weight γ2.
In order to better reflect the suitability of model parameters, we construct a tested dataset covering
diverse scenes by randomly selecting 10 frames from each exhibited sequence. The variations in
detection performance measured by ROC are visualized in Figure 6, where we vary one parameter
while fixing others. Among them, patch size and sliding step are closely related to not only detection
performance but also computational complexity, as shown in Figure 6a,b and Table 4. From the two
subfigures, it is observed that larger patch and step exhibit the degradation of performance. It has
largely been caused by a larger patch size and sliding step that undermines the relationship between
the nonlocal patches. Then, the patch and feature graph may be inefficient in the preservation of the
intrinsic structure of an image. On the other hand, although smaller patch and step may weaken
the sparsity of a small target, the incorporation of dual-graph regularization is more conducive to
maintaining the manifold structure of rare interferences. Then, the singularity of a small target can
be highlighted well. In addition, we give the average execution time of the proposed method with
different patch size and sliding step in Table 4. One can see that with a fixed-size patch, the larger the
sliding step is, the shorter time the proposed model costs. Observing the two subfigures, the proposed
model achieves the best in the tested dataset when the patch size is 20 and sliding step is set as 10.

Table 4. The average execution time (/s) of the proposed method with different patch sizes (P) and
sliding steps (S).

P
20 30 40 50 60 70S

8 0.68 1.84 3.58 5.71 9.53 13.75
10 0.38 0.95 1.74 3.23 5.35 7.69
12 0.27 0.61 1.17 2.15 3.64 4.76
14 0.21 0.43 0.83 1.52 2.17 3.46
16 0.16 0.35 0.63 1.04 1.60 2.45
18 0.14 0.26 0.46 0.81 1.19 1.73
20 0.11 0.22 0.38 0.68 0.88 1.44

The sparse penalty λ plays a great significant role in controlling the balance between detection
probability and false alarm ratio. To adjust this parameter more finely, we use λ = L/min(m, n)1/2

varying L instead of directly varying λ. Figure 6c shows the impact of the parameter on the performance
of the proposed method with changing L from 0.5 to 5. In the illustration, it is clearly observed that a
larger penalty can effectively eliminate false alarms, but the detection probability is also decreased
dramatically. For example, when L belongs to (0, 2], the proposed method has a higher detection
rate compared with the values outside the given interval. Although the ROC results of the proposed
method become a straight line under larger penalty such as L in [2.5, 5], meaning that it achieves
zero false alarms, the detection rate is reduced seriously. In the experiments, when L takes (0, 2],
the proposed method is superior in robustness and effectiveness.

In spite of analyzing the importance of the proposed regularizations, we also performed
experiments to evaluate the effect of the regularization parameters on the performance. Figure 6d–f
shows the ROC results of the proposed method with regularization parameter variations for the
constructed dataset. Among them, Figure 6d shows the result of varyingγ1 while fixingγ2, and Figure 6e
is obtained by varying γ2 while fixing γ1. For Figure 6f, it is obtained by varying both γ1 and γ2 while
keeping γ1 = γ2. From these figures, we can see that as the regularized parameters increase, the Pd
of the proposed method increases first and then decreases. It indicates that the penalty degree of
different regularization has a certain impact on the performance of the proposed algorithm. In our test,
γ1 = γ2 = 3 seems to be a good choice because it is the best in ROC.
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Figure 6. Receiver operating characteristic (ROC) results obtained by changing the parameters in
the proposed model for the constructed test dataset. (a) Varying patch size. (b) Varying sliding step.
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and γ2 while keeping γ1 = γ2.

5.5. Qualitative Evaluations

To further evaluate the performance of the proposed model, the visual comparisons with 11
state-of-the-art methods for different scenes are shown in Figures 7–10. In these results, only one
representative image is selected from each sequence. For better observation, we enlarged the demarcated
target area and creatively integrated target images with their 3D stereogram. From the figures, one can
find that the typical filtering methods, such as TDLMS, TopHat, can highlight targets to a certain
extent while retaining many background clutter residues in the detected results. MOG also belongs
to the category of background prediction but different from the filtering methods. It can achieve
relatively good performance on dim small target extraction in uniform scenes, especially for the
sky-cloud background in Figure 8a–c. Compared with the results obtained by background prediction
manners, WLDM and MPCM present marked improvement in enhancing the target, as illustrated
in Figures 7–10. However, for the sky-cloud background with sparse noise, such as in Figure 8a,
these two methods significantly highlight the small target while enhancing the background noise.
Moreover, WLDM does not have enough power to deal with the border of image, as shown in
Figure 9a,b and Figure 10a,b. FKRW first uses the filtering manner to eliminate high bright noise,
and then employs the local saliency to suppress background clutter and enhance the small target. It is
impressive at suppression of clutter and sparse noise in comparison with WLDM and MPCM. However,
FKRW might suffer from incorrect detection, such as in Figure 7b. In addition, it is more susceptible
to spot-like sea clutters in sea-sky scenes because the sea glitter has a similar appearance to a small
target, as presented in Figure 9c. It is easily found that the methods derived on subspace learning
perform better than other comparisons in background clutter removal. Meanwhile, we can clearly
discover that the proposed method accurately extracts small targets from different complex scenes
without any background residuals, which is attributed to the usage of the proposed patch-feature
regularization. For the initial IPI model, it is less robust to complex scenes due to its above deficiencies.
For example, in Figure 7a,b and Figure 9c, it incorrectly includes background clutter and sparse glitter
into the target image, resulting in substantial false alarms. As extended versions of IPI, SMSL and
RIPT improve the performance in eliminating false alarms. However, SMSL uses the manner of
non-overlapping patch to construct the infrared patch-image. It will reduce the coherence of the sparse
structure in patches. Some like-target points are left in the target image when using multi-subspace
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learning strategy, as shown in Figure 7a,b, Figures 8a, 9c and 10b. Besides, RIPT shows sensitivity to
the scenes with sparse points, such as in Figures 8a, 9c and 10b. TVPCP and GRLA can be regarded as
enhancements of the IPI model. They integrate different regularization, such as total variation and graph
regularization into the IPI model. TVPCP applies the total variation as the constraint of the background
smooth component. From the results, one can obviously see that it successfully extracts the small
target but some background interferences still remain, as shown in Figure 7a,b, Figures 8a, 9c and 10b.
Among the two enhancements, GRLA can suppress background clutter better than TVPCP. The reason
for this is that the graph regularization is more efficient in preserving the intrinsic structure within the
background to address non-smooth component in complex scenes. Nevertheless, GRLA only employs
one-side graph regularization, say in patch space. It achieves a comparable performance in static
scenes, but it will lead to missing detection in dynamic scenes.
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5.6. Quantitative Evaluations

With the exception of the subjective visual evaluations, objective indicators are also important
evaluation criteria. In this subsection, we provide the comparisons of the average SCRG, BSF, and CG,
which are obtained by all involved methods in the different scenes, as shown in Table 5. In experiments,
the 10 infrared sequences are divided into four categories according to the type of scenes. In the
table, we mark the best three results by red, blue, and green, respectively. The results present that,
for most cases, the proposed method earns the first or second ranking place on these sequences
across different indicators. Regarding the average SCRG and BSF, the proposed method gets the
highest scores in all tested methods for different scenarios, which means that our method has the
best performance in clutter removal and background suppression. Additionally, GRLA is lower than
RIPT in the deep-space scenes, but higher for the other three scenes. It is clear that methods based on
subspace learning are generally better than other types of methods. This is because the IPI model takes
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advantage of redundant information of the image patch to improve the robustness for diverse scenes.
It is noteworthy that, for CG, the proposed method ranks the second in deep-space and sky-cloud
scenes and the third in sea-sky and terrain-sky scenes. The reason lies in that the proposed method can
separate small targets cleanly but does not enhance small targets. In contrast, although WLDM and
MPCM do not completely suppress the background, they distinctly strengthen the target intensity.
WLDM and MPCM obtain relative superior performance in CG, but their detection results contain
numerous false alarms. In addition, the three indicators merely reflect the good performance in a local
region, and do not necessarily represent the overall performance of the method.

Table 5. Comparison of the baselines with our method for average SCRG, BSF, and CG for different
scenarios. The red means the best, blue means the second and green means the third.

Deep-space
(Sequences 1

and 2)

Metrics TopHat MOG WLDM MPCM FKRW IPI TVPCP SMSL GRLA RIPT Ours

SCRG 1.75 4.26 18.42 23.75 102.19 82.14 112.03 196.64 296.46 348.13 512.06
BSF 3.23 3.12 16.49 13.75 142.19 68.68 83.02 168.43 182.69 212.46 364.04
CG 1.78 1.06 126.49 248.37 26.22 108.27 113.67 22.35 80.26 82.19 186.44

Sky-cloud
(Sequences

3–5)

Metrics TopHat MOG WLDM MPCM FKRW IPI TVPCP SMSL GRLA RIPT Ours

SCRG 4.54 3.15 10.81 32.28 55.62 126.81 124.26 212.06 318.29 316.42 586.24
BSF 1.04 2.08 6.81 21.24 48.63 122.19 110.13 182.56 286.92 228.89 426.25
CG 3.93 0.44 86.81 224.88 136.86 62.27 48.53 29.25 102.71 57.98 146.42

Sea-sky
(Sequences

6–8)

Metrics TopHat MOG WLDM MPCM FKRW IPI TVPCP SMSL GRLA RIPT Ours

SCRG 1.21 3.48 8.16 42.23 45.18 104.15 144.58 162.10 206.38 172.61 332.62
BSF 2.65 3.68 4.25 22.23 25.81 128.76 156.36 109.24 166.73 118.09 306.16
CG 2.76 2.18 116.23 186.43 32.52 65.87 75.35 36.62 48.67 69.08 108.91

Terrain-sky
(Sequences

9 and 10)

Metrics TopHat MOG WLDM MPCM FKRW IPI TVPCP SMSL GRLA RIPT Ours

SCRG SCRG 1.42 2.69 15.35 58.39 70.92 96.00 108.66 134.69 266.73 232.56
BSF BSF 1.55 1.22 8.16 48.39 82.93 104.20 88.66 146.28 216.22 197.86
CG CG 2.82 0.67 286.18 257.39 69.28 81.40 52.11 30.28 66.62 86.43

To further assess the superiority of the algorithm globally, Figure 11 presents the ROC results
obtained by different methods on the 10 displayed sequences. From the figure, we clearly identify
that the proposed method achieves the best behaviors with respect to both detection accuracy and
stability on different scenes compared with those competitive methods. Especially for the Sequences 2–7
(Figure 11b–g), our method attains the highest Pd at the lowest Fa. For Sequences 1 and 10 (Figure 11a,j),
RIPT owns higher Pd when the Fa is less than 0.4 and 0.45, respectively. Nevertheless, with the increase
of Fa, the proposed method reaches the highest Pd scores faster than RIPT. In addition, the significant
changes in the performance of the compared algorithms can be easily discovered. For example, GRLA
outperforms the others in Sequences 1, 6, 7, and 9 (Figure 11a,f,g,i), but is slightly inferior to some
methods for other sequences. The Pd of RIPT in Sequences 1, 5, 7, 9, 10 (Figure 11a,e,g,i,j) arrives 1
within the range of Fa less than 1. However, it obtains lower Pd in remaining sequences, especially in
Sequence 3. Figure 11e,g–i displays that TVPCP shows an impressive performance in these sequences
while its performance declines seriously for other remaining sequences. Moreover, due to the limited
capability to suppress background clutter, approaches based on background prediction and target
saliency, such as TDLMS, TopHat, MOG, WLDM, and MPCM, have low values of Pd in the range of low
Fa. Additionally, FKRW is less robust in Sequences 1, 2, 8, 10, obtaining low Pd. The conclusions drawn
from objective evaluations demonstrate that our method is superior and more robust in detection
performance against different scenes as compared with the baselines.
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sequences. All of the tested algorithms were implemented on a PC with Intel Core i5 CPU 3.4 GHz 
and 8GB RAM by MATLAB R2016b. Considering that the running time may be affected by the 
parameter settings of the tested methods, we used the installing parameters obtained under optimal 
performance, as given in Table 2. Table 6 provides the average running time of each tested method. 
From the table, one can find that the computational cost of MOG and TVPCP is much higher than 
other algorithms. TopHat takes the shortest time in all test methods, but its stability is the worst. 
Among subspace learning models, SMSL is the fastest since it employs the block coordinate descent 
method to avoid SVD in every iteration. As can be seen, although the proposed method is not the 
fastest, its execution time is at the same level as RIPT and GRLA. Furthermore, the execution time of 
the proposed method can be accelerated by parallelly implementing the construction of graph. 
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5.7. Convergence Analysis

The convergence of the proposed method solved by LADMAP was empirically studied on the real
sequences, as illustrated in Figure 12. The relative error (re) in objective function served as the iteration
stop criterion, which was computed in each iteration by ‖D− Bk+1 − Tk+1‖F/‖D‖F < ε2. Figure 12a
displays the changes of the relative error re in successive iterations of the objective function. Observing
the figure, we can find that the declining rate of relative error is of great difference among Sequences 3,
5, 7, 9, and 10, and is almost uniform for the remaining sequences. Furthermore, the relative error
drops sharply between iterations 1 and 2 that indicates a very fast convergence of the proposed method.
Besides, the average number of iterations of the proposed method in all sequences is provided in
Figure 12b, from which we can see that the convergence is obtained in less than 12 iterations.
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5.8. Execution Time Comparison

To evaluate the computational efficiency of the proposed method more intuitively, we provide
a comparison of the average time executed by the proposed method and comparative methods on
10 sequences. All of the tested algorithms were implemented on a PC with Intel Core i5 CPU 3.4 GHz
and 8GB RAM by MATLAB R2016b. Considering that the running time may be affected by the
parameter settings of the tested methods, we used the installing parameters obtained under optimal
performance, as given in Table 2. Table 6 provides the average running time of each tested method.
From the table, one can find that the computational cost of MOG and TVPCP is much higher than
other algorithms. TopHat takes the shortest time in all test methods, but its stability is the worst.
Among subspace learning models, SMSL is the fastest since it employs the block coordinate descent
method to avoid SVD in every iteration. As can be seen, although the proposed method is not the
fastest, its execution time is at the same level as RIPT and GRLA. Furthermore, the execution time of
the proposed method can be accelerated by parallelly implementing the construction of graph.

Table 6. The average execution time (frame/s) of different algorithms on 10 real sequences.

Methods Seq 1 Seq 2 Seq 3 Seq 4 Seq 5 Seq 6 Seq 7 Seq 8 Seq 9 Seq 10

TopHat 0.069 0.063 0.034 0.059 0.052 0.085 0.065 0.071 0.042 0.056

MOG 269.9 274.5 7.73 121.7 77.5 156.2 235.7 172.4 1.64 126.32

WLDM 1.21 1.43 0.36 0.87 0.66 1.33 0.91 1.42 0.37 0.65

MPCM 0.58 0.56 0.42 0.36 0.58 0.69 0.62 1.07 0.47 0.15

FKRW 0.63 0.61 0.35 0.69 0.42 0.61 0.63 1.37 0.39 0.26

IPI 14.72 14.36 0.25 2.83 1.58 16.23 6.25 18.6 0.29 1.62

TVPCP 265.5 248.8 10.42 81.44 38.85 183.4 98.81 187.2 10.9 42.9

SMSL 0.39 0.35 0.14 0.21 0.19 0.36 0.59 0.38 0.10 0.49

GRLA 3.86 3.69 0.55 1.95 1.94 12.87 5.55 3.42 0.58 2.23

RIPT 1.81 1.91 0.18 0.85 0.37 1.54 1.22 2.09 0.20 0.60

Ours 2.34 2.09 0.22 1.41 0.73 1.99 1.39 2.31 0.37 0.86

6. Discussion

From the above analysis, we can see that the demand of real time detection can be satisfied by the
methods based on local prior, e.g., local spatial consistency, local saliency. Additionally, these methods
do really highlight a small target in the scenes with high signal-to-clutter ratio. However, they have high
false alarm rates for the complex scenes due to the incapability to remove strong edges and bright spots.
Methods based on subspace learning, by comparison, show the superiority in background suppression
and sparse point elimination. It is mainly attributed to the usage of global prior including the nonlocal
self-correlation of background and the sparsity of the small target. Nevertheless, the original IPI model
still suffers from the performance degradation when facing extremely complicated scenes due to
the aforementioned limitations. To overcome its flaws, some improvements have been developed
subsequently along three lines: (1) selecting tighter rank approximation function to reduce the bias
of background estimation, recovering background better [23,24]; (2) applying a sparse enhancement
strategy such as reweighting to suppress non-target outliers in the background [21,22]; (3) imposing
structural regularization to strengthen the correlation of background spatial structure, promoting the
recovery of background [45,46]. These methods evidently reduce the false alarm rate and increase
the detection probability for some complex scenes. However, these methods only employ the prior in
patch space ignoring the one in feature space. Additionally, there is no closed form solution to the
subproblems of some rank function surrogates. Hence, some of them may not only perform less robust
in complex scenes with a dim small target, but have increased computational cost.
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Different from the above methods, our proposed method integrates the prior in both data space
and feature space in the form of dual graph regularization. This manner effectively constrains the
background structures of deviating from low-rank subspace, boosting the suppression of clutters and
edges. In addition, we employed l1/2-norm instead of l1-norm and its reweighting versions to constrain
the target component, whose minimization realizes a sparser solution. It leads to a better removal of
sparse outliers while preserving the small target. Finally, the solution of the objective function can
be obtained by a well-designed optimization framework derived from LADMAP. By reducing the
introduction of alternating multipliers, this framework not only reduces the number of iterations but
also makes the computation friendly. The above experimental analysis has proved that the proposed
method outperforms other tested methods in edge clutter suppression and sparse spot elimination.
However, some issues still need to be considered. For example, the sparse constraint potentially
assumes that the target elements are mutually independent, neglecting the spatial and pattern relation
of some small targets. It will lead to the incompleteness of detection target. Furthermore, how to
enhance the energy of small targets in the process of background separation is also a problem worthy
of consideration. It will further increase the detection rate of dim and small targets. Following this,
the future work can be concentrated on three lines: (1) designing a model to explicitly encode the
spatial relation and feature similarity of small targets; (2) formulating a multi-frame detection model
to fully explore the temporal cues in infrared sequences; (3) introducing appropriate deep learning
framework to extract the target adaptively.

7. Conclusions

In this study, we gave an improvement on infrared small target detection when encountering
complex scenes with cloudy clutter, sea glitter, and man-made interference. This is realized by
incorporating the patch-feature sparse regularization into a RPCA framework with l1/2-norm constraint.
The l1/2-norm can approximate a sparser solution than the traditional l1-norm, and achieve effective
removal of pixel-sized interferences. On the other hand, the knowledge embodied in the patch and
feature space is imposed on the sparse component through the patch and feature graph Laplacian,
where each graph preserves the corresponding manifold structure. The proposed model is efficiently
solved by LADMAP. We demonstrate that the proposed model obtains excellent performance over
different real infrared sequences compared with 11 state-of-the-art methods in terms of both objective
evaluation and visual effect.
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