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Abstract: Mapping of green vegetation in urban areas using remote sensing techniques can be used 
as a tool for integrated spatial planning to deal with urban challenges. In this context, multitemporal 
(MT) synthetic aperture radar (SAR) data have not been equally investigated, as compared to optical 
satellite data. This research compared various machine learning methods using single-date and MT 
Sentinel-1 (S1) imagery. The research was focused on vegetation mapping in urban areas across 
Europe. Urban vegetation was classified using six classifiers—random forests (RF), support vector 
machine (SVM), extreme gradient boosting (XGB), multi-layer perceptron (MLP), AdaBoost.M1 
(AB), and extreme learning machine (ELM). Whereas, SVM showed the best performance in the 
single-date image analysis, the MLP classifier yielded the highest overall accuracy in the MT 
classification scenario. Mean overall accuracy (OA) values for all machine learning methods 
increased from 57% to 77% with speckle filtering. Using MT SAR data, i.e., three and five S1 imagery, 
an additional increase in the OA of 8.59% and 13.66% occurred, respectively. Additionally, using 
three and five S1 imagery for classification, the F1 measure for forest and low vegetation land-cover 
class exceeded 90%. This research allowed us to confirm the possibility of MT C-band SAR imagery 
for urban vegetation mapping. 

Keywords: speckle filtering; land-cover classification; multitemporal; Sentinel-1; synthetic aperture 
radar (SAR); urban vegetation 

 

1. Introduction 

Remote sensing could provide reliable land-cover classification maps, through the active 
microwave and passive optical sensors, which could be used for a wide range of applications. The 
monitoring of urban vegetation at a regional scale has become an important topic, since urban 
development leads to a slow but steady degradation of urban green vegetation [1]. 

Urban areas are complex systems composed of numerous interacting components that evolve 
over multiple spatio-temporal scales [2]. In this context, a multispectral optical image is easy for 
interpretation and classification, but often climate conditions limit the utilization of this satellite 
imagery [3]. Conversely, synthetic aperture radar (SAR) systems are independent of weather and sun 
illumination and provide the all-weather mapping capability [4]. However, due to the coherent mode 
of backscattered signal processing [5], speckle noise cannot be avoided and will be present in SAR images 
[6]. The speckle noise degrades the quality of acquired imagery, causing difficulties for both manual 
and automatic image interpretation [7]. Therefore, speckle filtering is required for classification tasks, 
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especially for detecting vegetation in urban systems whose components differ at various scales 
(urban forest, green roofs, urban gardens, parks). Many speckle filters have been implemented for 
the reduction of speckle noise in SAR imagery [8–12]. Spatial filters reduce the noise by using 
smoothing windows based on a weighted summation of neighboring pixels. 

However, the spatial resolution on resulting SAR imagery deteriorates, and fine details fade 
away, which causes information loss [13]. Hence, urban vegetation mapping using single-date 
imagery often does not produce satisfactory results, and the use of the multitemporal (MT) SAR 
imagery are adequate for better differentiation of various land-cover classes, especially for vegetation 
[14–18]. With the launch of the Sentinel-1 (S1) SAR satellites, a large collection of MT S1 imagery of 
Central Europe with a temporal resolution of three days is available for different classification tasks. 
Veloso et al. [19] investigated the temporal behavior of the MT S1 imagery for agricultural 
applications. The dense time series of optical and SAR imagery allows them to capture phenological 
stages and to discriminate various crops. S1 backscatters, vertical–vertical (VV), and vertical–
horizontal (VH) are more sensitive to surface scattering and volume scattering, respectively. In SAR 
imagery, urban areas are characterized by very bright reflections, since human-made objects behave 
as corner reflectors [1], while the predominant mechanism responsible for backscatter from vegetation is 
volume scattering, whose interpretation is a bit more complex [20]. Using S1 MT imagery at the field scale, 
Gao et al. [21] proposed a methodology for irrigation mapping. Analysis of MT SAR imagery enables 
us to define irrigated fields since single-date image analysis is not always reliable. The research is 
based on MT SAR data and can be applied for various classification tasks. 

With the launch of satellite missions that enable systematic acquisitions within short revisit times 
(e.g., Sentinel-1), the MT series of SAR imagery are mostly used for flood and wetland monitoring 
[22–24], as floods are often associated with heavy rain that makes optical satellite data unavailable. 
Furthermore, SAR backscatter intensity values increase significantly during flood events due to the 
interaction between water and vegetation (e.g., trunks, stems), which enables the mapping of flooded 
vegetation [25]. SAR systems offer a possibility of acquiring data in a continuous manner, regardless 
of the weather and lighting conditions, which enables rapid mapping of environmental changes. 
However, compared to the optical satellite data, there are several challenges regarding SAR image 
analysis for land-cover applications (e.g., speckle, radar shadow caused by layover, and 
foreshortening). Additionally, due to the complex pre-processing and interpretation of radar data 
[25,26], numerous researchers still use optical satellite data for land-cover (LC) mapping (see Figure 
1). 

The MT series of SAR imagery are also used for mapping urban areas [27–29]. For urban 
vegetation mapping, MT SAR data have not been equally investigated, as compared to the optical 
satellite data [30–32]. Since Figure 1 shows that SAR imagery is neglected for LC classification tasks, 
in comparison to optical satellite data, this research evaluated the practical application of SAR data 
for LC classification. Therefore, the performance of the most used non-parametric machine learning 
methods for MT SAR imagery was assessed for urban vegetation mapping. In this research, the tested 
classifiers were random forests (RF), support vector machine (SVM), extreme gradient boosting 
(XGB), artificial neural network (ANN), AdaBoost.M1 (AB), and extreme learning machine (ELM). 
For the MT SAR imagery, RF and SVM were applied successfully for land-cover classification 
[18,33,34]. ANNs were used successfully for the land-cover mapping, and the classification accuracy 
was often significantly improved, compared to the aforementioned methods. In this research, a specific 
type of ANN—Multi-Layer Perceptron (MLP), as an ensemble of feedforward neural networks, was used. 
Over the past years, more and more research used MLP for the processing of SAR imagery [35–37]. 
Gradient boosting classifiers combine many “weak” learning models into a single composite 
classifier. XGB, developed by Chen and Guestrin [38], was investigated due to its novelty and lack of 
SAR land-cover and MT applications. AdaBoost [39] has already been proven in the remote sensing, 
e.g., LC classification of multispectral imagery [40,41] and hyperspectral remote sensing imagery 
[42,43]. In comparison to the backpropagation in the ANNs, ELM is a single layer feedforward neural 
network. Huang et al. [44] proposed the ELM classifier, which randomly chooses hidden nodes and 
bias, whereas [45] explored the potential of the ELM for LC classification. 
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Figure 1. The number of published articles (1990–2019) listed in the Web of Science Core Collection 
containing the terms/topic “radar” or “scatteromet*” or “microwave*” or “SAR” for radar, and 
“optic*” or “Landsat” or “Sentinel-2” or “Sentinel-3” or “Quickbird” or “MODIS” or “IKONOS” or 
“GeoEye” or “WorldView” for optical imagery, refined by “land cover” or “land use”. To extract a 
number of multitemporal related articles, the final results were refined by “multitemporal” or “multi-
temporal” or “multi temporal” or “time-series” or “time series”. 

Camargo et al. [46] and Lapini et al. [47] evaluated various classifiers using SAR imagery for LC 
classification of the Brazilian tropical savanna and forest classification in Mediterranean areas, 
respectively. Recent research presented RF, MLP, SVM, as the most accurate classifiers, and the DT 
J48 (DT—decision tree) classifier showed satisfactory performance for the detection of specific LC 
classes (e.g., vegetation). In contrast, in the latter study, RF achieved the best overall accuracy (OA), 
whereas SVM yielded a lower classification results due to the imbalanced number of samples among 
the classes. Waske and Braun [48] applied various classifier ensembles to MT C-band data for LC 
mapping. Classification accuracy of 84% was achieved in rural areas using RF classifier, which 
proved to be very well suited for LC classifications using MT stacks of SAR imagery. 

The objective of this study was the mapping of vegetation in urban areas using MT C-band SAR 
imagery. Furthermore, this paper evaluated six different machine learning methods for classifying 
LC classes in three different study areas. The purpose of this research was to assess the possibility of 
vegetation mapping using MT S1 imagery in urban areas across Europe and on a related comparative 
assessment of different classifiers. The rest of the paper is organized as follows—(1) information 
about the study areas and SAR data used in this research; (2) description of pre-processing steps for 
S1 imagery and the tested classifiers for urban vegetation mapping; (3) results; (4) discussion, and (5) 
conclusions. 
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2. Study Areas and Dataset 

2.1. Study Areas 

The study areas used in this research are shown in Figure 2. The first study area was Prague in 
the Czech Republic. The central part of the scene consisted of the urban area divided by the river 
Vltava. Most of the area in the south was agricultural land, either different types of crops or bare 
land, whereas the northern part of the scene was covered with forest, which separated the city from 
its outskirts. The second selected study area was Cologne, Germany. The western part was 
characterized by mainly flat terrain with agricultural fields and bare land areas, whereas eastern parts 
were dominated by forest areas. The central part of the scene was dominated by an urban area, with 
a lot of urban parks, lakes, and grasslands. Third, the considered study area was situated in Lyon, 
France. The city center with its surroundings was located in the western part of the scene, whereas 
other parts of the scene were dominated by vegetation and bare lands. Each study area had the same 
dimensions of approximately 30 km x 50 km, and the aforementioned areas were chosen because of 
a highly diverse landscape (more details about study areas are shown in Appendix A). 

 
Figure 2. (a) Locations across Europe used in this research; (b); (c); and (d) show the study areas 
located in Prague; Cologne; and Lyon, respectively, whereas the red square represents an example 
subset location for a classification map, with an extent of 2 km × 2 km. 
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2.2. Data 

The available S1 ground range detected (GRD) imagery with VV (vertical–vertical) and VH 
(vertical–horizontal) polarisations were acquired on the Sentinel Data Hub. For each study area, to 
ensure that the pixels remained unchanged in the same position over time, a reference date was 
chosen (i.e., 06 June 2019, 13 May 2019, and 04 June 2019 for Prague, Cologne, and Lyon, respectively). 
Since the constellation of Sentinel-1A (S1A) and Sentinel-1B (S1B) pass over the same spot on the 
ground every six days with identical orbit configuration (same image geometry), two scenes before 
and two scenes after the reference date (Table 1) in the same acquisition orbits were chosen for MT 
land-cover analysis (three scenes—MT_3; five scenes—MT_5). 

Table 1. Multitemporal S1 imagery used in this research. 

Study Area Date Satellite Acquisition Orbit 
Prague 05 May 2019 S1B DESC 

 31 May 2019 S1A DESC 
 06 June 2019 S1B DESC 
 12 June 2019 S1A DESC 
 18 June 2019 S1B DESC 

Cologne 01 May 2019 S1A ASC 
 07 May 2019 S1B ASC 
 13 May 2019 S1A ASC 
 19 May 2019 S1B ASC 
 25 May 2019 S1A ASC 

Lyon 17 May 2019 S1B ASC 
 23 May 2019 S1A ASC 
 04 June 2019 S1A ASC 
 10 June 2019 S1B ASC 
 16 June 2019 S1A ASC 

3. Methods 

3.1. Pre-Processing 

To perform MT land-cover analysis using SAR imagery, several pre-processing steps are required. 
Pre-processing steps were executed with the Graph Processing Tools (GPT) of ESA’s Toolbox 
(S1TBX). It included radiometric calibration, terrain correction, and co-registration. 

For the quantitative usage of the S1 Level-1 imagery, a radiometric calibration needed to be 
applied. The result of the calibration was values that represented the radar backscatter of the 
reflecting surface. The calibration reversed the scaling factor applied during product generation and 
applied a constant offset and a range-dependent gain, including the absolute calibration offset. In this 
research, raw signals from the GRD products were calibrated to the sigma naught (σ0) backscatter 
intensities. 

GRD scenes have to be geocoded from a slant-range to a ground-range geometry, since the side-
look view geometry of the SAR system, and Earth topography cause various distortions. 
Orthorectification of the S1 imagery (i.e., range doppler terrain correction operator) was conducted 
in the SNAP software, and the SAR scenes were terrain-corrected using the shuttle radar topography 
mission (SRTM) one-arcsecond tiles and were transformed to a universal transverse mercator (UTM) 
projection. The scenes were registered to a UTM Zone 33 N (Prague), Zone 32 N (Cologne), and Zone 
31 N (Lyon), whereas WGS 1984 was used as an earth model. 

In order to conduct LC classification in a time-series, image co-registration was needed to ensure 
that the images were spatially aligned. A set of images had to be aligned on a pixel scale, since wrong 
co-registration would produce incorrect LC mapping results [7]. For image registration, the used 
scene was reference dated for each study area as the master image, then the remaining images were 
registered to the base image. 
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3.2. Speckle Filtering 

Prior to the land-cover classification of the S1 scene, speckle, appearing in SAR imagery as granular 
noise, needed to be filtered. For single speckle filtering in the spatial domain, many adaptive and 
non-adaptive filters were evaluated [49]. For this research, the Lee filter with a 5 × 5 window (Lee5) 
was used [10]. This filter assumed a Gaussian distribution for the noise and efficiently reduced 
speckle, while preserving the edges [50]. 

It should also be noted that the MT speckle filtering approach developed by Quegan and Yu [51] 
was tested in an experimental part of this research. The aforementioned filtering approach applied 
after the stacking of all scenes into one file. Using n co-registered images, the MT filter calculated n 
weighted averages while preserving the local mean backscatter in each image [52]. Since the MT 
speckle filter [51] did not produce a higher classification accuracy in comparison with the Lee5 spatial 
filter, a single pass of a spatial filter was applied to each scene. Similar results were reported in [3], 
which compared the performance of the spatial and MT filters using the MT SAR imagery. Although 
the MT filter could be used for deriving features in the spatial domain, the spatial speckle filter 
achieved a higher overall accuracy for classification applications. 

3.3. Classification and Accuracy Assessment 

After speckle filtering, performance evaluation of the land-cover classification was carried out 
using the six non-parametric machine learning methods. Prior to supervised pixel-based 
classification, reference polygon data were divided into the training data used to train the machine 
learning algorithms and validation data, in order to assess the accuracy of the LC classifications. The 
evaluated classifiers were random forests (RF), support vector machine (SVM), extreme gradient 
boosting (XGB), multi-layer perceptron (MLP), AdaBoost.M1 (AB), and extreme machine learning 
(ELM). 

RF makes predictions by combining the results from many individual decision trees that were 
obtained by different subsets of the training data [53]. The main arguments that needed to be 
optimized were the number of decision trees to be combined (ntree) and the maximum number of 
features considered at each split (mtry). According to previous research by Noi and Kappas [54], 
ntree was 500, and the square root of the number of predictors was set for the mtry argument. Within 
R, the ‘randomForest’ package [55] was used for the RF classification. 

For the SVM land-cover classification, we used the radial basis function (RBF), which takes 
predictor variables and applies a non-linear transformation to them [33,56]. The RBF kernel has two 
parameters that need to be set—the complexity coefficient C and the γ parameter, which is referred 
to as the kernel bandwidth. The optimal C parameter needed to be defined as a trade-off between 
error and margin, since the larger values lead to over-fitting and commonly require increasing 
computational time. The parameters mentioned above were investigated in depth for LC 
classification, using Sentinel-2 imagery in [54], and also in an experimental part of this research. 
Therefore, in order to reduce the computational time for the SVM classifier, C and γ were set to 1 
within the ‘kernlab’ package [57]. 

XGB converts standard decision trees as weak learners into strong learners, using gradient 
boosting techniques. Developed by Chen and Guestrin [38], the boosting approach started with a 
high bias and then used the loss function to iteratively build trees that improve, compared to the 
errors of the prior trees. Some of the most important hyper-parameters within ‘xgboost’ package in 
R [58] that need to be optimized for XGB algorithm are the number of boosted trees (n_boost), and 
for over-fitting prevention—the learning rate (eta), tree complexity, and depth (max_depth), and a 
minimum sum of instance weight of all observations needed in a child (min_child_weight) [59]. 
Parameters n_boost, eta, max_depth, and min_child_weight was set to 100, 0.1, 6, and 1, respectively. 

MLP consists of several layers of neurons that are fully connected with each other. The usual 
architecture of a model, which can separate nonlinear data, is the input layer, one or more hidden 
layers and the output layer [60]. Hyper-parameters of MLP include the number of hidden layers and 
the number of neurons in each layer (package ‘keras’ in R [61]). According to Heaton [62], two hidden 
layers were used since such a network can represent functions with any kind of shape, whereas the 
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neuron numbers were set to 512 and 256. Backpropagation gives us detailed insights on how the 
weights and biases are learned at multiple layers within the network, in order to describe the overall 
behavior of the network [63]. 

From a collection of boosting ensemble methods for classification, Freund and Schapire’s 
Adaboost.M1 (AB) [39] was chosen for the MT S1 imagery. The common goal of an AB classifier is to 
improve the accuracy by identifying weak learners based on the high weights and to create a strong 
classifier by boosting the ensemble method [64]. This research used the R package ‘adabag’ [64] for urban 
vegetation mapping, and both the number of iterations and the number of trees were set to 100. 

The classification approach based on the extreme learning machine (ELM) classifier comprises a 
single-hidden layer in a feedforward neural network. The parameters of this learning algorithm (i.e., 
hidden nodes) were randomly chosen, and then the output weights of a hidden layer were computed 
[44]. Unlike the backpropagation neural network, for the ELM classifier, only the number of hidden 
nodes in the hidden layer needed to be optimized, and it was set to 1000, whereas the rectified linear 
unit was set as an activation function (package ‘elmNNRcpp’ in R [65]). The learning speed of ELM 
proved to be extremely fast, and one user-defined parameter could be easily optimized for the 
classification tasks [45]. 

According to the “good practice” recommendations defined by Olofsson et al. [66], the sampling 
design (detailed overview presented in [67]), response design, and analysis procedures are major 
components of the accuracy assessment methodology. To train and validate the LC classifications, a 
stratified random sample of 70% of the reference polygon data for training the machine learning 
methods and 30% of the reference polygon data for validating the accuracy of the results was used. 
The reference polygon data were collected by visual interpretation from a very high spatial resolution 
imagery (VHRSI) (e.g., WorldView–2/3, QuickBird) available via Google Earth and dated 
approximately the same as the S1 imagery [68,69]. Additionally, reference polygons were selected 
over the entire study area (approximately 30 km x 50 km) in such a way that there was no overlap 
between the training and testing sets (Table 2). Overall, the reference polygon area comprised 
approximately 4%, 3%, and 2% extent of the study area for Prague, Cologne, and Lyon, respectively. 
Independence between training and accuracy assessment polygon samples was assured by 
implementing a separate probability sample for accuracy assessment [70]. 

Table 2. The polygon samples used for training (Train) and validation (Valid). 

 Prague Cologne Lyon 
Class Train Valid Train Valid Train Valid 
Water 105 45 105 45 105 45 

Bare land 140 60 140 60 140 60 
Forest 140 60 154 66 140 60 

Built-up 140 60 140 60 140 60 
Low vegetation 140 60 154 66 140 60 

Total 665 285 693 297 665 285 
One of the challenges was to evaluate an agreement between the amount of training samples 

and their size for the LC classification. Valero et al. [71] reported that a smaller number of training 
data for the RF classifier produces lower classification accuracy results. On the other hand, the SVM 
classifier achieves very accurate results for even a small data set [72]. Additionally, during the 
training phase for the MLP, 10% of the training samples were selected as a validation data on which 
the loss function was evaluated at the end of each epoch [62]. 

An error or confusion matrix [70] compared the relationship between the reference and 
predicted data. Besides the overall accuracy (OA) and Kappa coefficient (K), the user’s accuracy (UA) 
and the producer’s accuracy (PA) were computed from the error matrix as an accuracy measure of 
individual LC classes [73]. Further, the F1 score [74], defined as the weighted harmonic mean of UA 
and PA was calculated using Equation (1). The performance of the urban vegetation classification 
was assessed using this measure. According to Sun et al. [75], the interpretation of the F1 score tended 
to be more relevant than the OA and K. The F1 score was calculated as follows: 
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×× PA UAF1= 2
PA + UA

 (1) 

where PA is defined as the complement of the omission error probability, and UA is defined as the 
complement of the commission error probability. 

Besides using traditional methods for quantitative accuracy evaluation, e.g., the Kappa 
coefficient, which have certain limitations [76], another statistical LC method to determine accuracy, 
defined as the Figure of Merit (FoM), was calculated, as shown in Equation (2): 

=
+ +
OAFoM

OA O C
 (2) 

where OA represents overall accuracy, O is the number of omissions, and C is the number of 
commissions. 

To compare the performance of the machine learning methods, the same set of reference samples 
were used for accuracy assessment [77]. Since the reference data was not independent, the statistical 
significance of differences in accuracy between the two classification results was evaluated using the 
McNemar’s Chi-squared test [78]. McNemar’s test has been widely used for the comparison of 
classification results. It is based on a binary 2 × 2 contingency matrix, closely related to the χ2 statistic, 
which could be adapted to compare multiple classifiers [79]: 

−
χ =

+

2
2 12 21

12 21

(f f )
f f

 (3) 

where f12 and f21 indicate the amount of correctly classified samples in classification map 1, but 
incorrectly in classification map 2, and vice versa. If the estimated χ2 value was greater than 3.84 at a 
95% confidence interval, the two classification methods would differ in their performances [60]. 

The accuracy assessment was conducted using the R programming language, version 3.6.0, 
through RStudio version 1.0.153. 

4. Results 

In order to assess the performance of the evaluated methods in different steps of the research 
(i.e., pre-processing of SAR imagery, number of input features), mean values of accuracy metrics for 
all three study areas were calculated. Table 3 shows OA, K for each machine learning method, as well 
as F1 and FoM for each land-cover class. Overall, the highest accuracy was achieved in the MT_5 
scenario when the total number of input features was maximum. Using single-date imagery, the 
speckle filtering (VV_VH_SPK) scenario showed a better overall accuracy than the classification on the 
original S1 imagery (VV_VH). The Lee5 spatial filter reduced the speckle in the homogeneous areas and 
effectively preserved the edges and features, as shown in the research by Maghsoudi et al. [3] and Idol et 
al. [80]. In this part of the research (i.e., single-date imagery), an SVM classifier achieved the highest 
classification accuracy. When additional temporal S1 features were combined, the overall accuracy 
increased. All classifiers achieved better classification results in the MT_3 and MT_5 scenarios, except the 
ELM, whose accuracy decreased in the MT_3. Owing to the additional input data to train the model, 
the MLP classifier achieved the highest increase and overall the highest accuracy between LC 
classification, using single-date and MT imagery. Using MLP with multitemporal and multisource 
imagery, Kussul et al. [36] also outperformed commonly used machine learning methods for land-
cover classification. 

Figure 3 evaluates the performance of the tested machine learning methods. The SVM classifier 
performed better using the single-date S1 imagery, while the MLP performed better on the MT 
imagery when the number of input features was higher. If we compare boosting classifiers, AB 
performed better than XGB in the single-date classification scenario; conversely, XGB achieved better 
results in the MT scenario. The ELM classifier achieved the lowest classification results in this 
research. By introducing temporal information (i.e., five S1 imagery), the overall accuracy of all 
classifiers exceeded 90%, except for the ELM. 
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Table 3. The mean values of overall accuracy (OA), K, the F1 measure (F1), and the Figure of Merit 
(FoM) in different classification scenarios using S1 imagery with six machine learning classifiers (the 
bold values indicate the most accurate performance achieved for each classification scenario). 

 Method OA K Water Bare Land Forest Built-Up Low Veg. 
 F1 FoM F1 FoM F1 FoM F1 FoM F1 FoM 

V
V

_V
H

 

RF 55.37 0.42 0.52 0.42 0.57 0.41 0.49 0.36 0.46 0.35 0.58 0.41 
XGB 57.26 0.44 0.53 0.43 0.59 0.43 0.49 0.38 0.50 0.37 0.61 0.44 
MLP 57.05 0.44 0.53 0.41 0.59 0.44 0.40 0.37 0.53 0.39 0.65 0.48 
SVM 61.63 0.49 0.55 0.47 0.61 0.47 0.52 0.42 0.58 0.43 0.68 0.51 
AB 60.20 0.48 0.55 0.45 0.60 0.46 0.51 0.40 0.56 0.41 0.67 0.50 

ELM 52.11 0.38 0.50 0.39 0.56 0.39 0.44 0.33 0.34 0.29 0.57 0.39 

V
V

_V
H

_S
PK

 RF 75.78 0.67 0.61 0.58 0.77 0.63 0.75 0.61 0.72 0.58 0.77 0.64 
XGB 76.07 0.68 0.61 0.57 0.77 0.63 0.75 0.61 0.74 0.60 0.78 0.64 
MLP 76.48 0.67 0.59 0.57 0.74 0.61 0.76 0.62 0.78 0.64 0.79 0.65 
SVM 80.24 0.73 0.65 0.61 0.81 0.68 0.79 0.66 0.80 0.68 0.83 0.71 
AB 78.10 0.70 0.63 0.61 0.80 0.67 0.77 0.63 0.78 0.64 0.81 0.68 

ELM 72.79 0.63 0.59 0.54 0.76 0.61 0.71 0.57 0.59 0.48 0.75 0.61 

M
T_

3 

RF 88.62 0.84 0.80 0.77 0.92 0.85 0.88 0.79 0.76 0.66 0.89 0.80 
XGB 87.96 0.83 0.79 0.77 0.92 0.85 0.87 0.78 0.75 0.64 0.88 0.79 
MLP 92.27 0.89 0.90 0.85 0.93 0.88 0.92 0.85 0.81 0.72 0.91 0.84 
SVM 90.14 0.86 0.80 0.78 0.93 0.87 0.90 0.82 0.80 0.70 0.90 0.83 
AB 81.58 0.75 0.76 0.72 0.88 0.77 0.79 0.67 0.66 0.55 0.80 0.69 

ELM 70.42 0.60 0.69 0.63 0.79 0.64 0.66 0.52 0.40 0.37 0.70 0.56 

M
T_

5 

RF 92.26 0.89 0.91 0.86 0.93 0.88 0.92 0.85 0.81 0.71 0.93 0.86 
XGB 91.73 0.89 0.91 0.85 0.93 0.87 0.92 0.85 0.80 0.70 0.92 0.85 
MLP 93.95 0.92 0.92 0.87 0.95 0.91 0.93 0.88 0.86 0.77 0.93 0.88 
SVM 92.92 0.90 0.89 0.82 0.94 0.88 0.92 0.85 0.80 0.70 0.92 0.85 
AB 91.55 0.88 0.89 0.84 0.93 0.88 0.91 0.84 0.79 0.69 0.92 0.85 

ELM 79.02 0.71 0.80 0.71 0.84 0.72 0.77 0.64 0.47 0.44 0.79 0.65 
 

  
(a) (b) 

Figure 3. Mean (a) OA and (b) Kappa values obtained with various machine learning methods for 
different classification scenarios (error bars indicate lowest and highest classification values). 

To assess the ability of differentiation between land-cover classes, omnibus measures (i.e., F1, 
FoM) that provide a single value were reported. However, along with these omnibus measures, 
Stehman and Foody [70] suggest reporting UA and PA, since their complementary measure (i.e., 
commission and omission error, respectively) are not interchangeable (Table 4 and Figure 4). As a 
stratified random sampling was chosen as a sampling design for this research, and LC classes were 
used as strata [66,70], UA and PA values for urban vegetation LC classes (i.e., forest and low 
vegetation) could be reported. In the VV_VH classification scenario, the MLP classifier yielded the 
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highest UA and PA value for the forest and low vegetation class, respectively. Conversely, the highest 
PA and UA value for the forest and low vegetation class was reached by the SVM classifier, 
respectively. In the VV_VH classification scenario, the MLP and SVM classifier correctly classified 
forest on the map that matched the ground truth data in terms of higher UA than PA, whereas MLP 
and SVM correctly identified more ground truth data as low vegetation, but the commission error (a 
complementary measure of UA) was much higher. After speckle filtering with Lee5 filter, SVM 
obtained the highest UA and PA values for forest and low vegetation class. When additional temporal 
S1 features were combined, the UA and PA values increased for individual LC classes. In the MT_3 
and MT_5 classification scenarios, the forest and low vegetation class achieved the highest UA and 
PA values using the MLP classifier, and their values exceeded 90%. 
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Figure 4. Visualization of normalized confusion matrix computed using various machine learning 
methods for single-date and multitemporal classification scenarios. 

Table 4. The mean values of user’s accuracy (UA) and producer’s accuracy (PA) of individual land-
cover (LC) classes in different classification scenarios using S1 imagery (the best UA and PA values 
for scenario are highlighted in bold). 

 Method Water Bare land Forest Built-Up Low Veg. 
UA PA UA PA UA PA UA PA UA PA 

V
V

_V
H

 

RF 47.43 66.49 50.70 66.44 63.44 39.91 37.63 59.80 58.22 59.93 
XGB 48.26 67.60 51.06 70.22 65.01 40.05 44.10 57.88 59.77 64.29 
MLP 48.95 60.94 47.93 79.57 72.80 28.02 53.95 57.32 58.77 75.55 
SVM 49.54 70.88 52.49 76.75 71.12 42.00 61.73 55.13 64.39 74.53 
AB 48.38 70.54 51.01 75.84 69.10 40.98 57.58 54.74 64.20 72.02 

ELM 46.03 63.93 49.05 67.33 58.50 36.04 31.53 38.12 55.58 60.88 

V
V

_V
H

_S
PK

 RF 59.71 73.50 73.94 80.72 81.56 69.34 69.09 76.68 75.86 79.86 
XGB 59.23 72.99 74.27 80.91 81.91 69.64 71.95 76.48 75.65 80.85 
MLP 75.02 58.21 67.27 81.62 82.17 70.13 81.75 75.17 79.63 79.06 
SVM 60.61 76.86 76.51 86.08 84.81 74.23 87.97 73.96 80.62 86.40 
AB 60.73 76.50 74.11 86.22 84.16 70.36 79.72 76.26 79.20 83.37 

ELM 53.37 73.66 71.46 81.70 80.06 65.06 66.76 53.23 71.83 80.44 

M
T_

3 

RF 76.02 91.36 90.48 93.09 89.95 87.12 72.32 81.62 89.56 88.05 
XGB 74.90 91.60 91.21 92.63 89.68 85.49 69.64 81.53 88.90 87.82 
MLP 95.04 86.20 93.91 92.85 90.96 94.07 90.91 73.80 90.94 91.04 
SVM 76.99 91.49 93.21 94.39 90.23 88.78 79.91 80.47 90.27 90.97 
AB 71.43 89.65 86.14 89.52 83.23 75.52 59.03 74.99 80.30 80.77 

ELM 62.64 88.13 76.34 83.17 74.32 59.36 35.81 45.86 68.03 71.92 

M
T_

5 

RF 90.34 93.07 92.20 94.35 91.50 92.75 79.63 82.94 93.24 92.07 
XGB 89.89 92.66 92.10 93.85 91.34 91.91 76.81 83.71 92.35 91.30 
MLP 89.26 95.34 94.54 96.16 91.83 94.91 93.16 79.31 93.72 93.26 
SVM 90.13 89.66 92.56 94.65 91.81 92.39 77.09 83.56 90.93 93.08 
AB 86.03 93.42 92.38 94.44 91.25 91.17 75.68 83.91 92.71 91.02 

ELM 77.07 87.33 81.53 87.38 79.31 75.49 48.84 48.06 76.36 80.97 
Since it is possible to obtain higher classification accuracy using an imbalanced data sets [81], 

macro-averaged measures (i.e., F1, FoM, UA) were used for multi-class problems because it treats all 



Remote Sens. 2020, 12, 1952 12 of 22 

 

classes equally [82]. A row-wise normalization was made within each confusion matrix [83], 
establishing a direct comparability between matrices in the study areas of different-sized sample 
populations [84] (Figure 4). Elements on the main diagonal inform us how well the map represents what 
is really on the ground, whereas off-diagonal elements are committed (i.e., false positive error) to other 
land-cover classes. Therefore, Figure 4 shows an increase in the UA for different classification scenarios of 
this research, and with respect to the machine learning method used. LC classification using original VV 
and VH polarisation data shows much noise in the final results. In Prague, many areas were omitted from 
the correct forest category to bare soil or water class, whereas in Cologne, the lowest UA of the low 
vegetation class was caused by the confusion with forest, and in Lyon, built-up areas were confused with 
low vegetation. Commission errors decrease with speckle filtering, but still, some misclassifications using 
single-date imagery remain (e.g., low vegetation with forest, built-up with low vegetation), which could 
be improved by using MT SAR data [85]. In the MT part of the research, UA for several land-cover 
classes significantly improved with additional temporal S1 features. Bare land and forest classes 
remained with high UA values, whereas built-up areas showed some confusion with forest class. 
Surprisingly, a large number of forest areas were classified as a water class in Prague, although 
confusion between water surfaces and forests does not usually occur on SAR imagery [23,24]. At a closer 
visual examination of the Prague classification map and according to the historical meteorological data 
[86], this could be due to the rainfall event that occurred during periods of acquired imagery for two S1 
imagery (i.e., 06th June and 12th June 2019). This misclassification led to an overestimation of the water 
category. Through the change in the medium’s dielectric constant, soil moisture had a major effect on 
the backscatter magnitude in terms of its increase up to 5 dB [87]. S1 MT imagery improved the 
classification of the low vegetation (i.e., grassland, shrubs) class, which reduced commission error 
with the forest and the built-up class. 

Figure 5 shows mean values for all machine learning methods evaluated in this research, with 
respect to the different classification scenarios. In the single-date S1 image analysis, an improvement 
of 20% and 0.24, in terms of the OA and Kappa values was achieved with speckle filtering. Further 
increase in the OA of 8.59% and 13.66% occurred with the use of three and five S1 imagery for LC 
classification, respectively. 

  
(a) (b) 

Figure 5. Mean (a) OA and (b) Kappa values for all machine learning methods used in this research 
(95% confidence interval). 

In this research, the possibility of urban vegetation mapping was assessed by using various 
machine learning methods. In single-date image analysis, the SVM classifier achieved higher 
accuracy results than other classifiers (Figure 3) and the potential for detecting vegetation in built-up 
areas (Figure 6). In the MT classification scenario, when additional temporal information was 
introduced, MLP outperformed other classifiers. Therefore, Figure 6 shows a subset (2 km × 2 km) of 
each study area, with examples of built-up areas with surrounding urban vegetation (e.g., parks, 
urban gardens). Accuracy assessment was made over the entire study area (approx. 30 km × 50 km). 
These example subsets (Figure 6) were chosen to demonstrate the possibility of vegetation mapping 
in complex systems, such as urban environments, in which mixed pixels pose the greatest challenge 
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(e.g., underestimation of the water class owing to the mixed pixels that have a subpixel land presence, 
as noted in [88]). 

 
Figure 6. Example subset of each study area shown as Sentinel-2 “true-color“ composite (left); 
classification map using single-date S1 imagery and support vector machine (SVM) classifier 
(middle); classification map using multitemporal imagery (five scenes) and multi-layer perceptron 
(MLP) classifier (right). 

In this research, the SVM and MLP classifier achieved the highest OA and K (Figure 3) for urban 
vegetation mapping in the single-date (i.e., VV_VH, VV_VH_SPK), and in the MT (i.e., MT_3, MT_5) 
classification scenario, respectively. Therefore, McNemar’s χ2 test was statistically used to compare 
the classification results achieved by SVM and MLP against other classifiers for each study area (Table 
5). SVM is less often wrong than any other classifier in the single-date image analysis. However, it 
should be noted that in some classification scenarios, SVM and AB perform very similarly. This is 
shown in Table 5, as the χ2 value indicates that two classifiers perform equally well with a probability 
of at least 95%. Using the MT SAR imagery, in Prague and Cologne, MLP achieved statistically 
different results from those produced by other classifiers. In Lyon, MLP yielded comparable 
classifications results to other classification methods, except for the ELM classifier. 
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Table 5. McNemar’s chi-squared values test results comparing SVM and MLP classifiers with other 
classification algorithms in the single-date and MT classification scenarios, respectively. If a χ2 value 
is less than 3.84 (bold values), the null hypothesis is not rejected, which indicates that the two 
classification results were not significantly different. 

Study Area Class. Scenario RF XGB MLP SVM AB ELM 
Prague VV_VH 46.74 20.71 29.90 X 39.49 116.67 

 VV_VH_SPK 66.21 56.46 14.52 X 0.10 71.15 
 MT_3 78.63 97.86 X 39.95 113.24 354.83 
 MT_5 23.43 29.17 X 3.92 31.17 226.17 

Cologne VV_VH 12.98 13.85 15.15 X 0.48 31.17 
 VV_VH_SPK 9.03 6.25 24.85 X 0.00 76.59 
 MT_3 17.60 18.71 X 7.36 21.19 207.76 
 MT_5 9.22 12.20 X 6.37 11.84 208.71 

Lyon VV_VH 31.73 16.62 25.28 X 1.78 44.21 
 VV_VH_SPK 19.38 22.26 5.89 X 6.47 27.76 
 MT_3 4.29 7.93 X 0.27 10.54 121.95 
 MT_5 0.06 1.93 X 1.84 3.67 128.72 

5. Discussion 

The current research evaluated the possibility of urban vegetation mapping using multitemporal 
(MT) C-band SAR imagery. Among the ML methods described in the literature [89], new machine 
learning methods (e.g., XGB, ELM) were tested in this research for classification tasks. Although 
many studies are based on the classification and interpretation of multispectral satellite imagery than 
those on SAR imagery, certain studies reported an increased overall classification accuracy using MT 
SAR imagery [85,90–92]. The results obtained by the tested machine learning methods confirmed that 
dense time-series of C-band SAR imagery allow discrimination of green and forest areas in urban 
systems. In this research, UA and K were used in the assessment of classification performance calculated 
over the entire study area (Table 1, Figure 3). Single-date image classification (i.e., VV_VH, VV_VH_SPK) 
was also made so that classification performance using the MT imagery could be compared (Figure 5). 
Using single-date data, the overall accuracy significantly increased with speckle filtering, which 
effectively preserved the edges and features. Similar results for LC mapping were also obtained in 
research by Idol et al. [80] and Lavreniuk et al. [93]. In the MT part of the research, the OA of a classification 
based on three (MT_3) and five (MT_5) S1 imagery was increased by 8.59% and 13.66% (Figure 5), as 
compared to VV_VH_SPK, respectively. By increasing the number of S1 imagery to five (MT_5), the 
classification accuracy further increased, and according to [85], using more than five dates for LC 
mapping produces negligible changes in classification accuracy. Additionally, for the MT S1 
classification, a single speckle filtering was conducted rather than MT speckle filter [51], since spatial 
speckle filters yield a higher overall performance, as reported in [3]. Mapping of vegetation in built-
up areas (i.e., forest, low vegetation) showed a better classification accuracy based on MT imagery 
(Table 3 and Figure 4). We used F1 and FoM accuracy metrics as macro-averaged measures that were 
suitable for evaluating the accuracy of various land-cover classes [69,75,94]. Table 3 shows an 
improvement in different classification scenarios for discriminating various land-cover classes, 
especially forest and low vegetation (i.e., grassland, shrubs). As suggested in [70], if omnibus 
measures (i.e., F1, FoM) are reported, class-specific measures should also be included to characterize 
the accuracy of a given class. Therefore, the UA and PA values are presented in Table 4. Large 
omission and commission errors occur in the VV_VH classification scenario, due to the speckle noise 
[80]. The errors are partly reduced with speckle filtering, but it is found that the C-band of S1 imagery 
is less suitable to classify vegetation classes in urban areas than, e.g., L-band [95,96]. As shown in 
Table 4, within sub-optimal temporal windows (i.e., classification using MT imagery), the UA and 
PA values increased for the individual LC classes. Similar to the previous studies [97,98], our results 
indicated that MT S1 imagery improved the accuracy of the vegetation mapping. 
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Zhu et al. [99] used Landsat and SAR data for LC classification of urban areas. For urban and 
forest categories, the authors recommend the usage of SAR texture measures known as GLCM (gray-
level co-occurrence matrix), explained by Haralick et al. [100]. Therefore, to improve classification of 
the urban vegetation and green areas, the inputs to the classifiers have a more important role [29,101–
103], than tuning the machine learning models. Haas and Ban [27] combined S1 and Sentinel-2 imagery 
for urban ecosystem mapping. Using an SVM classifier, 19 LC categories were mapped in complex 
urban areas. With the fused approach, some familiar misclassifications for SAR (classes with similar 
surface backscatter patterns, i.e., roads, runways, still water or lawns) and optical (classes with similar 
spectral reflectance) data could be reduced. Some classes are difficult to detect using a spectral 
response from optical data or backscatter from the SAR instrument, but this might be easily 
distinguished by their combined use [26,104,105]. Although F1 and FoM metrics are more robust than 
UA and PA [75,106], UA values, as a measure of the reliability of the map, were visualized (Figure 4) 
for each study area. Irrespective of the accuracy metrics used in this research, the MLP method 
classified the forest and low vegetation class over 90%, in the MT_5 scenario (i.e., F1, and UA). 

For urban vegetation mapping, the most used machine learning methods for the classification 
tasks were evaluated. Urban systems are comprised of built-up areas, vegetation, and water surfaces 
(e.g., lakes, rivers). The example subset of Prague (Figure 6) emphasize the underestimated water 
extent location, due to the mixed pixels that have subpixel land presence [88]. In urban areas, these 
misclassifications pose a great challenge, which can be reduced by using MT imagery, or in 
combination with VHRSI [107,108]. Camargo et al. [46] used various machine learning methods for 
classifying several LC categories on ALOS-2/PALSAR-2 imagery. For nine LC classes and 200 training 
samples, the SVM classifier achieved the highest classification results with an OA and K of 74.18% 
and 0.68%, respectively. In our research, SVM also produced the best classification results in a single-
date classification scenario (Figure 6), i.e., VV_VH and VV_VH_SPK, and the mean OA was 61.63% 
and 80.24%, respectively. The ability to apply an SVM classifier using a single SAR imagery has 
already been proven for LC classifications [109]. Zhong et al. [110] developed deep-learning-based 
LC classification for MT imagery. Similar to our research, MLP with two hidden layers and 512 
neurons outperformed every non-deep learning model (i.e., XGB, RF, and SVM). Deeper MLP models 
did not improve the classification accuracy. In the aforementioned research, a one-dimensional 
convolutional neural network (CNN) achieved the highest classification results. CNNs should be 
further investigated for LC classification of the MT SAR imagery [111–113]. 

In this study, using MT S1 imagery for LC classification (i.e., MT_3 and MT_5), the MLP classifier 
achieved the highest classification results and the ability for vegetation mapping in built-up areas 
(Figure 6). On the contrary, ELM produced the lowest results in every classification scenario. Kernel 
extreme learning machine (KELM) needs to be implemented for LC classification tasks on radar and 
optical imagery [60,114]. The aforementioned combined use of SAR and optical imagery in MT 
classification tasks yields many input features (e.g., texture measures, radiometric indices), which 
requires a high computational capacity. Feature selection techniques should be deeply investigated 
in order to reduce computational cost [29,96,104,115]. We used the McNemar’s test in order to 
evaluate the significance of the differences between pair-wise classifications in each study area (Table 
5). 

6. Conclusions 

In this research, we presented a comparative assessment of six machine learning methods using 
multitemporal (MT) SAR imagery for urban vegetation mapping. Our primary interest was to 
investigate the potential of S1 imagery for vegetation mapping in urban areas across Europe, since 
MT SAR data were not equally investigated, as compared to optical satellite data. The study revealed 
that discrimination of green and forest areas in urban and peri-urban areas increased with time-series 
of SAR imagery. Urban vegetation mapping using single-date imagery is often inefficient, and dense 
time-series of SAR imagery (e.g., S1) allows us to capture the phenological stages and to discriminate 
various land-cover classes. By using three and five S1 imagery for classification, the F1 measure for 
forest and low vegetation land-cover class exceeded 90%. 
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Furthermore, by evaluating various classification performance metrics, we selected the optimal 
classification method for vegetation mapping in the built-up areas. In the single-date image analysis, 
SVM produced the highest classification accuracy, whereas MLP yielded the best accuracy in all 
considered MT classification scenarios. For land-cover classification tasks using a single-date SAR 
imagery, SVM achieved very accurate results for even a small data set, whereas including more 
temporal dimensions of input data significantly improved MLP. Furthermore, mean values for all 
machine learning methods increased the overall classification accuracies, i.e., using three and five S1 
imagery, by 49% and 58%, compared to single-date image analysis on the VV and VH bands, 
respectively. 

This research allowed us to confirm the possibility of MT C-band SAR imagery for urban 
vegetation mapping. However, some deficiencies were present (e.g., mixing built-up areas with bare 
land or forest classes), so additional texture features or fusion with optical satellite imagery could be 
used along with C-band imagery. Furthermore, deep-learning classification techniques (e.g., CNN) 
should be thoroughly investigated for MT SAR imagery, as well as parameter optimization (e.g., k-
fold cross-validation), in order to obtain the best classification performance. 
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Appendix A 

Table A1. Detailed characteristics of the study areas used in this research. 

Study Area Prague Cologne Lyon 
Country Czech Republic Germany France 
Lat/Long 50°5′ N 50°56′ N 45°45′ N 

 14°25′ E 6°57′ E 4°50′ E 
Extent (pixels) 4958 × 3038 5213 × 3151 5145 × 3344 

Climate Humid continental Temperate oceanic Temperate oceanic 
Average annual max. 14.9 max. 16.5 max. 18.2 
temperature (°C) mean 12.6 mean 13.9 mean 14.8 

−2019 * min. 7.5 min. 9.3 min. 9.6 
Precipitation (mm) 984.0 979.1 1524.6 

−2019 *    
Soils ** Haplic Chernozems Orthic Luvisols Vertic Luvisols 

* Data collected at WorldWeatherOnline.com; ** Information about soils extracted from FAO–UNESCO [116]. 
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