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Abstract: Nighttime light remote sensing has aroused great popularity because of its advantage in
estimating socioeconomic indicators and quantifying human activities in response to the changing
world. Despite many advances that have been made in method development and implementation of
nighttime light remote sensing over the past decades, limited studies have dived into answering the
question: Where does nighttime light come from? This hinders our capability of identifying specific
sources of nighttime light in urbanized regions. Addressing this shortcoming, here we proposed
a parcel-oriented temporal linear unmixing method (POTLUM) to identify specific nighttime light
sources with the integration of land use data. Ratio of root mean square error was used as the
measure to assess the unmixing accuracy, and parcel purity index and source sufficiency index
were proposed to attribute unmixing errors. Using the Visible Infrared Imaging Radiometer Suite
(VIIRS) nighttime light dataset from the Suomi National Polar-Orbiting Partnership (NPP) satellite
and the newly released Essential Urban Land Use Categories in China (EULUC-China) product,
we applied the proposed method and conducted experiments in two China cities with different sizes,
Shanghai and Quzhou. Results of the POTLUM showed its relatively robust applicability of detecting
specific nighttime light sources, achieving an rRMSE of 3.38% and 1.04% in Shanghai and Quzhou,
respectively. The major unmixing errors resulted from using impure land parcels as endmembers
(i.e., parcel purity index for Shanghai and Quzhou: 54.48%, 64.09%, respectively), but it also showed
that predefined light sources are sufficient (i.e., source sufficiency index for Shanghai and Quzhou:
96.53%, 99.55%, respectively). The method presented in this study makes it possible to identify
specific sources of nighttime light and is expected to enrich the estimation of structural socioeconomic
indicators, as well as better support various applications in urban planning and management.
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1. Introduction

In addition to an environment-based remote sensing dataset such as Landsat and Moderate
Resolution Imaging Spectroradiometer (MODIS), a nighttime light (NTL) remote sensing dataset is
more recognized as human-oriented [1], reflecting the distribution and intensity of human activities.
Therefore, more and more human-related studies have extracted the urban built-up areas [2], estimated
socioeconomic variables such as gross domestic product (GDP) values [3,4], population [5], and carbon
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emissions [6,7], and studied its negative impact on estrogen-dependent diseases [8] through interaction
with light and melatonin and circadian rhythms [9,10], with the help of an NTL dataset. Given the
capability of bridging the gap between remote sensing and socioeconomic society, an NTL dataset
has gained increasing popularity and has been widely used in deriving objective and third-party
socioeconomic indicators and quantifying the effect of ambient light at night on ecology [11] and
human health [12], where the estimation accuracy is highly demanded. In addition to the development
of improved estimation methods [13,14], interpreting the physical human activity from each NTL pixel
value should be a radical but underappreciated way to estimate socioeconomic indicators in more
reasonable and accurate manners.

Urban areas, where the majority of humanity gathers, are prominent places to study and solve
human-centered problems such as climate change [15] or sustainability development [16]. Within urban
areas, human activities are guided and constrained by urban land use planning as well as altering
land use distributions in turn [17]. On this basis, human activities can be classified as the categories of
urban land use directly. Therefore, to understand where NTL pixel values come from is to calculate the
fraction of different land use classes (referred to as light sources hereafter) contributing to NTL [18],
which is a widely used remote sensing technology called unmixing.

Existing studies always apply pixel unmixing method to an NTL dataset directly [18]. The pixel
spectral unmixing method assumes that pixel reflectance is the combination of endmembers (different
pure light sources) reflectance and their respective fractions within the pixel, where the reflectance
profile of light sources in multiple spectral bands is required. However, because of the single
panchromatic band with an existing global NTL dataset [19], temporal mismatch between NTL dataset
and land use dataset is inevitable, thus leading to unsatisfactory unmixed results. A number of recent
studies have been devoted to detecting the relation between NTL and human activities through time
series perspective, for example, interpreting human activities from the seasonal fluctuation of NTL
datasets [20] by using points of interest (POI) or optical remote sensing datasets [21].

Another obstacle impeding the source detection of NTL is the lack of objective assessing indices.
General assessments include calculating the root mean square error (RMSE) [22,23] between the original
and remixed dataset (unmixed fraction matrix multiplied by endmember matrix), and correlation
between unmixed results from the NTL dataset with different spatial resolution. These indices denote
the mathematical errors of the results but fail to attribute the error to physical interpretation. Proposing
error-attributing indices is helpful to guide the source detection of the NTL dataset.

Addressing these shortcomings, this study mainly focuses on detecting the NTL sources within the
urban area through the parcel-oriented temporal linear unmixing method (POTLUM), and proposing
two series of indices, namely the parcel purity index (PPI) and source sufficiency index (SSI), to attribute
the unmixing error. Sample parcels of different light sources, or land use classes, are collected through
a field trip to apply POTLUM, and the results are then tested by rRMSE. Controlled experiments were
conducted. To verify the efficiency of PPI, multiple experiments were set by increasing the endmember
purity while maintaining other variables. Light sources were manually merged, and different study
areas were selected to check the practicability of SSI. This simple method proposed here is helpful to
interpret long-term human activity footprint and can also be applied in a better and finer estimation of
socioeconomic variables, or its relation to estrogen-dependent diseases. Two error-attributing indices
here can direct the ways to increase unmixing accuracy. This study helps to excavate the potential
usage of NTL, and better bridge remote sensing community and socioeconomic society.

2. Data

2.1. NPP-VIIRS NTL Remote Sensing Dataset

NTL remote sensing data in 2018 are monthly products with ~500 m spatial resolution, acquired
from the Day/Night Band of VIIRS sensor on board Suomi-NPP satellite (https://eogdata.mines.edu/

download_dnb_composites.html) [24]. More parameters of NPP-VIIRS nighttime light data are shown
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in Table 1. Since NPP-VIIRS data have all been calibrated on board [25], twelve-month data in 2018 are
used directly hereafter.

Table 1. Main parameters of NPP-VIIRS nighttime light data.

Passing Time Band Range Coverage Spectral Resolution Spatial Resolution

NPP-VIIRS 1:30 am 0.5~0.9 µm 65◦S~70◦N 14-bit 15 arc-sec

2.2. EULUC-China 2018

Dataset of Essential Urban Land Use Categories in China (EULUC-China) for 2018 is a vector
parcel-based product downloaded from http://data.ess.tsinghua.edu.cn/. This product was derived
from a set of 10-m satellite images, OpenStreetMap, nighttime lights, point of interests, and Tencent
location-based service data in 2018 using machine learning algorithms. Its two-level classification
system was adapted from the Chinese Standard of Land Use Classification. Here we used its first level
classification results as the input of our method (as Table 2 shows).

Table 2. Essential urban land use classification schemes-Level 1.

Level 1 01 02 03 04 05

Categories Residential Commercial Industrial Transportation Public management and service

In addition to the EULUC-China 2018 dataset, the field trip samples hierarchically generated for
training their classifiers were also collected. They are recorded in the form of categories, landmark
buildings and facilities, and mixed land use situation and respective estimated proportions. They are
used as original parcels here. More information on the EULUC-China product can be found in
reference [26]. On this basis, parcels can be further refined by filtering through their recorded mixed
situation and estimated proportions. No mixed parcel validated visually would be included in
refined parcels. The original and refined parcels are used as endmembers in different cases to test the
applicability of PPI.

Shanghai is one of the most prosperous metropolitans in China, which gathers humans from
various regions and partitions the land parcels into adequate land use classes. The NTL sources in
Shanghai have been detected using POTLUM and assessed by rRMSE with three PPI and two SSI
attributing the error. Figure 1 shows the study sites with NPP-VIIRS nighttime light remote sensing
data, EULUC-China 2018 maps, original parcels, refined parcels, and random points.

http://data.ess.tsinghua.edu.cn/


Remote Sens. 2020, 12, 1922 4 of 14

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 14 

 

 
Figure 1. Study areas and data collection. EULUC-China 2018 products and NPP-VIIRS NTL layers 
in Shanghai are displayed in (A) and (B), and those in Quzhou are displayed in (C) and (D). Besides, 
random points, original parcels and refined parcels used for POTLUM are also delineated in (B) and 
(D) with dots and polygons. Res, Com, Ind, Tsp, and Pub represents residential, commercial, 
industrial, transportation, and public service land use types, respectively. 

3. Methods 

To take advantage of spatial and temporal methods, the temporal unmixing method is adopted 
[23], which forms a reflectance profile in multiple temporal units instead of spectral bands. It further 
assumes that the proportion of each class reflectance in a certain pixel should not change within the 
selected period. Among various unmixing methods, linear unmixing is the most simple and clear one 
[22], which takes the pixel reflectance as the sum of endmembers reflectance multiplied by their 
respective fractions directly. NTL source detection is now turning into a parcel temporal linear 
unmixing problem, given the consensus that land use is a parcel-oriented concept rather than a pixel-
oriented one [26]. A parcel-oriented temporal linear unmixing method (POTLUM) is therefore 
proposed. 

Figure 1. Study areas and data collection. EULUC-China 2018 products and NPP-VIIRS NTL layers in
Shanghai are displayed in (A,B), and those in Quzhou are displayed in (C,D). Besides, random points,
original parcels and refined parcels used for POTLUM are also delineated in (B,D) with dots and
polygons. Res, Com, Ind, Tsp, and Pub represents residential, commercial, industrial, transportation,
and public service land use types, respectively.

3. Methods

To take advantage of spatial and temporal methods, the temporal unmixing method is adopted [23],
which forms a reflectance profile in multiple temporal units instead of spectral bands. It further assumes
that the proportion of each class reflectance in a certain pixel should not change within the selected
period. Among various unmixing methods, linear unmixing is the most simple and clear one [22],
which takes the pixel reflectance as the sum of endmembers reflectance multiplied by their respective
fractions directly. NTL source detection is now turning into a parcel temporal linear unmixing problem,
given the consensus that land use is a parcel-oriented concept rather than a pixel-oriented one [26].
A parcel-oriented temporal linear unmixing method (POTLUM) is therefore proposed.
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Besides, this study proposed error-attributing indices from the constraints of pixel unmixing.
Among possible influential factors, the accuracy of unmixing results are mainly constrained by three
aspects [23]: (1) model practicability; (2) endmember purity; and (3) light source sufficiency. Ratio RMSE
(RMSE divided by the average of endmember matrix) is adopted to assess the unmixing error and to
evaluate the first constraint. Two more series of indices are proposed to attribute the unmixing error
regarding the other two constraints, namely parcel purity index (PPI) and source sufficiency index
(SSI).

3.1. Parcel-Oriented Temporal Linear Unmixing Method (POTLUM)

Regarding that monthly NTL dataset and annual EULUC-China are both in the year 2018, a
fraction of each light source should remain the same, which meets the requirement of POTLUM.
Besides, NTL pixel values of parcels in the same class are averaged to form the endmember profile
throughout twelve months, mitigating the impact of non-land-use-related abruptions in certain parcels.
With estimated endmember matrix and downloaded NTL dataset, source reflectance fraction in each
NTL pixel can be estimated by the Equation (1):

Fp,c = Np,m × E−1
c,m (1)

where F denotes source fraction matrix, N denotes NTL matrix, E denotes endmember matrix, with
subscripts denoting rows and columns of each matrix. In detail, p, c, m represents total pixel numbers,
classes of light source, and months, respectively. The unmixing calculation is directly conducted
according to this equation, without other constraints.

To get a pixel-based assessment, root square error (RSE) is adopted (Equation (2)), and the overall
accuracy of POTLUM is assessed by rRMSE Equation (3).

RSEi =

∑m
j=1

√(
Ni, j − N̂i, j

)2

m
, RMSE =

∑p
i=1 RSEi

p
(2)

rRMSE = RMSE/Mean(Ec,m) × 100% (3)

where Ni,j denotes original NTL value for pixel i in month j, N̂i, j represents remixed NTL value,
Mean (Ec,m) denotes the average of the whole matrix, with all parameters sharing the same meanings
as above.

3.2. Parcel Purity Index

As shown in Equation (1), the calculation of E matrix controls the unmixing accuracy. Since E is
calculated from sample parcels, it is the parcel purity that actually contributes much to the unmixing
accuracy [27]. Although no existing index is set to assess the parcel purity, it is reasonable to infer from
the unmixed results. Logically, unmixed light source fraction should meet Fp,c ∈ [0,1], indicating that
source fraction should neither be lower than 0 nor exceed 1. On this basis, the parcel purity (PP) matrix
is labeled as follows:

PPpi,ci =

{
1, Fpi,ci ∈ [0, 1]
0, Fpi,ci < [0, 1]

, pi ∈ [1, p], ci ∈ [1, c] (4)

where pi and ci indicate the pi
th row and ci

th column in Fp,c, respectively.
With the help of the PP matrix, a pixel-based, a class-based and an overall PPI can be calculated as

follows, and p, c denotes total pixel numbers and classes of light source, respectively, with all variables
sharing the same meanings as above.
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PPQA =


∑c

ci=1 PP1,ci
c
...∑c

ci=1 PPp,ci
c

 (5)

PPCA =
( ∑p

pi=1 PPpi ,1

p . . .

∑p
pi=1 PPpi ,c

p

)
(6)

PPOA =

∑p
pi=1

∑c
ci=1 PPp,c

p ∗ c
(7)

Pixel-based PPI is calculated by the qualified element numbers in the PP matrix divided by all
element numbers within a pixel (one row in the PP matrix), which can be used as a quality assessment
(PPQA) band. Class-based assessment PPI (PPCA) is calculated by the qualified element numbers
divided by all element numbers within a class. Overall assessment PPI (PPOA) is calculated by all
qualified element numbers divided by all element numbers in the whole matrix.

3.3. Source Sufficiency Index

To detect the NTL sources within the urban area through POTLUM lies on a basis that the light
sources, or the land use classes, is sufficient. If the sources are just sufficient, the sum of source fraction
of the same pixel should follow

∑c
ci=1 Fpi,ci = 1, otherwise the sum should either be lower than or

exceed one. Between them, the sum lower than one but larger than zero is acceptable since the land
use classes adapted from Chinese Standard of Land Use Classification cannot cover all classes within
the urban area. Therefore, the source sufficiency (SS) matrix is labeled as follows.

SSpi =

 1,
∑c

ci=1 Fpi,ci ∈ [0, 1]
0,

∑c
ci=1 Fpi,ci < [0, 1]

, pi ∈ [1, p] (8)

Like PPI, a pixel-based and an overall index are proposed and similarly named as SSQA and
SSOA, with all parameters sharing the same meanings.

SSQA =


SS1

...
SSp

 (9)

SSOA =

∑p
pi=1 SSpi

p
(10)

4. Results

4.1. Practicability of POTLUM, PPI, and SSI

The endmember matrix for unmixing is generated from the average of NTL values of all samples
in the same category each month, showing as profiles along the timeline (Figures S1–S3). To test
the practicability of PPI and SSI, four types of samples are selected, namely random point samples,
original parcel samples, refined parcel samples, and class-adjusted refined parcel samples. Commercial,
industrial, and public service land use types of refined parcel samples are integrated into one category
by averaging their NTL values, to generate purer parcel samples. On this basis, the sample purity
increases in these four types of samples. Results from these controlled experiments in Shanghai and
Quzhou verify this trend, and prove the practicability of PPI, as is summarized in Tables 3 and 4.
Comparing the last two lines in these tables, the SSOA of class-adjusted is lower than the non-adjusted
one in both Shanghai and Quzhou, which also proves the practicability of SSI. Also, from the comparison
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between the first line to any of the rest, the privilege of parcel-oriented over point-oriented approach
has been justified. Note that pixel-based assessments from RSE, PPQA, and SSQA are not summarized
in these tables.

Table 3. Accuracy of unmixed results in Shanghai.

Sample (Categories)
PPCA (%) Overall Accuracy (%)

Res Tsp Com Ind Pub PPOA SSOA rRMSE

Point (V) 42.01 50.14 57.79 52.83 38.04 48.16 93.19 5.32
Original (V) 67.27 71.12 35.76 34.37 46.92 51.09 96.70 3.44
Refined (V) 65.50 59.34 57.88 37.36 52.32 54.48 96.53 3.38
Refined (III) 66.08 68.76 43.87 59.57 93.32 3.57

Table 4. Accuracy of unmixed results in Quzhou.

Sample (Categories)
PPCA (%) Overall Accuracy (%)

Res Tsp Com Ind Pub PPOA SSOA rRMSE

Point (V) 67.35 71.52 27.20 65.48 22.30 50.77 96.53 0.71
Original (V) 59.53 21.04 7.05 95.41 82.18 53.04 99.50 0.87
Refined (V) 78.89 94.03 30.04 78.66 38.82 64.09 99.55 1.04
Refined (III) 74.70 95.97 57.39 76.02 99.36 1.33

4.2. Nighttime Light Sources

Overall, the unmixed source fractions depict the spatial pattern of different light sources throughout
Shanghai. Five fraction pictures have been rendered in different colors (see left panel of each subfigure
in Figure 2). Obviously, a high proportion of the residential areas are located next to the city center and
the transportation with high intensity are evenly distributed throughout the city, but with a relatively
small proportion in each pixel. Purer commercial areas are also distributed in order in Shanghai with
the highest proportion in the city center and near two airports, and the higher proportional public
management and service areas are highly concentrated in certain places, similar to the distribution
of administrations or some famous parks. However, industrial places account for a large amount of
area in Shanghai. Although some of them well describe the industrial districts, others may encounter
misestimation. More detailed information can be shown in four famous landmarks, namely the
Century Park, Chenghuang Temple, Baosteel corporation, and Hongqiao Airport. They mainly
comprise administrations and leisure places, shopping and culture religion with dense highways,
industrial parks and ferry stations, transportation and commercial service land uses, respectively.
Four zoomed-in figures have well captured these variances.

Differing from metropolitans such as Shanghai, NTL in Quzhou, a less developed prefecture
but a traffic thoroughfare in Zhejiang province, is mainly attributed to residential (Figure 3A) and
transportation categories (Figure 3D). Specifically, Kaihua (II) and Longyou (V) county are more
developed regions, where public service (Figure 3E) and industrial types (Figure 3C) account for
majority of NTL values, respectively. Qiuchuan town (III) and Quzhou airport (IV) are typical areas of
residential NTL intensive (Figure 3A) and transportation NTL intensive (Figure 3D), respectively.
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unmixing method in Quzhou (I), using refined parcels as endmembers. Typical landmarks are zoomed
in to show more details: Kaihua County (II), Qiuchuan Town (III), Quzhou Airport (IV), and Longyou
County (V). Res, Com, Ind, Tsp, and Pub represents residential, commercial, industrial, transportation
and public service land use types, respectively.
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4.3. Unmixing Accuracy

Besides visual validation, quantitative validation figures are also provided. RSE calculates
unmixing errors pixel by pixel. Although the results are acceptable through quantitative assessment
in Tables 1 and 2 and qualitative assessment in Figures 2 and 3, there still exist misestimations in
several pixels.

These pixels mainly clustered in city centers, airport, Disney Park, and along the Huangpu River in
Shanghai, judging by the RSE maps. Having pointed out the erroneous pixels in RSE map, PPI, and SSI
are further calculated to attribute these errors into parcel purity or source sufficiency problem. As can
be seen from Figure 4(II to V), most erroneous pixels are consistent with lower values in PPQA and
SSQA, indicating that these errors can be corrected after refining parcel purity and source sufficiency
rather than changing unmixing methods.
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In detail, errors in the Century Park and Chenghuang Temple result from both impure parcels and
insufficient sources, and those in Hongqiao Airport mainly result from impure sources, with Baosteel
corporation a satisfactory unmixing result. To be more specific, PPCA can be used to check which
endmember includes the most impure parcels. As the third line in Table 3 shows, the PPOA, SSOA,
rRMSE, and PPCA of other four sources are acceptable, while industrial parcel samples are the least
pure, in accord with visual validation of Figure 2.

Quantitatively, NTL unmixed results in Quzhou are much better than those in Shanghai because
of less mixed land use parcels, comparing values in Table 4 to those in Table 3. Erroneous pixels
in Quzhou are similarly clustered in city downtown, for example, the more developed region in
Kaihua (II) and Longyou (V) county (Figure 5C), which can also be improved after purifying the purity
(Figure 5A).
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5. Discussion

5.1. Comparison with Previous Works

NTL source detection has long been a tough problem and invited multiple experiments these years.
For example, Li et al., incorporated nonnegative constraints when solving the Fp,c [18], to ensure that
the unmixed result is reasonably meaningful. Moreover, Ma et al., plotted a cumulative distribution
of pixel-level NTL radiance for different types of land cover [21]. The cumulative distributions
demonstrate the one-to-one correspondence between NTL radiance and composition of different types.
Meanwhile, Chen et al., utilized random forest to map information from different types of POI to
NTL [20] and take contributions of different types to the mapping algorithm as the contribution to NTL,
which also represents fractions. These studies detect NTL sources through multiple methods, but Li
and Ma failed to objectively assess the error. While Chen assessed the error objectively, the physical
interpretation of the contribution and error are not clear enough since random forest is a black box.
So far, no study has devoted to attributing the error. Note that although POTLUM includes no further
constraint such as nonnegative, the rRMSE is still acceptable. Thanks to this non-constrained unmixing
procedure, PPI and SSI are proposed. The workflow put forward in this study combines detection
light sources as well as attribute errors objectively.

However, NTL source fraction products share different interpretations from land use products
such as EULUC-China. Each pixel value in NTL source fraction shows proportions of different light
sources, suggesting a more intensive light source and indicating a higher intensity of human activities.
In comparison, land use products such as EULUC-China focus on delineating the clearer boundary of
a certain land use type, without enough intensity. They can be used in different cases according to
their different emphases in future studies.
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The development of PPI in this study is not only helpful to acquire a more precise NTL source
fraction, but also applicable to explain the classification error in EULUC-China. Taking Shanghai as an
example, whose land use complexity is similar to China, PPCA in Shanghai shows high correlation
with User’s Accuracy (R = 0.883) and Producer’s Accuracy (R = 0.642) of EULUC-China classification
results, using the same original parcels (refer to Table S1). As is reasonable to say that an impure parcel
is rather difficult to be classified into one specific type, PPCA can be applied to select better training
samples for parcel-oriented land use classifications.

5.2. Visual Validation, RMSE-Related Indices and Error Attributing Indices

Visual validation is the most prevailing method to label parcel class. However, two points should
be considered, i.e., different methods to acquire parcels, and different understanding of validation.
Field trip parcels in this study were generated from the polygons clipped by surrounding buffered
roads [26], which unavoidably incorporates bias within parcels. With this bias, campaign researchers
would label 100% purity to a parcel which comprises areas belonging to a pure type, without considering
whether this parcel really represents the pure type. Since the average value of features within the
segmented parcel is calculated and used to estimate endmembers, the difference between them can
make a big difference, which invites us to propose these more objective indices.

Among objective indices, PPI and SSI are both mathematically and physically isolated from
RMSE-related indices. RMSE evaluates the difference between original Ni,j and remixed Ni,j, and collects
all errors without considering their attribution. In contrast, the calculation of PPI and SSI derives
from the physical inference of the unmixed results and therefore attributes the errors detected in RSE
map to either parcel purity or source sufficiency one (Figures 4 and 5). For example, in Figure 4,
the unmixed map in Shanghai, higher RSE in Chenghuang Temple area (III) can be attributed to both
impure parcels and insufficient sources. Those not detected by PPI and SSI can then be attributed to
model practicability. PPI and SSI are also not necessarily dependent. For example, in Chongming
District, a northern island in Shanghai, a little higher RSE in the middle north of the island is mainly
attributed to insufficient classes rather than impure parcels, since the area is covered with croplands
instead of urban land use classes.

5.3. Uncertainty and Implications

This study proposed POTLUM, PPI, and SSI, whose practicability have been verified by controlled
cases. There is no further a challenge in applying them to every administrative area. Still, there remains
unknown whether they can be applied to all administrative units as a whole. Since PPOA and SSOA
shows a big difference in Shanghai and Quzhou (Tables 3 and 4), it’s clear that there exist systematic
background differences between various cities. To mitigate the huge disparity of NTL values among
regions is the key to successfully apply POTLUM, PPI, and SSI to the whole country or even the whole
world at once, rather than one by one.

Land use products are essential to trace the human activity footprint. NTL source fractions here
and land use dataset such as EULUC-China can both be applied to discover the human-environment
connections historically, and be used as forcing factor to forecast future changes through simulation
models such as WRF-Chem [28]. For forecasting, it has been a long time that models take land cover
datasets as inputs. Until recently, researchers have found that modeling accuracy can be significantly
improved in simulating heat, wind, and pollution-related variables, if finer classes within urban land
cover category are input [29]. Since those variables are highly correlated with human activities, detailed
simulation within urban has increasingly been emphasized. Among other improving models, a cooling
tower scheme takes human-related sensible heat into consideration [30]. It needs to distinguish
different types of air-conditioners in different human activity categories, where both NTL sources
fraction and EULUC-China can play a role.

Regarding the simpleness and interpretation of POTLUM, it is easy to be used in multiple regions
throughout a longer period of time. RMSE-related indices together with PPI and SSI helps to produce
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products for higher accuracy at the target regions and periods. If human activity intensity to a larger
extent during a longer time can be traced, their footprint can be delineated and the simulated accuracy
of aforementioned cooling tower scheme is more likely to improve. Besides, other similar human
behavioral associated studies are upcoming [10].

6. Conclusions

This study sought to answer the challenging question-where does nighttime light come from?
by detecting nighttime light sources and attributing its detection biases. Towards this ultimate
goal, we have developed an urban NTL source detection method called parcel-oriented temporal
linear unmixing method (POTLUM) and proposed two indices to attribute the unmixing errors.
Results showed that with this simple and straightforward POTLUM, we could successfully detect
urban NTL sources with plausible accuracies. We also identified that most unmixing errors could be
attributed to endmember estimation and NTL sources definition rather than model selection, according
to PPI and SSI. Various controlled experiments further verified the efficiency of PPI and SSI in their
capability of capturing the parcel purity and source sufficiency, which could explain the error of
parcel-oriented land use classification partially. With the help of PPI and SSI, finer endmembers and
NTL sources could be estimated and adapted, so that POTLUM can further be applied to larger areas
throughout a longer time. In conclusion, the method presented in this study makes it possible to identify
specific sources of nighttime light and is expected to enrich estimation of structural socioeconomic
indicators, as well as better support various applications in urban planning and management.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/12/1922/s1,
Figure S1: Temporal profile of original parcels (a) and refined parcels (b), Figure S2. Temporal violinplots of
original pixel values throughout twelve month (from left to right and then from top to bottom), Figure S3. Temporal
violinplots of refined parcel values throughout twelve month (from left to right and then from top to bottom),
Table S1. Pearson’s correlation between PPCA and class accuracy of EULUC-China 2018 from original parcels.
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