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Abstract: Marine remote sensing (MRS) data provide an important tool for advancing global
change research. However, the existing product service practices are insufficient for meeting the
needs of a full-experience online application. This paper introduces a framework named SatANA,
which is unified by a data tiling method with a spatial-aware feature, for integrated and intelligent
improvements in visualization, storage and computing. The SatANA framework is supported by a
hybrid database storage ideal for the cloud storage of massive MRS data. The raw data are displayed
and roamed on a virtual globe through the Internet as tiles, enhancing their spatial awareness,
that can be intelligently used for visualization result tuning, data storage preloading and distributed
computing optimized indexing. To verify its feasibility and effectiveness, we applied this framework
to a platform called SatCO2, which is devoted to providing convenient access to and the efficient
utilization of MRS data.
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1. Introduction

Earth observation satellites provide a unique source of information to address several challenging
questions in the field of Earth system science [1]. With the continuous evolution of geospatial information
acquisition technology, Earth scientists began to conveniently capture, store and process vast quantities
of geospatial data sets to reveal varieties of environmental phenomena on the Earth [2,3]. More than
200 on-orbit satellites are currently capturing continuous Earth observations, and with a sharp increase
in the number of active and passive remote sensors being sent to space, users and service providers
in the remote sensing field are increasingly faced with data handling problems [4-6]. To meet these
challenges, new approaches are required for the management, analysis and distribution of remote
sensing data and products [7].

The proliferation of remote sensing data is revolutionizing the way in which remote sensing
data are processed, analyzed and interpreted to obtain knowledge [8]. Typically, the application of
remote sensing data involves the sequence of data accessing, processing analysis and visual expression.
Focusing on the field of marine remote sensing (MRS), the existing practices are insufficient for meeting
the needs of a full-experience application. In recent years, with the adoption of broad open-data policies,
petabyte-scale archives of MRS data have become freely available from multiple U.S. government
agencies, including NASA, the U.S. Geological Survey, NOAA, and the European Space Agency
(ESA) [9]. Although researchers can communicate the data downloaded from these agencies and their
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research findings, downloading essentially involves the user creating a copy from the hard disks of
the server, thereby posing potential bottlenecks [10,11]. For example, users may have to download
the desired data and apply specific processing and visualization tools, such as SeaDAS and ENVI,
whose use requires specialized expertise and training [12,13]. In addition, although these systems
provide useful, high-quality products for expert users, they remain difficult to handle for tracking,
monitoring, understanding and communicating environmental changes [14].

In recognition of these issues, this paper presents a framework named SatANA for the online
analysis of MRS data to provide user experiences that integrate easy data access, high-performance
calculation and vivid visualization. We intend to make integrated and intelligent improvements in
the following aspects: (1) the unified management of multisource data, (2) the online visualization
of volume data and (3) the efficient computing of massive data. As a proof of concept, SatCO2 is
implemented to demonstrate the feasibility and effectiveness of the SatANA framework. The remainder
of this paper is structured as follows. Section 2 describes the foundation and implementation of the
SatANA framework in detail. Section 3 introduces the SatCO2 platform and shows the superiority of
the SatANA framework and the SatCO2 platform through some case experiments. Section 4 discusses
future research directions, and Section 5 concludes the paper.

2. Foundation and Implementation

To facilitate the online access and efficient analysis of MRS archives, massive multisource data
must be integrated as serviced resources. In this paper, MRS images are preprocessed into a lossless tile
set to ensure that the original data are preserved. Based on the lossless tile set, we adopt the innovative
SatANA framework to achieve high availability. The SatANA framework (Figure 1) is a framework for
the integrated and intelligent improvement of the visualization, storage and computation of MRS data.
Specifically, containing metadata information and other data sources, the lossless tile set is uniformly
stored in a hybrid database storage. In availing themselves of the advantage of lightweight tiles, they
develop a virtual globe for intuitionistic data visualization online. Additionally, users can perform
distributed high-performance computing of massive data on storage servers. Specially, the tiles are
spatial-aware, allowing the visualization, storage and computation of MRS data to promote mutuality.
In contrast to a whole original image covered by a single large area, a plurality of different spatially
distributed tiles can gradually learn the user’s region of interest according to the user’s zooming and
panning behavior, thereby realizing intelligent visualization, and further reverse tune the parameters
of the hybrid database storage and calculation indexing process.

Spatial aware

Figure 1. Structural schematic of the SatANA framework.
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2.1. Lossless Tile Set with Spatial Awareness

The lossless tile set proposed by Ye et al. [11] is the foundation of the SatANA framework.
In addition, we modify the tiles by adding spatial awareness. The specific preprocessing approach of
the lossless tile set includes image segmentation, resampling and compression, and finally, a lossless
compressed tile set in a pyramid structure is generated. For every two adjacent levels in the pyramid,
each tile in the upper level is equally divided into four lower-level tiles. As the levels go deeper,
the tiles decrease until the spatial resolution is finer than that of the original image, and at this point,
the maximum level is reached. Through this method, the base-of-pyramid tiles retain the complete
data information of the original image and can be used for computational analyses. In addition,
the pyramid structure is used to improve the speed of the real-time display and zoom of the original
image, which can confer spatial awareness on the tiles.

In the SatANA framework, image segmentation is essentially a mapping between pixels (Figure 2).
To preserve all the pixel values in the original image, we must map the original pixel set to a larger
collection. This collection consists of several tiles that are typically 256*256 pixels. The number of
tiles included in this tile set is determined by the spatial extent and resolution of the original image,
and the original pixels (black pixels in Figure 2) are mapped to the new tile set by adopting the Nearest
Neighborhood algorithm. In addition, regarding the undetermined pixels (red pixels in Figure 2) in the
new tile set, the value is adopted from the original image by an inverse solution, and the pixel value
is distinguished from the actual pixel by adding an additional digital number. Regarding the new
tile set, resampling is performed using a quad-tree structure to generate a multilayer image pyramid.
In addition, as the original image contains the spatial reference information and this information is lost
during the tiling process, the tiles in the image pyramid adopt a TileKey technique as a spatial index.
The TileKey is in a structure of (Level, X, Y). According to the built-in TileKey, the original image is
serviced by tiles, which can be expressed as follows:

f(Level, X,Y) = https:\\ServerIP Address\FileName\Level\X\Y, 1)

Similarly to the data-tiling process, the SatANA virtual globe also adopts the TileKey technology
to implement the spatial placement of tiles without spatial information (Figure 3a). By parsing the
arguments in the URL string of each tile and reacting based on the filename, the virtual globe can
quickly determine where the tile should be placed. The level and range of the tiles to be loaded are
determined by the viewpoint and distance.
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Figure 2. Pixel mapping between tiles and the original image.
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Figure 3. Lossless tile set with spatial awareness. (A) Example of the TileKey and method used for
the management of tiles with TileKey in SatANA. The current virtual earth is loaded with the tiles
of Level 1 with longitude ranging from 0 to 180, that is, the ticked part. (B) Example of the Spatial
Awareness Coefficient.

According to the above mechanism, we can add spatial awareness to the tiles (Figure 3b) such that
not only is the placement of the tiles perceived by the SatANA virtual globe but also the loaded tiles
can perceive the user’s operational behavior, thereby achieving intelligentization of the framework.
According to the user’s zoom and pan operations, we define the Spatial Awareness Coefficient (SAC)
of the tile as follows:

1
SACpan (Level, X,Y) = —mom—rry, @)
Level,,q 1
SACzoom (Level, X, Y) = ZLevel:Levelstart ALevelygy—Level” ®
SAC(Level, X,Y) = SACzpom(Level, X,Y) + SACpan(Level, X, Y), 4)

where Level, indicates the maximum level that the original image can achieve. Thus, the deeper
the level of the tile, the higher the coefficient. The zoom coefficient is the accumulation of panning.
In addition, the entire coefficient of the tile is the sum of zooming and panning. All tiles in each image
loaded by a user correspond to their own SAC. Furthermore, we additionally define the relationship
between the node SAC and its four unzoomed child nodes SAC as follows:

SACehiig(Level +1,X;, Y ;) = SAC,0q(Level, X, Y), (5)

where i,j € [0,1]. Similarly, the relationship between the child SAC and its unzoomed parent SAC is
as follows:
SACparent (Level + 1, Xlr Yl) = SACChild (Level, X, Y) /4, (6)

As the data are preprocessed, the SatANA framework can be an efficient solution for integrated
and intelligent improvements in the visualization, storage and computing of MRS data, which is
explained in the following section.
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2.2. Tile-Based Implementation

Currently, satellite data users face challenges of volume as archives of data grow—of variety,
as instruments produce finer resolution observations that must be related to existing archives to
produce an on-going and consistent record, and of velocity, as the intervals between observations
reduce from weeks to days, or from hours to minutes [15]. Therefore, corresponding scalable storage
and fast calculation are indispensable, and the stored data and calculation results need to be vividly
visualized. In this paper, we attempt to better combine and intelligently improve these issues using the
above spatial-aware tile set.

2.2.1. Intelligent Hybrid Database Storage

First, as the basis for visualization and computation, the SatANA framework adopts a hybrid
database storage for data organization and provides a self-tuning tile service. The concept of a hybrid
database is used in many studies [16-19], but here, we improve the hybrid database by the spatial
awareness of the tiles, thereby providing a more efficient tile service for visualization and distributed
computing. Figure 4 shows the hybrid database storage architecture that is used to classify storage
according to the data characteristics. This architecture also considers the user’s corresponding SAC
information after the tiles are requested, as described in the previous section. The requested tiles are
represented in the bottom left panel of Figure 4. First (top left panel of Figure 4), the in-situ data, metadata
of the MRS image (including the maximum level of the pyramid structure, projection coordinates, row
number, column number, spatial extent, and image statistical values) and other related structured data
are managed by object-relational tables in PostgreSQL (http://www.postgresql.org), while the spatial
objects of the in situ data are stored in PostGIS (https://postgis.net/). Second (top right panel of Figure 4),
the massive tiles are managed by a distributed data storage approach based on the Hadoop database [20],
as the high scalability of HBase provides an expanded storage capacity for increased MRS data. This part
consists of an HMaster Node and several Data Nodes. The tile data are stored in the HBase tables
through the HRegionServer, and the underlying layer depends on the Hadoop Distributed File System
(HDFS; [21]). Third (bottom right panel of Figure 4), most importantly, we manage the real-time and large
amounts of enhancement SAC information with a high-performance in-memory database. The TileKey
information in SAC is GeoHashed to facilitate storage, and the writing process is completely independent
of the server memory, greatly improving efficiency and protecting user privacy.
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Figure 4. Hybrid database storage architecture of classified storage according to the data characteristics.
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The red box in Figure 4 represents the original image.


http://www.postgresql.org
https://postgis.net/

Remote Sens. 2020, 12, 1932 6 of 21

Specifically, as shown in Figure 5, the tile request process is divided into three parts, which from
left to right represent the data query in PostgreSQL, tile access in HBase, and the SAC write of the
requested tile. In addition, from bottom up, the storage layer represents the hard disk of the servers,
the virtual layer adopts HDFS to virtualize the cluster hard disk, the abstraction layer corresponds
to the hybrid database, the exchange layer signifies the memory of the servers, and the application
layer is the client. After a user queries the PostgreSQL database to select the data to be loaded, the tile
requested by the user first passes through the memory, and each read triggers the corresponding SAC
to write to the in-memory database.
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Figure 5. Tile request process in the hybrid database storage system.

The recorded SAC is divided into real-time and historical parts. We use the SAC information
to classify the heat of the tiles, which are preloaded data, hot data (data that need to be accessed
frequently), and cold data (data that are accessed less frequently). The real-time SAC can obtain a
relatively complete quad-tree structure, and the tiles corresponding to the children of the underlying
nodes of each tree will be preloaded into the memory for immediate access, i.e., preloaded data.
The historical SAC information is used to screen the heat of the data. According to the definition
provided in Section 2.1, the SAC represents the degree to which users are interested in an area. The tiles
corresponding to a high SAC in a certain time range are stored on solid-state drives (SSD) with better
read performance for faster access. When the space of SSD is insufficient, the hybrid database calculates
the weight of the tiles according to the recent access time and the access frequency and transfers the
tiles with the lowest weight to normal storage. As described above, the SAC written in the process of
Figure 5 can reverse the HBase optimization.

2.2.2. Dynamic Visualization Using a Virtual Globe

Although the above process is performed independently of the server, the request for data
originates from the virtual globe of the client. The virtual globe technique is a new data-processing and
analysis tool that can integrate heterogeneous geospatial data at the global scale [22,23]. By changing
their viewing angles and positions, users can freely move around within the virtual environment
provided by virtual globes, and explore and analyze geospatial information from different perspectives
and at different detail levels [24]. This process generates SAC, which is not only recorded by the
server but also used by the virtual globe to optimize data visualization. Visualization is described as
the mapping of data to a visual form that enables researchers to cope with data by making sense of
what the data actually contain when machines might fall short [25-27]. Regarding the rendering of
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marine environment elements, identifying the appropriate transfer function to map complex values
into intuitive graphical image information is highly important [28]. Due to the large-scale characteristic
of remote sensing, small-scale changes cannot be reflected if the transfer function is designed according
to the whole image. For example, chlorophyll products in large oceanic areas are stable, while rich
changes are shown in small near-shore areas. In addition, changes in different small areas may not be
exactly the same; thus, we need to intelligently adjust the transfer function for user dynamics. In the
SatANA framework, MRS data are displayed online in the form of pyramid tiles, and the SatANA
virtual globe can dynamically design the transfer function for user-interested regions to display richer
information due to the spatial-aware feature of the tiles.

Specifically, once the tiles reach the client, the image can be rendered tile-by-tile, which uses a
multithreaded approach. In addition, the SatANA virtual globe dynamically updates the data that
must be rendered in the memory. Thus, two queues are used for display as the tile is transferred to
the user interface. One queue is the loading tile queue, which is used to retain the tiles that must be
loaded. The other queue is the rendering queue. If the current tile is not in memory, it is transferred to
the loading queue to prevent the loading and rendering processes from interfering with one another.
Meanwhile, the SatANA virtual globe records the corresponding SAC information. Differing from the
server side, the client side only records the SAC information after a restart. Due to local production
and small numbers, such information is stored in a queue in memory. Based on the recorded SAC
information, the framework can dynamically design the transfer function to personalize the local
optimized rendering of the image. As shown in Figure 6, the pixel information of high SAC region tiles
is collected to determine a suitable transfer function for local rendering, and the remaining regions use
the same process to generate a uniform colorbar.

Distribution of Secchi Disk depth Values

- Image A
- Image B

| | Transfer function for high SAC region

50000

40000

| | Transfer function for remaining region

30000

Frequency

20000

10000

30 40 50

0 10 20
Secchi Disk depth (meters)

Figure 6. Dynamical design transfer function for user-interested regions.

Specifically, suppose we have an image A with matrix O in dimension m*n (0;;, 0 < i < m,
0 < j < n) whose corresponding SAC matrix is W (w; ;, 0 <i <m, 0 < j < n). Moreover, we have a
subimage B with matrix S (s;j, 0 <i <m, 0 < j < n) from image A, which is defined as follows:

A .. k
Si,]‘ = Ol’], Zf .ZUZ,] > ’ (7)
NoData, if w;j <k
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where k is a predetermined threshold. If we plot the histograms of image A and image B, which are
called histograms P (the area filled in black in Figure 6) and Q (the area filled in red in Figure 6),
respectively, observing that Q is included in P is trivial. Furthermore, we have a probability distribution

No. .
function (pdf) for the histograms, which is pd f| (01-, j) = %, where 1, ; indicates the number of times

element o; ; appears in the matrix O. The cumulative distribution function (cdf) can also be defined
as cdf (0,-,]-) = Zii’:jo pdf(k). The pdf and cdf of histogram Q are defined similarly. First, we apply
histogram equalization to Q into interval [0, M] (colored rectangles surrounded by blue dotted frame
max(si,j)—min(si,j)
max(o,-l]-)—min(o,-,]-)
in matrix S, and g represents the number of color gradations. Similarly, the left part in P from
min(si,]») —min(oi,j)
max(oi,j)—min(oi,j)

in Figure 6), where M = g+ , where min(si, j) represents the minimum nonzero value

Q can be equalized into interval [0, g ], and the right part can be equalized into

max(oi,j) —max(s,‘,]-)
max(oi,j)—min(oi,j)
the detailed transfer function for a high SAC region is as follows:

interval [0, * ] (colored rectangles surrounded by red dotted frame in Figure 6). Thus,

df(sij) = cd fmin
h(Si,j) = round[; { ;(15_] )c —id];min T 1>]’ X

where cd f;, indicates the minimum cdf on s; j, and ¢ denotes the number of NoData elements in
matrix S. In addition, the remaining transfer function for the left part in P from Q and the right part
is exactly the same. According to the resulting transfer function, we can create color filling in the
data field. In addition, to achieve a gradient effect in the color field, the SatANA virtual globe adds a
conversion of the RGB color space to the HSL color space by extending the Geospatial Data Abstraction
Library [29] color mapping method and assigning the grid points to be drawn by the HSL model.
Figure 7 shows a comparison rendering result of ocean Secchi Disk depth (SDD) between spatial aware
histogram equalization (Figure 7a) and global histogram equalization (Figure 7b). The black dotted
line represents a simulated high SAC area, and Figure 7a better illustrates the abundant change in
seawater transparency in the nearshore area.
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Figure 7. Comparison of rendering results for ocean Secchi Disk depth between (A) spatial-aware
histogram equalization and (B) global histogram equalization.
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If users are indeed interested in the area, they will zoom in to that area, which will further
enhance the area’s SAC and continue to provide a reference for the tuning of the hybrid database
storage. In addition, during the visualization stage, the SatANA virtual globe caches some tiles to
avoid frequent data requests. As the base-of-pyramid tiles are the lossless backup of the original data,
if the user interface requests lossless-level tiles for visualization, these tiles are cached locally and can
be used in subsequent basic statistical analyses.

2.2.3. SAC-Driven Hilbert Index for High-Performance Computing

In addition to basic statistical analyses, high-performance computing is required for massive
MRS data. To meet the calculation and service requirements of spatiotemporal data, the SatANA
framework uses a distributed parallel-processing model known as Hadoop + Spark, which integrates
the spatial-aware lossless tile set technology and is available as multiple APIs for custom environments.

The distributed computing of MRS data is simplified by the Resilient Distributed Dataset (RDD)
abstraction provided by Spark [30]. However, we still need to focus on the following two issues:
(1) when performing distributed computing using multiple computers, there is a large demand for
the timeliness of the tile index, and (2) the tiles are spatially adjacent, and thus, a suitable index is
needed to inform of their mutual spatial relationship. The Hilbert curve is a commonly used spatial
index that completely eliminates discontinuities compared to Quad-tree and GeoHash [31]. In the
SatANA framework, we add the spatial awareness of the tiles to the Hilbert index to accelerate the
entire calculation. Specifically, as shown in the definition of SAC in Section 2.1, we can obtain all the
SAC information of the tiles in a loaded image. At the root level, as shown in Figure 8A, the tiles are
sorted by SAC, and the tile with the highest SAC is selected as the starting point with the direction
pointing to its adjacent tile, which has a higher SAC. Regarding its child nodes, we first locate the
starting point in Square 1 of Figure 8A and then use the same method to locate the starting point in
Square 1 of Figure 8B. The difference is that the direction here is not determined by the SAC of the
adjacent tiles, but the continuity needs to be considered. If the direction points to Square 2 in Figure 8B,
the curve will not be able to traverse all tiles; thus, there is no continuity. Regarding the last four
tiles, we also determine the final direction based on the value of the SAC. Then, we can determine the
unique Hilbert index of all tiles. When Spark requests the tiles to be calculated, the SAC-driven Hilbert
index is sorted according to the degree of interest of the user, and this method can obtain the required
data faster.

4 <}
! 3 66157
N 58139
ret3 | 716
151445 | §
1
1121911 =
341 (1442 2
B C

Figure 8. Spatial Awareness Coefficient (SAC)-driven Hilbert index. (A) First-order Hilbert curve;
(B) First-order Hilbert curve; (C) Third-order Hilbert curve
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We conduct several experiments to demonstrate the performance of the Hadoop + Spark model
with the SAC-driven Hilbert index in the following section. Additionally, the SatANA framework is
adopted to a proof of concept, i.e., the SatCO2 platform, to show its superiority.

3. Platform Demonstration

To promote the sharing and multidisciplinary applications of MRS data, we developed the
SatCO2 platform, which is a freely distributed piece of software adopting the SatANA framework
that is devoted to meeting the needs of multisource data processing, application analyses and vivid
visualization. Users can visit the SatCO2 homepage at http://www.S5atCO2.com to download the
installation package.

3.1. Platform Overview

The SatCO2 platform has the following two parts: a cloud data center and a user interface.
The cloud data center is responsible for data storage, computing and services. The local user interface
(Figure 9) is responsible for data interaction and visualization supported by the SatANA virtual
globe. By connecting from the user interface to the SatCO2 cloud data center, users can utilize
various forms of open data access, online displays and scientific analyses from an intuitive 3D global
perspective. For example, basic statistical analyses of single MRS data, high-performance calculations
of massive MRS data, interactive verification analyses between MRS and in situ data, and trend
analyses of multiyear MRS data can be conducted through the SatCO2 platform. The comprehensive
and characteristic long-term SatCO2 data sets hopefully offer new opportunities and possibilities for
scientific research. Including raw data and products from different organizations, SatCO2 currently
provides nearly 20 years of characteristic MRS data relevant to ecology and carbon cycle research.
Such massive archives are unified by the SatANA hybrid database storage. A detailed description of
this characteristic long-term data set is provided in Section 3.2.

Figure 9. User interface of SatCO?2.

3.2. Online Data Sets

The SatCO2 cloud data center collect MRS data and products from different agencies, produces
the data with self-developed algorithms, transforms and unifies the data formats, and uploads the final
product into the SatANA hybrid database storage for online analysis applications. SatCO2 currently
contains various monitoring data from seas surrounding China, the Western Pacific-Indian Ocean
region and the Global Ocean over the past 20 years. Appendix A shows a detailed description of the
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SatCO2 online data sets. According to the data-processing characteristics, the data are divided into
six categories. (1) The “Special Data Sets of the seas surrounding China” include level-1 products
of the GF-4 and HY-1B satellites provided by the National Satellite Ocean Application Service of
China and MRS reflectance products provided by NASA and NOAA. (2) The original data of the
geostationary ocean color imager “(GOCI) Data Sets” are obtained from the GOCI level-1-B, which are
geostationary ocean color satellite data provided by the Korea Ocean Satellite Center. (3) Based on the
raw data of MRS reflectance products provided by NASA, SatCO2 provides surface suspended matter
concentrations, chlorophyll concentrations and seawater transparency products in the Eastern Indian
Ocean, Western Pacific Ocean and South China Sea in the “Western Pacific-Indian Ocean Data Sets”.
(4) The “Globe Data Sets” include raw data of MRS reflectance, the total absorption coefficient and
the particulate backscattering coefficient retrieved by SeaWiFS, MODIS/Aqua and VIIRS from NASA.
(5) The “NASA Public Data Sets” include publicly available satellite products from NASA. (6) The “Public
Data Sets of Other Institutions” include raw data from institutions, such as Remote Sensing Systems
(RSS), the Copernicus Marine Environment Monitoring Service (CMEMS), Oregon State University
(OSU), ESA, NOAA and the European Centre for Medium-Range Weather Forecasts (ECMWF).

These data sets are derived from 11 institutions with 10 different satellites and sensors, and the
coverages spread from 1981 to the present for more than 60 products, which have formed a PB-scale
storage. Due to conventional open-data policies, most data are stored and shared in the form of archives.
SatCO2 made these data easy to access through the SatANA framework, which can perform online
vivid visualization and carry out further efficient analyses. In addition, the SatCO2 data sets have a
high spatial and temporal resolution as the SatANA framework introduces additional advantages,
which are illustrated for some cases.

3.3. Case Study: Anomaly Analysis of Multiyear MRS Data

SatCO2’s advantages can be demonstrated using published studies as described in the following
text. Many applications could face barriers or be prohibitively time-consuming without the advantages
of the SatANA framework. By connecting to the SatCO2 cloud center, Figure 10A shows a monthly
average chlorophyll concentration image in the Bay of Bengal from December 2005 obtained from the
ESACCI data set at a 4 km resolution. Rendered through the SatANA virtual globe with the dynamical
design transfer function for user-interested regions, a phytoplankton bloom event can be clearly
observed to have occurred in the area identified within the red box. To perform phytoplankton anomaly
analysis over multiple years, researchers may need to download multiple MRS data for several years
and write their own analysis programs with traditional analysis methods, which is time-consuming
and requires expertise. However, using SatCO2, researchers can easily perform a time series analysis
of nearly 20 years of MRS data online via the Hadoop + Spark model. Specifically, by clicking to
select a line on the SatANA virtual globe or importing the file identified by the longitude and latitude
coordinates of the point of interest, a time series plot is automatically displayed. In Figure 10B, the white
line represents the polygonal line of a time series analysis that passes through the algal bloom area.
As all calculations are performed on the server, users do not need to be concerned about the computing
power of their computers, and the results are immediately returned to the user interface. In Figure 10C,
the x-axis represents time, and the y-axis represents the chlorophyll concentration. The dark blue dots
represent the average chlorophyll concentrations in all grid points on the polygonal line, and the light
blue dots represent the standard deviation of the average chlorophyll concentration in all grid points on
the polygonal line. According to the results, a high chlorophyll value appeared in the southwest region
of the bay in approximately December each year, and the chlorophyll concentrations in December 2005
and December 2013 were 3—4 times higher than those during normal years. Additionally, the possible
causes can be examined using time-series data sets of satellite-derived sea surface height anomalies, sea
surface temperatures, wind stress and Ekman pumping velocity data [32], which can also be supplied
by SatCO2 using the SatANA framework.
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Figure 10. Diagram of the spatial average along a section of chlorophyll concentration.

3.4. Calculation Ability: Satellite-Driven Ocean SDD Retrieval

The SatANA framework not only facilitates easy online analyses but also provides improvements
in computing performance. In this section, we perform a more complex multiyear retrieval of
satellite-driven ocean SDD to show the potential of the SatCO2 platform and the calculation ability
promotion of the SatANA framework. The SDD is widely used to indicate water transparency [33].
In traditional in situ SDD measurements, seasonal and interannual variations and long-term changes in
ocean transparency at the global scale remain poorly understood. However, in recent decades, satellite
ocean color remote sensing has made it possible to observe the daily global SDD [34]. The SDD can be
retrieved using a semi-analytic algorithm [35-37] as follows:

In[0.82 X 0.15 x (0.52 + 1.7 X Rys (443nm))] x 4 x (a;(443nm) + bbp(443nm) + 0.002421)
0.02 X 4 X Rys(443nm)

SSD = , 9
where a¢(443nm) and bbp(443nm) are the total absorption and particulate backscattering coefficients at
443 nm, respectively, and Rys(443nm) is the remote sensing reflectance at 443 nm. In this section, we use
the SeaWiFS data, which have a global coverage and a spatial resolution of 9 km, for SDD retrieval. To
verify the accuracy of the satellite-retrieved SDD, we use the global in situ SDD data obtained from the
Worldwide Ocean Optics Database (WOOD) [38] from September 1997 to November 2010. Similarly,
the SeaWiFS data are also derived during this time period. Then, we perform one-to-one matching
according to the latitude and longitude information. Figure 11 shows the schematic flow.
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Figure 11. (A) Spatiotemporal Secchi Disk depth (SDD) data with the red points indicating the in
situ samples. (B) Scatter diagram comparing the matched points of the satellite-retrieved SDD and
Worldwide Ocean Optics Database (WOOD) in situ data. The x-axis represents the in situ data, and the
y-axis represents the MRS data. The dark green line represents the 1:1 line.

The processing speed of the remote sensing image is determined by the following two factors:
the number of image pixels and the complexity of the processing algorithm [39]. Notably, the size of
one day of SeaWiFS raw data is approximately 5 MB, and the size of all data covering WOOD's full
time is approximately 24 GB. This size represents the compressed size in the NetCDF format, although
the actual size of the full data is approximately 506 GB as calculated according to a 32-bit float per
pixel. Moreover, there are 29,784 samples in the in situ data. Specifically, 29,784 loops with multiple
checks are required, representing a large workload. By testing in an experimental cluster of the same
hardware environment, Figure 12 shows the resulting improved efficiency of this process under the
SatANA framework. The blue and orange histograms represent the time cost of accelerating with or
without the Spark framework. The gray histogram shows the time cost using the SatANA framework.
Based on the speedup lines, the retrieval of the satellite-driven SDD can be observed, and the SatANA
framework has a perceptible computational efficiency improvement. Specifically, in this case, the most
time-consuming part of this process is the data reading. The SatANA framework, which deeply
integrates existing resources, is a useful method for avoiding this drawback. First, the intermediate
output in Spark can be stored in memory, eliminating the need to frequently read and write on the
local file system. Second, the lightweight tiles are easier to read, further improving the comparison
efficiency. Moreover, the SAC-driven Hilbert index can shorten the indexing time of the requested
data; however, in this case, it is not significant as global data are involved.
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Figure 12. Time cost comparison of multiyear satellite-driven SDD retrieval using different computing
methods with a fixed hardware configuration.

3.5. Application: Training Courses

The above example confirms the convenience and improvement of SatCO2, and we hope to help
more researchers with their studies. Several SatCO2 training courses were successfully held from 2018
to 2019 as follows:

1. In November 2018, a SatCO2 training course was held at the Dragon 4 Cooperation Program in
Shenzhen, China;

2. In November 2018, the SatCO2-III workshop was held in Hangzhou, China;

3. In April 2019, a SatCO2 training course was held at the International Ocean Color Science Meeting
in Busan, South Korea;

4. In April 2019, a SatCO2 training course was held at the 4th Global Ocean Acidification Observing
Network International Workshop in Hangzhou, China;

5. InOctober 2019, an advanced training course on ocean color remote sensing was held in Hangzhou,
China. In addition, the participants learned to use SatCO2 for environmental monitoring and
scientific research.

The multi-user simultaneous access during the training courses had greater stress and better
randomness, which is not possible with daily use and self-simulation. Thus, we recorded the average
tile read time of the hybrid database storage during the training courses to verify its advancement.
Considering the different client network conditions, we only record the tile read time on the server
side. Figure 13 shows a typical result during one training session with about 80 trainers. As shown,
the average tile read time sharply increases and then gradually decreases. We postulate that the reason
why the tile read time sharply increases is because the training is divided into the following two parts:
practical teaching and self-operation. During the practical teaching process, everyone loads the same
set of tiles, and there is a cache situation; thus, the average reading time reaches a low point. However,
subsequently, as the trainees operate on their own, the hybrid database storage gradually reduces the
data read time by recording the SAC and dynamically tuning the tile service.



Remote Sens. 2020, 12, 1932 15 of 21

—
=

e}

—_
=

6

Time Cost (Second/100)

4

2

0
14:24:00 14:38:24  14:52:48 15:07:12 15:21:36 15:36:00 15:50:24 16:04:48
Timeline

Figure 13. Average tile read time during a training course.

4. Challenges and Further Work

Although the SatANA framework has made integrated and intelligent improvements to existing
technologies and is capable of more effectively managing and utilizing MRS data, it also has several
shortcomings. First, the massive MRS data are processed into a high number of smaller tiles, causing data
redundancy. Second, the capabilities of the SatANA Hadoop + Spark model have not been fully utilized
to date. Considering the popularity of relatively recent concepts, such as neural networks and deep
learning, determining how to combine the SatANA framework with current international cutting-edge
technology is a concern. Third, the SatANA framework is primarily applicable to two-dimensional
data. For three-dimensional data, such as profiles, a proper management and visualization method
is lacking. We think that three-dimensional profile data in the SatANA framework are not simply
two-dimensional data with an additional time or depth dimension. There should be a more efficient
way to manage such data for visualization and computational use. We will continue to improve the
SatANA framework to improve its efficiency and increase its applicability.

Another issue is that SatCO2, i.e., the platform that adopts the SatANA framework to achieve high
availability for easy access and efficient analyses of MRS data, also has certain limitations and requires
further development. First, raw data acquisition is limited. Currently, there are two main sources of
the original MRS data used in the SatCO2 data center as follows: data received by the National Marine
Satellite Ground Station of China (Hangzhou) and data downloaded from other agencies. The National
Marine Satellite Hangzhou Ground Station is one of the four major ground stations for marine satellite
operational applications in China. The Level-1 data of the Chinese satellite HY-1B in the SatCO2 data
sets are also provided by the Hangzhou ground station. However, the other data are collected from
many types of agencies and are distributed after processing. Although most processes are automatically
completed by the software, they still require manual downloading, which can cause data update delays.
Therefore, we hope to cooperate with the data providers to achieve automatic data acquisition and
updates in future. Second, there are certain deficiencies in the stability and computing responsiveness
of SatCO2. For stability, after the public beta of the above training courses, SatCO?2 is constantly
being improved, and we will continue to launch new versions in the future to fix its bugs and add
new functions. For the response efficiency, we are currently gradually migrating existing data to the
self-built Lin’an data center. The number of cloud servers is six times that of the existing data centers.
The architecture of the Lin’an cloud data center has also been redesigned, and the processing speed
will be qualitatively improved. Third, another challenge is related to the limited professional modules.
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For marine monitoring applications, complex processes are involved. In addition to its visualization and
computational analysis functions, SatCO2 integrates professional modules for specialized applications.
In the current version, we integrated air-sea CO2 flux estimation, bloom monitoring, and water quality
classification modules for marine acidification, marine environmental protection and marine ecological
disaster warning. We hope to collaborate with other researchers to develop new algorithms and models
and fully explore the potential of the SatANA framework.

5. Conclusions

The objective of this paper is to propose an intelligent tile-based framework for easy access to and
efficient analyses of MRS data. The spatial-aware tile combining cutting-edge technology helps narrow
the gap between MRS archives and end users. Specifically, compared to the original image, the tile set
is easier to transmit over the web, allowing users to browse these resources online, and its distribution
characteristics have a spatial-aware advantage. The behavior of the user while roaming and browsing
data can help the SatANA virtual globe to dynamically adjust the rendering transfer function to achieve
a more user-expected effect. In addition, as the data are requested from the server side, this behavior is
also independently recorded on the hybrid database storage, allowing for reverse optimization while
preserving user privacy and further providing the more efficient SAC-driven Hilbert index for the
Hadoop + Spark computing model. Such an approach can substantially enhance the user experience
by integrating online data access, high-performance calculations, and 3D visualizations for tracking,
monitoring, understanding and communicating environmental changes.

By focusing on international research issues, such as the ocean carbon cycle and ocean acidification,
we apply the SatANA framework to the SatCO2 platform, which is devoted to being helpful in
long-sequence quantitative remote sensing science in fields such as marine chemistry, marine biology;,
ocean dynamics and ocean remote sensing. To the best of our knowledge, SatCO?2 is one of the few
platforms used for online applications of analyses of remote sensing data. The most similar applications
include Google’s Earth Engine and NASA'’s Giovanni. Compared with Earth Engine, the underlying
data support for both is based on tiles. The remote sensing images are pre-processed into tiles in the
image’s original projection and resolution and stored in an efficient tile database for quick and efficient
access. They both build an image pyramid to achieve fast online visualization. The difference is that,
based on the distribution characteristics of tiles, SatCO2 further adopts the spatial-aware feature of
tiles to improve the user experience. Additionally, from a platform perspective, SatCO2 focuses on
the application of satellite remote sensing in marine research and offers a more characteristic data set.
The data are produced based on our latest research findings and algorithms for more intuitive products
and user experiences, which makes it easy for individuals who lack remote sensing backgrounds to
use the application. In comparison, Giovanni is a web service workflow-based system [40] with highly
limited functionality. In addition, Giovanni does not facilitate interactive analyses of remote sensing
and in situ data. As an online analysis platform for MRS data, SatCO2 meets the needs of users at
different levels and can be a convenient tool for research.
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Appendix A
Table A1. Online data sets on the SatCO2 platform.
Characteristics Names of the Parameters Spatial Range/ Temporal Range/
of the Data Sets Data Sets Resolution Resolution
Normalized water-leaving
GF-4 data sets radiance (491, 561, 653, 809 nm), Single orbit; 50 m 2017-present;

suspended particle matter
concentration

single orbit

Normalized water-leaving
radiance (412, 443, 490, 520, 565,
670 nm), surface chlorophyll
concentration, surface suspended

matter concentration, 865 nm 2007-2016;

HY-1B data sets aerosol optical thickness, sea Single orbit; 1.6 km . .
single orbit
water transparency, sea surface
temperature, attenuation
coefficient, atmosphere visibility,
CDOM absorption coefficient
(including the detritus absorption)
Special Data China sea CO, Surface water salinity, (1000 _103 0°E, 2003-2018;
. 0°—41°N);
Sets of the Seas data sets aquatic pCO, 1.6 km monthly average
Surrounding ’
China Normalized water-leaving
GF-4 data sets radiance (491, 561, 653, 809 nm), Single orbit; 50 m 2017-present;

suspended particle matter
concentration

single orbit

Normalized water-leaving
radiance (412, 443, 490, 520, 565,
670 nm), surface chlorophyll
concentration, surface suspended
matter concentration, 865 nm

HY-1B data sets aerosol optical thickness, sea Single orbit; 1.6 km 5,21?10122001*1)61;
water transparency, sea surface &
temperature, attenuation
coefficient, atmosphere visibility,
CDOM absorption coefficient
(including the detritus absorption)
China sea CO, Surface water salinity, (1(?00_;11 0313)?’ 2003-2018;
data sets aquatic pCO, 1.6 km monthly average
. Yangtze Normalized water-leaving 51192_12.60}3’
GOCI Data Sets __ ver Estuary . diance (412, 443, 490, 555, 660, 2/ 00 N); 500m 2011-present;
. 680, 745, 865 nm), surface (117°-123°E, hourly
Bohai Sea

suspended matter concentration

37°-41°N); 500 m
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Characteristics Names of the Parameters Spatial Range/ Temporal Range/
of the Data Sets Data Sets Resolution Resolution
South (98°-127°F,
China Sea 0°-25°N); 1.8 km
_— S 2010-2015; daily
» urface suspended matter (121°-160°E, 10-d
Western Pacific  concentration, surface chlorophyll 2°5-46°N); average, ay
Ocean . ’ average, monthly
concentration, sea 1.8 km average
iy water transparency (80°_118°E, yearly average
astern Indian
10°S-21°N);
Western Ocean 1.8 km
Pacific-Indian -
Ocean Data Sets Ome Belt Surface chlofropl;yll concintratlon,
ne Be sea surface temperature, oA B\ g )
and One photosynthetic effective radiation, (012 V\{, 150°E, 2003-2014;
. 40°5-80°N); 9 km monthly average
Road region sea water transparency,
primary productivity
2006-2016;
. Count of disastrous waves (20°-160°W, Climatological
Disastrous 60°S-85°N); monthly mean data
wave product 9kt ’ 20062016,
Significant wave height daily a_verag,e
1997-2010;
SeaWiFS 355 nm CDOM absorption dally average,
coefficient, seawater transparency, monthly average
non-algal particle absorption 2002—present:
Global Data Sets  \1OpIS /Aqua coefficient, 660 nm particle Global. 9 km dail 5 vera e,
! attenuation coefficient, 660 nm ’ Y 8&
. . . monthly average
organic particle attenuation
coefficient, and sea surface salinity 2012-present;
VIIRS daily average,
monthly average
Aquarius Sea surface salinity Global, 100 km moi?ﬁ};i?}g; ge
RS reflectance (412, 443, 490, 510,
555, 670 nm), surface chlorophyll 1997-Nov 2010:
SeaWiFS con Centratlc')n,. photosynthetic Global, 9 km daily average,
available radiation at sea surface, monthly average
particulate organic carbon and y 8
particulate inorganic carbon
ASA Publi RS reflectance (412, 443, 488, 531,
ASA Public 547, 555, 645, 667 nm), surface
ata Sets [41] chlorophyll concentration, Global 2002—present;
MODIS/Aqua  photosynthetic available radiation 9 km ’ daily average,
at sea surface, particulate organic monthly average
carbon and particulate
inorganic carbon
RS reflectance (410, 443, 486, 551,
671 nm), surface chlorophyll g )
VIIRS concentration, photosynthetic Global, 32?12 E\ii:n;’
available radiation at sea surface, 9 km y ge

surface particulate organic carbon
and particulate inorganic carbon

monthly average
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Characteristics Names of the Parameter Spatial Range/ Temporal Range/
of the Data Sets Data Sets arameters Resolution Resolution
1987-2017;
fCCl\;[J;S Sea surface wind daily average,
rom Global, monthly average
25 km
SMAP Sea surface salinit; 2016-present;
from RSS y monthly average
Sea level 1993—present;
anomaly from Sea level anomaly daily average,
CMEMS monthly average
Geostrophic Global, 1993-2018;
flow from Geostrophic flow 25 km daily average,
CMEMS monthly average
Mixing layer 1998-2015;
depth from Mixing layer depth daily average,
CMEMS monthly average
SeaWiFS 1997-2010;
by OSU monthly average
Global, . .
Public Data Sets  MODIS by OSU Net primary productivity 9k 2002—present;
m monthly average
of Other
Institutions 2012-present;
[42,43] VIIRS by OSU monthly average
SMOS . 2009-present;
from ESA Sea surface salinity Global, 100 km monthly average
. . 1997-2016;
CCI from ESA Multlple—satelhte—merged Global, daily average,
chlorophyll concentration 4 km
monthly average
Atmospheric pCO, .
CarbonTr-acker (after correction of the air Global, dazgooa_vzgrlfle
from NOAA pressure, water vapor, and 25 km Y 8¢
o : monthly average
spatial interpolation)
Relative
Humidity from Relative humidity 1%15) zal, d2200—2016,
NOAA m aily average
AVHRR_OI Sea surface femeratur Global, o present
from NOAA ea surface temperature 25 km aily average,
monthly average
Underway
Sea surface pCO,, 1992-2015;
pCO, from temperature, salinit underway underwa
CDIAC P ' Y Y
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