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Abstract: Accurate and reliable estimation of gross primary productivity (GPP) is of great significance
in monitoring global carbon cycles. The fraction of absorbed photosynthetically active radiation
(FAPAR) and vegetation index products of the Moderate Resolution Imaging Spectroradiometer
(MODIS) are currently the most widely used data in evaluating GPP. The launch of the Ocean and
Land Colour Instrument (OLCI) onboard the Sentinel-3 satellite provides the FAPAR and the OLCI
Terrestrial Chlorophyll Index (OTCI) products with higher temporal resolution and smoother spatial
distribution than MODIS, having the potential to monitor terrain GPP. OTCI is one of the red-edge
indices and is particularly sensitive to canopy chlorophyll content related to GPP. The purpose of
the study is to evaluate the performance of OLCI FAPAR and OTCI for the estimation of GPP across
seven biomes in 2017–2018. To this end, OLCI FAPAR and OTCI products in combination with insitu
meteorological data were first integrated into the MODIS GPP algorithm and in three OTCI-driven
models to simulate GPP. The modeled GPP (GPPOLCI-FAPAR and GPPOTCI) were then compared
with flux tower GPP (GPPEC) for each site. Furthermore, the GPPOLCI-FAPAR and GPP derived
from the MODIS FAPAR (GPPMODIS-FAPAR) were compared. Results showed that the performance
of GPPOLCI-FAPAR was varied in different sites, with the highest R2 of 0.76 and lowest R2 of 0.45.
The OTCI-driven models that include APAR data exhibited a significant relationship with GPPEC for
all sites, and models using only OTCI provided the most varied performance, with the relationship
between GPPOTCI and GPPEC from strong to nonsignificant. Moreover, GPPOLCI-FAPAR (R2 = 0.55)
performed better than GPPMODIS-FAPAR (R2 = 0.44) across all biomes. These results demonstrate the
potential of OLCI FAPAR and OTCI products in GPP estimation, and they also provide the basis for
their combination with the soon-to-launch Fluorescence Explorer satellite and their integration with
the Sentinel-3 land surface temperature product into light use models for GPP monitoring at regional
and global scales.

Keywords: gross primary productivity; MODIS FAPAR; OLCI FAPAR; OLCI Terrestrial Chlorophyll
Index; eddy covariance

1. Introduction

Terrestrial gross primary production (GPP), which is the total amount of organic carbon fixed by
green plants through photosynthesis at an ecosystem scale, determines the initial amount of energy
and material entering the terrestrial ecosystem [1,2]. Terrestrial ecosystems can partly mitigate global
warming and offset increasing CO2 emissions through GPP [3]. Therefore, accurately quantifying GPP
is essential for assessing global climate variation and carbon cycles [4].
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The eddy covariance (EC) technique is the most accurate approach to measure the net CO2

exchange (NEE) between the atmosphere and the terrestrial ecosystem [5]. NEE then partitions into
ecosystem respiration and GPP using different modeling methods. However, EC provides a limited
carbon flux measurements scope, ranging from a hundred meters to several kilometers around the flux
tower depending on the height of the tower, canopy characteristics, wind velocity, and homogeneity of
the fetch [6,7]. This limitation necessitates upscaling flux tower data to regional, continental, or global
scales to reflect terrestrial carbon cycling [8].

Satellite remote sensing (RS) provides a potentially viable tool for upscaling efforts. This technology
has played an increasing role in the estimation of GPP that can offset the restricted coverage of flux
tower observations [9,10]. A number of RS-based models have been developed to quantify the GPP of
terrestrial ecosystems because they are relatively simple and efficient [11–13]. The prevalent RS-based
GPP models can be categorized into four groups [14]: light use efficiency (LUE) models [15,16],
vegetation index (VI) driven models [17,18], process-based models [13], and machine learning
models [19,20]. In the aforementioned models, LUE and VI-driven models have been most frequently
used on account of their simple conceptual algorithm and practicality [21]. Therefore, only LUE and
VI-driven models are discussed in this study.

The foundation of LUE models is based on the LUE concept proposed by Monteith [22], which
is determined as the ratio of GPP to absorbed photosynthetically active radiation (APAR). APAR
is defined as the product of photosynthetically active radiation (PAR) and the fraction of absorbed
photosynthetically active radiation (FAPAR). LUE is regulated under environmental stresses such as
temperature stress and water availability [23]. Without environmental stress conditions, maximal LUE
(εmax) is specified for different biome types. Under environmental stresses, the εmax is down-regulated
by scalars (ƒ), which varies from 0 to 1 and which represents the reduction of LUE relative to
εmax due to environmental stresses. The definitions of the scalars (ƒ) are various in different LUE
models [24]. Numerous LUE models have been proposed, including the Carnegie–Ames–Stanford
approach (CASA) [1], the global production efficiency model (GLO-PEM) [25], the moderate resolution
imaging spectroradiometer GPP algorithm (MODIS GPP) [10], the vegetation photosynthesis model
(VPM) [16,26], and the eddy covariancelight use efficiency (EC-LUE) model [12]. At present, the first
operational, near-real-time GPP dataset, which is based on the MODIS GPP algorithm, is the MOD17
product at an eight-day interval [27]. The primary input data of the MOD17 product are the FAPAR
product (MOD15) and meteorological data. Three collections of the MOD17 GPP product (5.0, 5.5,
and 6.0) are currently freely available to users. The essential improvement of the latest collection 6.0
is focused on the spatial resolution of the FAPAR (MOD15A2H) and GPP (MOD17A2H) products
from 1000 to 500 m compared with the previous collections [28]. Although the MOD17 GPP products
have been widely used as the recognized standard global GPP products, some discrepancies between
this product and insitu measured GPP remain [29–32]. Among the problems are the uncertainties in
FAPAR estimates [28,33,34]. The maximum FAPAR across the eight days is selected to represent the
final FAPAR value for this period in MOD15 [35], which means FAPAR does not vary during a given
eight-day period.

VI-driven models estimate GPP based on the empirical relationship between VIs and FAPAR [36].
A number of prevalent VI-driven models include the temperature and greenness (TG) model [18], the
greenness and radiation (GR) model [17], and the vegetation index (VI) model [37]. The Normalized
Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) are the most widely
used VIs in VI-based models [38]. In addition to the NDVI and EVI, numerous studies have utilized
vegetation red-edge reflectance VIs to improve GPP estimation [39,40]. The Medium Resolution
Imaging Spectrometer (MERIS) Terrestrial Chlorophyll Index (MTCI), originally derived from the
MERIS onboard the Envisat satellite of the European Space Agency (ESA), is one of the red-edge
VIs [41]. The global MTCI product, with a spatial resolution of 1km, was available either weekly or
monthly [42]. The MTCI has demonstrated its suitability to evaluate GPP across different biomes such
as grasslands [43], deciduous forest, and croplands [44]. Harris and Dash [44] concluded that the MTCI
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performed better than the MODIS EVI products for estimating GPP across a diversity of ecosystems
and climatic conditions. The MTCI product was discontinued in 2012, but the successful launch of the
Ocean and Land Colour Instrument (OLCI) onboard the Sentinel-3 satellite provides the continuity of
the MERIS.

As a legacy of the MERIS, the Sentinel-3 OLCI has recognized the pivotal deficiencies of MERIS
and has undergone many enhancements [45]. The double satellite system of the OLCI instruments
(i.e., Sentinel-3A and 3B) enables a revisit period less than two days, and 21 spectral bands exist with
wavelengths ranging from optical to near-infrared in OLCI [46]. There are mainly two OLCI products
levels, i.e., level-1B and level-2 (land and water), with a spatial resolution of approximately 300 m or
1.2 km. Specifically, the OLCI level-2 land products include the FAPAR and OTCI products, named the
OLCI Global Vegetation Index (OGVI) and the OLCI Terrestrial Chlorophyll Index (OTCI), respectively.
OGVI and OTCI are the continuity of the MERIS FAPAR (MERIS Global Vegetation Index (MGVI)) and
the MTCI datasets, respectively [47]. The apparent difference of the OLCI products compared with
MODIS and MERIS is the data composition algorithm. OGVI and OTCI used the actual value for the
day while MOD15 and MTCI were composited using the arithmetic mean and maximum value across
eight days, respectively [48]. The fine temporal and spectral resolution of OLCI products opened
opportunities for GPP estimation. Nevertheless, to the best of our knowledge, only Zhang et al. [49]
focused on GPP estimation using the OLCI FAPAR product so far. The main objective of their study
was to investigate the relationships between a series of satellite FAPAR products (including OLCI
FAPAR) and solar-induced chlorophyll fluorescence (SIF) products. Only the relationship between
APAR and flux-tower based GPP was established, and neither LUE nor VI-driven models were used.

The main objective of this research is to assess the performance of the Sentinel-3 OLCI FAPAR and
OTCI products in estimating GPP across different biome types. Thus, this study aims to (1) evaluate
the GPP obtained from the OLCI FAPAR and three OTCI-driven models, (2) compare these obtained
values of GPP with those derived from EC measurements, and (3) compare the performance between
the OLCI FAPAR and MODIS FAPAR products.

2. Materials and Methods

2.1. Study Sites Description

Seven AmeriFlux eddy covariance flux towers including a variety of vegetation ecosystems types
with latitudes ranging from 38◦ to 45◦N and longitudes from −122◦ to −89◦ W were selected for this
study (Figure 1). These sites cover a range of climate conditions and land use classes, including two
cropland (CRO) sites (C3: alfalfa and C4: corn, respectively), one grassland (GRA) site, one deciduous
broadleaf forest (DBF) site, one closed shrubland (CSH) site, one open shrubland (OSH) site, and
one woody savanna (WSA) site (Table 1). The reason that we selected these sites was mainly in
terms of the availability of satellite images, GPP measurements, and meteorological observations data.
Detailed site descriptions and other related information can be obtained via the AmeriFluxwebsite
(https://ameriflux.lbl.gov/sites/site-search/).

https://ameriflux.lbl.gov/sites/site-search/
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Figure 1. Geographical location of AmeriFlux sites in this study.

Table 1. List of AmeriFlux eddy covariance tower sites used in this study.

Site
ID Site Name Latitude Longitude IGBP Main

Species

Measurement
Height/Canopy

Height (m)
MAT MAP MAT and

MAP Period
Years
Used Reference

US-Bi1
Bouldin
Island
Alfalfa

38.1 −121.5 CRO
Alfalfa

(Medicago
sativa L.)

3.9/0.5 16 338 2016–2018 2017–2018 [50]

US-Bi2 Bouldin
Island corn 38.11 −121.54 CRO Corn (Zea

mays) 5.1/2.6 16 338 2017–2018 2017–2018 [50]

US-Rls RCEW Low
Sagebrush 43.14 −116.74 CSH Low

sagebrush * 8.4 333 2014–2018 2017–2018 [51]

US-Rws

Reynolds
Creek

Wyoming
big

sagebrush

43.17 −116.71 OSH
Wyoming

big
sagebrush

* 8.9 290 2014–2018 2017–2018 [51]

US-WCr Willow
Creek 45.81 −90.08 DBF

Sugar
maple,
Acer

saccharum

30/25 4.02 787 1999–2018 2017–2018 [52]

US-KFS
Kansas
Field

Station
39.06 −95.19 GRA Bromus

inermis */0.5 12 1014 2007–2017 2017 [53]

US-Ton Tonzi
Ranch 38.43 −120.97 WSA Blue oak 23/13 15.8 559 2001–2018 2017–2018 [52]

MAT: mean annual temperature (◦C); MAP: mean annual long-term precipitation (mm); IGBP: International
Geosphere-Biosphere Programme; CRO: croplands; CSH: close shrublands; OSH: open shrubland; DBF: deciduous
broadleaf forests; GRA: grasslands; WSA: woody savanna; * denotes no data.

2.2. Flux and Meteorological Data

The fluxes and meteorological data at a half-hourly scale are provided by AmeriFlux website.
The AmeriFlux network provides continuous observations of CO2, water, and energy fluxes at the
ecosystem and landscape levels. It also provides standard datasets of climate and CO2 fluxes to
the public, after various levels of data processing have been completed. Individualsite data were
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standardized and rigorously quality-filtered according to established standards within AmeriFlux [54].
The data of the seven flux towers, including GPP (g C m−2 d−1), vapor pressure deficit (VPD, hPa), air
temperature (Ta, ◦C), sensible heat (H, W m−2), downward shortwave radiation (W m−2), and latent
heat (LE, W m−2), were used in our study. The daily GPP and downward shortwave radiation were
calculated as the sum of the half-hourly GPP and downward shortwave radiation. The half-hourly
VPD was averaged to obtain the daily VPD. The daily minimum Ta was derived from the minimum
half-hourly Ta. Specifically, at the corn site, the GPP and the meteorological data only during the
growing season were used to preclude the possible disturbance caused by satellite observations during
the nongrowing season [55].

2.3. Satellite Products

2.3.1. Sentinel-3 OLCI Land Products

There are three processing levels (i.e., level-0, level-1, and level-2) of OLCI with various data
products. OLCI level-1 and 2 data products are freely available to the general public. Products are
delivered in full resolution (FR, 300 m) and reduced resolution (RR, 1.2 km) for the same coverage area.
The two OLCI level-2 land products of FAPAR and OTCI at FR were used in our study.

OLCI FAPAR is essential for studying the plant photosynthetic process. The OLCI FAPAR
algorithm consists of two steps. First, thebidirectional reflectance factors are “rectified”, that is, angular
effects are removed. Then, the information from the blue channel is used to decontaminate the red
and near-infrared bands from any atmospheric influence. Such an approach does not require any
assumption on the ambient atmospheric properties [56]. Seasonality comparisons against ground-based
measurements have shown that OLCI FAPAR effectively describesthe seasonal changes over various
types of crops, and more ground-truth is under collection for validation purposes.

OTCI is an indicator of canopy chlorophyll content and is a continuation of the MTCI. The formula
of OTCI is as follows:

OTCI =
Band12 − Band11

Band11 − Band10
(1)

where Band12, Band11, and Band10 are the reflectance in the band centered respectively at 753, 709, and
681 nm of the OLCI sensor. OTCI is easily calculated and strongly correlated with the red-edge position
(REP). It is more sensitive to the high chlorophyll content compared to REP [41]. Information on
canopy chlorophyll content is an important indication of plant photosynthetic capacity. OTCI ranges
from 1 to 6.5. Further validation work of OTCI with additional in situ data is currently performed.

All of the Sentinel-3 OLCI products in this study were downloaded from the ESA (https:
//scihub.copernicus.eu). The data preprocessing operations include reprojection, resampling and
subset; these batch processing operations were accomplished through the ENVI Modeler tool in
ENVI 5.5.

2.3.2. MODIS FAPAR Product

Different series of MODIS FAPAR products have been widely used in modeling GPP. The latest
version is Collection 6 (C6) MOD15A2H, which is composited at an eight-day interval with a spatial
resolution of 500 m. The main retrieval method is based on the 3-D radiative transfer (RT) model setting
canopy spectral properties for a given biome type [49]. A Look-up-Table (LUT), which is generated
by 3-D RT, is used to retrieve FAPAR [57]. A back-up method based on the statistical relationships
between NDVI and FAPAR is chosen as an alternative when the main RT retrieval method fails [58].

https://scihub.copernicus.eu
https://scihub.copernicus.eu


Remote Sens. 2020, 12, 1927 6 of 22

2.4. Methods

2.4.1. MODIS GPP Algorithm

In this study, we adopted the MODIS GPP algorithm combined with the Sentinel-3 OLCI FAPAR
product to calculate GPP so that the result is comparable with the GPP derived from MODIS FAPAR.
The MODIS GPP is a representative LUE model algorithm that calculates GPP by employing the
amount of PAR absorbed by vegetation [59]. The algorithm is developed as follows:

GPP = ε× FAPAR× SWrad × 0.45 (2)

ε = εmax × f(Tmin) × f(VPD) (3)

f (Tmin) =


0 Tmin < TMINmin

Tmin−TMINmin
TMINmax−TMINmin

TMINmin < Tmin < TMINmax

1 Tmin > TMINmax

(4)

f (VPD) =


0 VPD > VPDmax

VPDmax−VPD
VPDmax−VPDmin

VPDmin < VPD < VPDmax

1 VPD < VPDmin

(5)

where εmax represents the maximum LUE, TMINmin is the daily minimum temperature (Tmin) at which
ε = 0, TMINmax is the daily Tmin at which ε = εmax, VPDmax is the daylight average VPD at which
ε = εmax, VPDmin is the daylight average VPD at which ε = 0, FAPAR is from the OLCI FAPAR product
(OGVI), and SWrad is the incident solar shortwave radiation. Here, εmax, TMINmin, TMINmax, VPDmax,
and VPDmin were determined according to the biome properties LUT for each biome types (Table 2),
while Tmin, VPD, and SWrad were obtained from flux tower sites. Additionally, a 1.5 km × 1.5 km area
centered on every flux tower site was extracted to represent the flux footprint, FAPAR, and OTCI [5].

Table 2. Biome properties lookup table for the MODIS GPP algorithm.

Biome Types DBF CSH OSH WSA GRA CRO

εmax (g C m−2 d−1) 1.165 1.281 0.841 1.239 0.860 1.044

TMINmin (◦C) −6.00 −8.00 −8.00 −8.00 −8.00 −8.00

TMINmax (◦C) 9.94 8.61 8.80 11.39 12.02 12.02

VPDmin (Pa) 650.0 650.0 650.0 650.0 650.0 650.0

VPDmax (Pa) 2300.0 4700.0 4800.0 3200.0 5300.0 4300.0

2.4.2. Modeling of OTCI-Driven Models

Three types of OTCI-driven models in combination with different input variables were established.
Model 1 used the OTCI alone to estimate the GPP directly (GPP = ƒ (OTCI)), according to the
fact that GPP is directly related to chlorophyll content, which is also closely associated with OTCI.
Therefore, OTCI is regarded as a proxy for LUE and APAR [60]. Model 2 combines OTCI and
the incoming shortwave radiation that uses wavelength in the 400–700 nm region to estimate GPP
(GPP = ƒ (OTCI × PAR)), according to Yoder and Waring [61], who assumed a direct linear relationship
between GPP and the product of photosynthetic efficiency and incoming shortwave radiation over
a period of the growing season. Therefore, OTCI related to canopy chlorophyll content represents
the photosynthetic efficiency here. Model 3 (GPP = ƒ (OTCI × PAR × FAPAR)) introduces the actual
incoming shortwave radiation by considering only absorbed PAR (APAR = PAR × FAPAR) to be
functioning for photosynthesis. Therefore, this model theoretically overcomes the limitation of the
previous two models and is expected to obtain the highest potential for GPP simulation.
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2.4.3. Statistical Analysis

To make a comparisonwith the GPPOLCI-FAPAR, the eight-day period of the MODIS FAPAR product
was first averaged to obtain the daily value for the FAPAR. Then, the daily GPPMODIS-FAPAR was
calculated based on the site meteorological data and the MODIS GPP algorithm. The GPPMODIS-FAPAR

values with dates corresponding to GPPOLCI-FAPAR were selected. Moreover, it is well known that
GPPEC encompasses many uncertainties. In this study, random uncertainties in GPPEC were estimated
following Richardson and Hollinger [62]. Uncertaintiesare expressed as a 95% confidence interval
estimated from the 2.5th and 97.5th percentiles of the daily sum in g C m−2 d−1. Three statistical metrics
were used to evaluate the accuracies ofthe modeled GPP, including the coefficient of determination
(R2), root mean square error (RMSE), and bias. A higher R2 and a lower RMSE and bias mean a better
model performance. The RMSE and bias are calculated as follows:

RMSE =

√√
1
n
×

n∑
i=1

(Mi − Ei)
2 (6)

Bias =
1
n
×

n∑
i=1

(Mi − Ei) (7)

where Mi and Ei are the modeled and EC-measured GPP values, respectively.

3. Results

3.1. Variability of Tmin, VPD, GPPEC, and Input Model Variables

The flux-tower based GPP varied among the study sites and land use classes. The CRO sites
of US-Bi2 and US-Bi1 showed the highest average GPPEC: 12.69 ± 7.04 g C m−2 d−1 at US-Bi2
and 6.11 ± 4.51g C m−2 d−1 at US-Bi1. The GRA, DBF and WSA sites showed a relatively lower
average GPPEC: 4.72 ± 1.88g C m−2 d−1 at US-KFS, 3.53 ± 4.80 g C m−2 d−1 at US-WCr, and
2.54 ± 1.88 g C m−2 d−1 at US-Ton. Two types of shrubland (i.e., CSH and OSH) sites, Rls and Rws,
had the lowest average GPPEC of 1.68 ± 1.59 g C m−2 d−1 and 1.21 ± 0.99 g C m−2 d−1, respectively.
The temporal dynamics in GPPEC at the seven sites is shown in Figure 2. Apparently, the seasonal
change patterns in the GPPEC of alfalfa and corn are different. The corn site (US-Bi2) is a single
croppingsystem, whereas the alfalfa site (US-Bi1) is a multiple cropping system. At the US-Bi2 site,
GPPEC rose rapidly and peaked in early August 2017 and late July 2018, respectively. At the US-Bi1 site,
the harvest cycle of alfalfa is approximately a month. Alfalfa is harvested multiple times per growing
season, depending on the level of rainfall and magnitude of production. Moreover, the maximum
GPPEC of corn was found to be substantially larger than that of alfalfa. For example, in 2018, the
highest GPPEC of corn was 23.75 ± 4.02 g C m−2 d−1, whereas alfalfa was only 16.33 ± 3.46 g C m−2 d−1.
The OSH and CSH presented a similar temporal variation characteristic, reaching a peak in early May
2017 and the end of May 2018, respectively. The maximum GPPEC of the CSH site (US-Rls) was slightly
higher than that of the OSH site (US-Rws) in 2017 and 2018. The DBF site (US-WCr) reached maximum
GPPEC in late July 2017 and in late June 2018. The maximum GPPEC in 2017 (11.87 ± 3.02 g C m−2 d−1)
was lower than in 2018 (18.77 ± 4.78 g C m−2 d−1). The GPPEC in the GRA site (US-KFS) exhibited
a great variation, ranging from 0.02 ± 0.01g C m−2 d−1 to 21.36 ± 4.80 g C m−2 d−1. The WSA site
(US-Ton) reached maximum GPPEC earlier than US-WCr and US-KFS, and the maximum GPPEC was
11.42 ± 2.73 g C m−2 d−1 in 2017 and 9.13 ± 2.19 g C m−2 d−1 in 2018.The temporal dynamics of Tmin

and VPD for all sites areshown in Figure 3. Overall, Tmin and VPD presented a similar variation trend.
For Tmin, great variation was found at the two shrublands, i.e., the GRA and DBF sites. Amongst them,
maximum Tmin can reach 20◦C while minimum Tmin was even below −15◦C. At the two croplands
sites, the overall growing season Tmin was higher in 2017 than 2018. At the WSA site, the Tmin was
approximately 0 ◦C and the maximum Tmin was higher in 2017 than 2018. In regard to VPD, the two
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shrublands and GRA sites were generally higher than other sites. Two croplands sites had a similar
range during growing season. The maximum VPD was the lowest at the WSA site compared with
other sites.
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The temporal dynamics of environmental variables corresponding to the temporal resolution of
OLCI products used in our study at the seven sites are shown in Figure 4. The FAPAR show similar
seasonal patterns that are approximately consistent with the variation in GPPEC at all sites. At the two
shrublands sites, the value of FAPAR in peak-growing season waslower than other sites on account
of the low vegetation cover of shrublands. Similarly, PAR has strong seasonal variability at most
sites, except the US-Bi2 site. The reason may be that the PAR data we collected were only during
the corn-growing season. The magnitude of PAR was similar for all sites, approximately ranging
from 400 to 1400 hPa. Several minimal values of PAR at the US-Ton site may due to the changeable
weather condition. Two scalar factors, ƒ(Tmin) and ƒ(VPD), showed anopposite temporal change trend
at most sites, except for the US-Bi2 and US-Ton sites. At the US-Bi2 site, a great variation of ƒ(Tmin)
was observed within days. At the US-Ton site, VPD was not responsible for the LUE restriction since
the ƒ(VPD) values were equal to 1. At other sites, ƒ(Tmin) plays an important role in regulating LUE
during the nongrowing season and ƒ(VPD) during the growing season. Obviously, the actual Tmin

being higher and the actual VPD being lower than the model prescribed threshold lead to the ƒ(Tmin)
and ƒ(VPD) values equaling to 1 during the growing and nongrowing season, respectively.

3.2. Agreement between GPPOLCI-FAPAR and GPPEC

We first compared the performance of GPPOLCI-FAPAR against that of the GPPEC across all sites,
including for 2017 and 2018 (Figure 5). Results showed that the US-WCr site obtained the best
performance (R2 = 0.76), followed by the US-Ton site with R2 = 0.65, the US-Rls site with R2 = 0.64, and
the US-Bi2 site with R2 = 0.55. The R2 values between the GPPOLCI-FAPAR and GPPEC at US-Bi1, US-Rws,
and US-KFS were all below 0.5. In terms of the RMSE, the US-Bi2 site produced the maximum error
(RMSE = 9.77 g C m−2 d−1), which is nearly twice or more than any other sites (Table 3). This situation
was mainly caused by thesubstantial underestimation of GPPOLCI-FAPAR during the peak growth period
of corn. This cause of underestimation is also applicable to alfalfa and grass sites. US-Rws had the
lowest error with an RMSE of 1.23 g C m−2 d−1 (Table 3). Part of the difference between the US-Rws
site and other sites in terms of RMSE was due to the low mean GPP in CSH.

Table 3. Coefficient of determination (R2), root mean square error (RMSE, g C m−2 d−1) and bias
(g C m−2 d−1) between GPPOLCI-FAPAR and GPPEC for seven sites.

Site ID R2 RMSE Bias

US-Bi1 0.45 5.18 −3.6
Us-Bi2 0.55 9.77 −8.13
US-Rls 0.64 1.36 −0.88

US-Rws 0.5 1.23 −0.89
US-WCr 0.76 2.42 −0.61
US-KFS 0.45 5.54 −4.03
US-Ton 0.65 1.39 0.64

Note: Highest R2, lowest RMSE, and lowest bias value are shown in bold. Significance levels: p < 0.001.

Figure 6 illustrates the temporal variation of GPPOLCI-FAPAR and GPPEC at all sites. Overall,
the GPPOLCI-FAPAR effectively matched the GPPEC and generally captured the seasonal variations
consistent with the GPPEC at all sites. However, a remarkable difference remains between the GPPEC

and GPPOLCI-FAPAR at several sites. Notably, the GPPEC values in most sites were underestimated
by the GPPOLCI-FAPAR, except for US-Ton site. As shown in Table 3, the GPPOLCI-FAPAR tracked the
GPPEC well at the US-Ton site, with the second lowest bias of 0.64 g C m−2 d−1. Similar to RMSE, the
US-Bi2 site had the highest bias (−8.44 g C m−2 d−1). Interestingly, the US-WCr site with a large RMSE
also showed the lowest bias. The reason is that part of the bias is offset by the compensation of GPP
underestimation in several months in 2017 with overestimation in 2018.
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3.3. Agreement between GPPOTCI and GPPEC

The time series of GPPEC and GPPOTCI that was derived from the three OTCI-driven models in
2017–2018 are presented in Figure 7. Overall, the day-to-day variation in the time series of GPP is
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evident, whether in GPPEC or GPPOTCI. The consistency in temporal dynamics between GPPEC and
GPP from models 1, 2, and 3 were high at most sites. For instance, the growth process of alfalfa from
growth to harvest to regrowth was tracked well by the GPP estimated from the OTCI-driven models.
However, at the US-Rws site, the GPP obtained from model 3 matched well with the GPPEC while
the GPP derived from both models 1 and 2 failed to capture the variation trend. This mismatch can
be attributed to the fact that when GPPEC started to decline, the modeled GPP from models 1 and 2
continued to increase. The magnitude of the GPP derived from models 1, 2, and 3 varies considerably
across sites. Model 2 gained the maximum value compared with models 1 and 3 among all sites in
2017 and 2018. It is worth noting that the GPP produced by model 3 was close to the GPPEC at the two
shrubland sites (US-Rls and US-Rws). At the DBF site, the GPP values modeled at models 2 and 3 were
highly consistent, whether in magnitude or in variation trend during the growth period. The reason is
that the FAPAR inputted in model 3 is nearly equal to 1, which has a minimal effect on GPP estimation.
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The scatter plots between the GPPOTCI based on three OTCI-driven models and the GPPEC for
each site are shown in Figure 8. The performance of the three models varies at different sites, thereby
demonstrating that the applicability of the three OTCI-driven models is dependent on the biome
types. For instance, insignificant correlations of model 1 were obtained at the US-Rws site, whereas the
strongest relationship was exhibited with the GPPEC at the US-WCr site. Even for the same type, their
performance also differs due to disparate input parameters. For example, model 3 performed much
better than model 1 and 2 at the US-Ton, US-Rls and US-Rws sites. Obviously, the inclusion of FAPAR
into the model lead to this result. Additionally, strong relationships were established between GPPEC

and all the OTCI-driven models at the US-Bi2, US-WCr, and US-KFS sites. At the Bi1 site, a strong to
weak relationship was observed from model 3 to model 1. To sum up, model 3, which includes APAR
data, provided a significant relationship with GPPEC at all sites, and model 1 is superior to the other
two at several sites.
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Figure 8. Scatterplots between GPPEC and GPPOTCI for all sites in 2017 and 2018. The left column
represents model 1: GPP = ƒ(OTCI), the middle column represents model 2: GPP = ƒ(OTCI × PAR),
and the right column represents model 3: GPP = ƒ (OTCI × PAR × FAPAR). (a–g) represent the sites the
same as Figure 2.
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3.4. Comparison between GPPOLCI-FAPAR and GPPMODIS-FAPAR

Figure 9 describes the temporal dynamics of GPPEC, GPPMODIS-FAPAR, and GPPOLCI-FAPAR at
the seven sites during 2017 and 2018. Obviously, both GPPMODIS-FAPAR and GPPOLCI-FAPAR followed
a similar variation trend observed in GPPEC. Nevertheless, GPPMODIS-FAPAR and GPPOLCI-FAPAR,
which overestimated or underestimated GPPEC to varying degrees, were also observed at several
sites. For example, a substantial underestimation of GPP at two crop sites during peak growth
period and a slight overestimation of GPP at the US-Ton site during growing season were clearly
identified. As shown in Figure 10, the relationship between GPPMODIS-FAPAR and GPPEC was established.
In addition, Tables 3 and 4 show a comparison of GPPEC, GPPMODIS-FAPAR, and GPPOLCI-FAPAR for each
site across two years. As a result, GPPOLCI-FAPAR performed better than GPPMODIS-FAPAR at the US-Bi1,
Us-WCr, US-KFS, and US-Ton sites, with a higher R2. With respect to RMSE, the GPPMODIS-FAPAR was
superior to GPPOLCI-FAPAR for most sites, except for the Us-WCr and US-Ton sites. In terms of bias,
GPPMODIS-FAPAR provided the best performance at most sites, except the US-Ton site. Moreover, the
relationship of GPPOLCI-FAPAR and GPPMODIS-FAPAR with GPPEC in the combined sites was established
(Figure 11). Overall, the GPPOLCI-FAPAR and GPPMODIS-FAPAR produced acceptable GPP estimates,
and if only R2 is considered, the GPPOLCI-FAPAR (R2 = 0.55) performed better than GPPMODIS-FAPAR

(R2 = 0.44) across all biomes, demonstrating the applicability of the OLCI FAPAR product for estimating
vegetation GPP.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 24 
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Table 4. Coefficient of determination (R2), root mean square error (RMSE, g C m−2 d−1), and bias
(g C m−2 d−1) between GPPMODIS-FAPAR and GPPEC for seven sites.

Site ID R2 RMSE Bias

US-Bi1 0.39 4.61 −2.6
Us-Bi2 0.61 9.14 −7.41
US-Rls 0.77 0.79 0.05

US-Rws 0.59 0.87 −0.45
US-WCr 0.66 2.81 −0.1
US-KFS 0.42 5.26 −3.57
US-Ton 0.42 3.11 2.74

Note: Highest R2, lowest RMSE, and lowest bias value are shown in bold. Significance levels: p < 0.001.

4. Discussion

4.1. Performance Analysis of GPPOLCI-FAPAR Using MODIS GPP Algorithm

The significant relationship between the GPPOLCI-FAPAR and GPPEC across all sites indicates
the potential of Sentinel-3 OLCI FAPAR in estimating GPP. However, the performance of the model
varies at different sites. The US-WCr site obtained the best performance across all sites. This finding
isconsistent with previous studies [5,63]. The reasons can be summarized as follows. Firstly, the
seasonal fractional vegetation cover and vegetation structure of DBF were obvious, which can be easily
tracked by FAPAR [12]. Secondly, DBF grows in the middle and high latitudes with less cloud cover,
and thus time series images with high quality can be obtained [30]. The performance of the US-Ton site
was only worse than the US-WCr site. Many studies have reported that the savanna GPP estimation
accuracy was lower than other vegetation types due to the misclassification of the savanna [32,64,65].
Unlike savanna, which has a forest canopy cover between 10%–30%, woody savanna’s canopy cover is
greater than 30%. Dense vegetation cover can minimize the impact from understory vegetation, which
may improve the GPP estimation accuracy. The performance of two shrubland sites was relatively
inferior than that of the US-Ton site in our study. Previous studies have indicated that the estimation
accuracy of the GPP at shrubland sites varied with regions [36,66]. Temperate regions aregenerally
superior than tropical regions. The growth of shrubland is mainly controlled by water ability [32].
As shown in Figure 3c,d, ƒ(VPD) plays a dominant role, especially during shrubland growing season.
Moreover, due to the sparse vegetation at the shrubland region, the background soil conditions may
have a great impact on GPP estimation [67]. The relationship between GPPOLCI-FAPAR and GPPEC was
moderate at the US-Bi1 and US-Bi2 sites. Previous studies have demonstrated that GPP estimation
accuracy varied with regions and crop types [68–70]. Our study also confirmed this conclusion. It is
noteworthy that the RMSE was large at the two cropland sites (Table 3). There are mainly two reasons
for this situation. Firstly, the rotation period is different for the two crop types. The US-Bi1 site is a
single croppingsystem whereas the US-Bi1 site is a multiple cropping system. However, the threshold
of the environmental variables in the MODIS GPP algorithm was set the same for different crop
types. Secondly, the algorithm assumed one value of εmax for all C3 and C4 crops, which led to the
underestimation of GPP. The GPP estimation accuracy was lowest at the US-KFS site. This was not
consistent with other studies, which obtained great performance for grassland [71,72]. The seasonal
changes of grassland is obvious and can be tracked well by satellite images [73]. Thus, the flux and
climate data uncertainty may lead to the discrepancy between GPPOLCI-FAPAR and GPPEC.

4.2. Performance of OTCI-Driven Models in GPP Estimation

The R2 between GPPOTCI and GPPEC at seven sites showed that at least one of the three OTCI-driven
models agreed well with the GPP. The US-Wcr site performed best, whether the model used OTCI
only or introduced either PAR or FAPAR. This result was also consistent with that in Section 3.2 using
the OLCI FAPAR product. Interestingly, the inclusion ofradiation information (PAR and FAPAR) did
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much to enhance model performance at the savannas and the two shrubland sites (Figure 4c,d,g).
The probable reason is that the impact of soil background on the low vegetation coverage at these sites
leads to failure of the OTCI in tracking GPP. By contrast, the addition of PAR and FAPAR appears to
have little contribution to the GPP estimation at the US-Bi2, US-WCr, and US-KFS sites (Figure 4b,e,f),
as OTCI can directly capture the pronounced seasonal variation of GPP at these sites [17,74].

4.3. Difference between OLCI FAPAR and MODIS FAPAR Product

As described in Section 3.4, the performance of GPPOLCI-FAPAR and GPPMODIS-FAPAR varies at
different sites. The main difference between GPPOLCI-FAPAR and GPPMODIS-FAPAR results from the
FAPAR product being incorporated in the model. Therefore, the differences between OLCI FAPAR and
MODIS FAPAR, which may lead to inconsistency between GPPOLCI-FAPAR and GPPMODIS-FAPAR, are
summarized mainly from two aspects. First, the temporal compositing periods of the two products are
different. The MODIS FAPAR product is provided in aneight-day interval while the OLCI FAPAR is
at a daily interval. For temporal aggregation purposes, MODIS FAPAR is resampled to daily, but its
value does not change throughout the eight days.The maximum FAPAR is chosen as the final output
value representing the eight days [35]. Second, the MODIS FAPAR and OLCI FAPAR are retrieved
from different algorithms. The OLCI FAPAR retrieval algorithm belongs to the family of the JRC (Joint
Research Center), which is based on the 1-D RT model, while MODIS FAPAR is derived from the 3-D
RT model. The difference between these algorithms is mainly derived from the various definitions and
the leaf/wood spectral values assumptions [49].

4.4. Other Sources of Uncertainty, Limitation, and Future Prospects

Additional sources of uncertainty, limitation, and further prospects in simulating GPP are
illuminated in the study. First, the quality of the instrument, the randomness of turbulence, the
partitioning methods, and gap-filling techniques leading to the random and systematic errors in the
flux-derived GPP data is inevitable [75,76]. Second, the mismatches in scale between Sentinel-3 pixels
and tower flux footprints lead to further uncertainties. The limitations exist, such as the slow update of
the latest EC data and less reliable Sentinel-3 data during the December–April period due to cloudiness
contamination. In the future, improvements in the OLCI products through the use of more robust
gap-filling methods and in combination with Sentinel-3B data (only Sentinel-3A data wereused in our
study to match the flux tower data) may provide even better GPP estimates [28,77].

Although our results showed that GPPOLCI-FAPAR did not always perform better than
GPPMODIS-FAPAR, it needs to be emphasized that the objective of our study is not to distinguish
which FAPAR product is superior in GPP estimation. Our study demonstrated the potential of OLCI
FAPAR and OTCI products for GPP simulation and providedmore complementary solutions to estimate
GPP. For example, in terms of data fusion, the OLCI FAPAR product with 10m spatial resolution and
nearly daily temporal resolution can be generated by blending Sentinel-2 images and the OLCI FAPAR
product using downscaling method and spatiotemporal fusion approaches [45,78]. Then, the same
spatial and temporal resolution of the GPP product can be obtained by assimilating FAPAR into LUE
models. Moreover, with regard toSIF, the Fluorescence Explorer satellite, which is ESA’s eighth Earth
Explorer and is proposed as a tandem with Sentinel-3, is expected to be launched by 2022, and it will
provide an integrated package of measurements as well as all the necessary auxiliary information to
improve GPP assessment together with Sentinel-3 OLCI and the Sea and Land Surface Temperature
Radiometer (SLSTR) [79]. Additionally, this study demonstrated that the MODIS GPP algorithm is
also suitable for OLCI FAPAR besides MODIS FAPAR. In years to come, attempts in integrating OLCI
FAPAR and the SLSTR land surface temperature (LST) product into other LUE models (e.g., CASA and
VPM) to estimate GPP at a large scale are also essential.
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5. Conclusions

In this study, we evaluated the performance of two Sentinel-3A OLCI products (i.e., FAPAR and
OTCI) in estimating the GPP across seven biomes in 2017–2018. OLCI FAPAR and OTCI products
in combination with meteorological data were integrated into the MODIS GPP algorithm and three
OTCI-driven models respectively to simulate GPP. GPPOLCI-FAPAR and GPPOTCI were compared
with the GPPEC for each site, and a comparison between GPPOLCI-FAPAR and GPPMODIS-FAPAR was
established. The main conclusions are summarized as follows:

(1) The relationship between GPPOLCI-FAPAR and GPPEC is significant across all sites.
The GPPOLCI-FAPAR correlated best with GPPEC at the US-WCr site (R2 = 0.76) while it performed worst
at the US-KFS site (R2 = 0.45).

(2) The inclusion of APAR data in OTCI-driven models exhibited significant relationship with
GPPEC for all sites. Nonetheless, the model using only OTCI provided the most varied performance,
with the relationship between GPPOTCI and GPPEC from strong to nonsignificant.

(3) The comparison of GPPOLCI-FAPAR and GPPMODIS-FAPAR suggested that they all produced
reasonable GPP estimates. In terms of R2, GPPOLCI-FAPAR performed better than the GPPMODIS-FAPAR

across all biomes. In the aspect of RMSE and bias, GPPMODIS-FAPAR was superior than GPPOLCI-FAPAR.
The main difference between GPPOLCI-FAPAR and GPPMODIS-FAPAR result from the inherent retrieval
algorithm and assumptions in the FAPAR product.

In conclusion, the results of this study demonstrate the potential of OLCI FAPAR and OTCI
products in GPP estimation, and these results open the possibility of applying them to GPP monitoring
at regional and global scales for future studies.
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