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Abstract: In this article, we investigated the detection of forest vegetation changes during the
period of 2017 to 2019 in the Low Tatras National Park (Slovakia) and the Sumava National Park
(Czechia) using Sentinel-2 data. The evaluation was based on a time-series analysis using selected
vegetation indices. The case studies represented five different areas according to the type of the forest
vegetation degradation (one with bark beetle calamity, two areas with forest recovery mode after
a bark beetle calamity, and two areas without significant disturbances). The values of the trajectories
of the vegetation indices (normalized difference vegetation index (NDVI) and normalized difference
moisture index (NDMI)) and the orthogonal indices (tasseled cap greenness (TCG) and tasseled cap
wetness (TCW)) were analyzed and validated by in situ data and aerial photographs. The results
confirm the abilities of the NDVI, the NDMI and the TCW to distinguish disturbed and undisturbed
areas. The NDMI vegetation index was particularly useful for the detection of the disturbed forest
and forest recovery after bark beetle outbreaks and provided relevant information regarding the
health of the forest (the individual stages of the disturbances and recovery mode). On the contrary,
the TCG index demonstrated only limited abilities. The TCG could distinguish healthy forest and
the gray-attack disturbance phase; however, it was difficult to use this index for detecting different
recovery phases and to distinguish recovery phases from healthy forest. The areas affected by the
disturbances had lower values of NDVI and NDMI indices (NDVI quartile range Q2–Q3: 0.63–0.71;
NDMI Q2–Q3: 0.10–0.19) and the TCW index had negative values (Q2–Q3: −0.06–−0.05)). The analysis
was performed with a cloud-based tool—Sentinel Hub. Cloud-based technologies have brought
a new dimension in the processing and analysis of satellite data and allowed satellite data to be
brought to end-users in the forestry sector. The Copernicus program and its data from Sentinel
missions have evoked new opportunities in the application of satellite data. The usage of Sentinel-2
data in the research of long-term forest vegetation changes has a high relevance and perspective due
to the free availability, distribution, and well-designed spectral, temporal, and spatial resolution of
the Sentinel-2 data for monitoring forest ecosystems.
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1. Introduction

One possibility to monitor and evaluate forest vegetation is to use Earth Observation (EO) methods.
EO provides unique information for the purpose of observing dynamic phenomena on the Earth’s
surface [1]. Satellites are equipped with various sensors that provide images with information that the
human eye cannot see. This is especially useful for detecting the early stages of forest disturbance
when there are no visual signs of damage [2]. One of the most beneficial outputs based on EO is the
worldwide databases of status and changes of forest areas [3], the databases of forest area changes for
Eastern Europe [4], or the databases of systematically addressed changes in forest areas, both in North
and South America (e.g., in Brazil and Colombia) [1,5–9]. Other authors evaluated a forest affected
by bark beetles with vegetation indices from Landsat images, and the subsequent pixel classification
achieved a total accuracy of 80–82% [10] or focused on the classification of three categories of the forest
using the maximum likelihood classifier: healthy trees, damaged trees, and grasslands [11].

The forest bark beetle calamity itself can be divided into the green-attack (without visible damage),
followed by a red-attack (the first visible phase of the death of trees), and finally a gray-attack
(dead trees). This method successfully separated the red-attack trees from the healthy trees and
the grasslands using the RGI (red green index) and reflectivity in the green band with an overall
classification accuracy of 86%. The SWIR (short-wavelength infrared) band effect was demonstrated in
detecting forest disturbances using time series (TS) methods [12]. In Central Europe, evaluations of the
state and changes in forest vegetation using Landsat have been presented by many studies [13–16].
EO data have often been used in the evaluation of forests in Czechia, which have been struggling with
long-term disturbances (wind calamities or the subsequent bark beetle invasions) [17–21].

To determine the state and the changes of the forest vegetation from the satellite images, the key
information was found in the spectral properties of the vegetation species studied [22]. The suitability
of the multispectral data and the vegetation indices calculated from these could differ in the monitoring
of the forest vegetation and how it was proven in various studies [20,23–28]. The unanswered question
is of which real spectral differences measured during the observed years are relevant to determine
the characteristics and individual phases of the forest disturbance. TS methods are often used for
the evaluation of the forest changes. For TS purposes, a whole range of satellite data can be used.
For choosing a data type, the availability and suitability of the images, especially in terms of time and
the radiometric and spatial resolution, need to be considered [29].

Due to the availability of the free access archive, Landsat’s satellite imagery archive is one of the
most commonly used archives for a wide range of disciplines [30]. Landsat data provides visible,
NIR (near-infrared) and SWIR bands that have often been used in the evaluation of forest degradation
affected by a disturbance, e.g., the bark beetle calamity. Landsat TM data have proved to be effective
for detecting the red-attack phase of the bark beetle disturbance [31]. From a temporal point of view,
it is appropriate to use the Landsat mission data for a longer TS, especially as their time coverage is
longer than 40 years. However, looking at the number of acquisitions per year, the 16-day temporal
resolution is a limiting factor that is even lower due to cloud coverage, especially in mountainous
areas [1,30]. In the case when there are only a few images during the year, then only one chosen
reference image per year is often used [19]. Some studies tried to combine a range of different types of
satellite data, e.g., Landsat with MODIS data [32]. In the case of a long TS period (more than 20 years),
various radiometric and spectral resolutions of the acquired data can influence the results of the TS
due to different types of sensors [33].

The Copernicus program has brought a new revolution in EO monitoring. ESA is developing new
missions of satellites called Sentinels specifically for the operational needs of the Copernicus program.
The images are received via two parallel missions 2A and 2B and in the case of the overlapping scenes,
the temporal resolution is less than five days [34]. The Sentinel-2 multispectral optical dataset is now
available with the ambition to provide data with better resolutions (spatial, temporal, and spectral)
than the traditional data like Landsat. The Sentinel-2 data have been available since 2015; therefore,
the archive is ready to be tested with the TS analyses. The spectral vegetation indices calculated
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from Sentinel-2 have a potential for mapping and detecting changes induced by bark beetle attack,
particularly based on the red-edge bands or water-related indices. These changes are limitedly
detectable by Landsat-8 due to the lower spectral and spatial resolution of the OLI sensor; see the
comparable study [2] with 67% accuracy for Sentinel-2 and 36% accuracy for Landsat 8.

Several articles have been written for the TS of the Sentinel-2 data, e.g., focused on mapping
floodplain grassland plant communities, where the authors dealt with the variability in the water
content using TS, especially with TS using the support vector machine and random forest classifiers [35].
Other authors [36] focused on observing the Cotton Belt using the TS of the Sentinel-2 data. The authors
used random forest classification and several kinds of vegetation indices for their time survey.
The temporal and spatial resolution played an important role in the observation of the TS [37–39].
For this reason, a fusion of the Landsat 8 and Sentinel-2, called harmonized datasets, has been
designed [40–42].

Few articles have been written for the TS of the Sentinel-2 focused on forest vegetation,
e.g., that dealt with the recognition of unhealthy cork oaks (Quercus suber) [43]. Based on a multitemporal
comparison (using vegetation indices), researchers found that while in the wetter part of the year,
the differences were small, and, during the drier part of the year (September and October), the differences
between the healthy and unhealthy cork oak stands were more significant. Another study focused on
forest growth using the Sentinel-2 TS [44] and attempted to determine how to distinguish bamboo
forests (Phyllostachys pubescens) from coniferous or deciduous forests using the annual course of the
vegetation indices (NDVI, NDMI, etc.). The results prove that May is the best month to distinguish
bamboo stands from other forest types. Another study [45] showed that the classification of forest
types using the random forest method based on the Sentinel-2 TS proved a high relevancy of the
red-edged bands.

A perspective method in the processing of RS data is cloud computing. The Sentinel Hub is one
of the most used cloud-based applications, and this application allows effective and end-user friendly
processing and analysis of the EO data (https://www.sentinel-hub.com). It is a user interface app for the
semi-automatic satellite data analysis created by Sinergise [46]. This platform provides satellite images
from various missions, e.g., Sentinel, Landsat, or MODIS. The Sentinel Hub allows the downloading,
the visualization of the satellite imageries, scripting to calculate the vegetation indices, classifications,
and other analyses, as well as using WMS (Web Map Service) services to extract the selected values for
the given site and period [46,47].

One of the current problems in the forest ecosystems of central Europe is bark beetle calamities [18].
Their overgrowth is closely related to the climate change and the spread of non-indigenous coniferous
trees in central Europe, e.g., spruce (Picea abies) [48]. This study is focused on an evaluation of the
changes in the forest vegetation in selected areas of the Low Tatras National Park (Slovakia) and the
Sumava National Park (Czechia) using the TS methods. The analysis of the TS is based on Sentinel-2
images (description in Table A1; with a comparison to the Landsat data). Due to the dynamic changes in
the forests in Czechia and Slovakia that occurred over the last several years, it is a suitable opportunity
to apply the Sentinel-2 TS for the detection of disturbing events (bark beetle) and to evaluate the
forest health status during the individual stages of the disturbance (forest conditions before, during,
and after the disturbance events). From this point of view, the main aim and novelty of this study
is to use and test the Sentinel-2 data for the evaluation of the dynamic forest changes. The selected
vegetation indices and their trajectories of the TS were interpreted and validated in relation to the
in situ data investigated during field research or provided by the Administration of National Parks.
In the process of collecting and evaluating the data, we cooperated with the Low Tatras National Park
and the Sumava National Park. An important part of this study is the evaluation of the applicability of
the EO/Sentinel-2 data and the methods in the forest management and the nature protection of national
parks. For this reason, big data/cloud data methods of the Sentinel Hub were used.

https://www.sentinel-hub.com
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The main objectives of this study were:

• To test the Sentinel-2 data in the TS analyses for the selected case studies in Czechia and Slovakia
within a three-year period of 2017–2019 and to evaluate the benefits of the Sentinel-2 data for
monitoring the forest changes.

• To compare the Sentinel-2 and Landsat temporal and spatial resolution for the TS analyses of the
forest vegetation in mountainous areas.

• To evaluate the relevancy of the vegetation indices in the study of the forest changes and the
health of the forest vegetation using the Sentinel-2 data.

• To perform TS analyses and compare the results in the different types of areas affected by the bark
beetle invasion (the disturbed and renewing forest ecosystems).

• To discuss the positives and perspectives of the Sentinel-2 data in the TS of forest changes in
comparison to the traditional data used, e.g., Landsat.

• To process the satellite data and perform analyses in the cloud-based tool (Sentinel Hub) and
discuss the positives and negatives of cloud-based systems for end-users in forestry research
and management.

We would like to give responses for these research questions:

• What are the main positives of the Sentinel-2 data in the evaluation of the forest vegetation affected
by the disturbances? What type of change in the forest is possible to detect by Sentinel-2? What are
the positives using Sentinel-2 data in the TS in comparison with the traditional satellite data,
e.g., Landsat?

• What are the positives of processing and analyzing the data in a cloud-based tool (Sentinel Hub)?
• What vegetation indices derived from the bands of the Sentinel-2 data are useful for the detection

of the forest affected by a bark beetle invasion? Which vegetation indices based on these data
could detect the disturbances that occurred and individual recovery phases in the forest of
mountainous areas? Are the vegetation indices, traditionally used for Landsat data, usable for the
Sentinel-2 data?

• How many cloud-free images of Sentinel-2 are available for the TS analysis in our mountainous
areas case studies annually? What is the progress of the data availability per year in comparison
with the Landsat data? Is the temporal resolution of the Sentinel-2 data sufficient to detect the
changes and the health of the forest within the year?

2. Materials and Methods

2.1. Study Areas

2.1.1. In Situ and Auxiliary Data

Two types of study areas, with a significant and without any significant impact of a disturbance
on the forest, were selected in the Sumava National Park (Sumava NP, Czechia) and the Low Tatras
National Park (NAPANT, Slovakia). The study areas were selected based on: (1) the forest archive
documents of the national parks, which provided data on the status of the forests and their management,
the area and category of the forests, the average age of the stock and the predominant tree species
representation; (2) the in situ research and field observations focused on the height, age, and density of
the trees, the plant and species composition, the characteristics of the plant undergrowth, the visual
observations of the conditions of the individual trees; and (3) the aerial photo archives from the Czech
Office for Surveying, Mapping and Cadastre (CUZK; orthophoto for Czechia), the office of Geodesy,
Cartography and Cadastre Authority of the Slovak Republic (UGKK SR; orthophoto for Slovakia),
Mapy.cz (GEODIS, TopGis for Czechia and EUROSENSE, GEODIS for Slovakia), and Google Earth
Pro (for both countries). The archive data and aerial photographs were helpful for the selection of the
suitable study areas, the investigation of the forest status and changes as well as for the validation
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of the results achieved by the TS analysis of the Sentinel-2 data. The field research was carried out
repeatedly in the summer and autumn of the years 2017, 2018, and 2019. The study areas were localized
by a global navigation satellite system receiver (Trimble Geoexplorer 6000 Geo XT GPS).

2.1.2. Study Area Description

The study areas are located in the Sumava National Park (Sumava NP, Czechia) and the Low
Tatras National Park (NAPANT, Slovakia). The Low Tatras are among the most important mountainous
regions of Slovakia with a maximum height of 2043 m above sea level at the summit of Dumbier.
The declaration of the Low Tatras National Park occurred in 1978. The national park covers an area
of approximately 728 km2 with a buffer zone of more than 1102 km2. NAPANT is one of the largest
protected areas, not only in Slovakia, but in the entire Carpathians. Due to its large size, the diverse soil
substrate, and the variation in the forms of relief, the Low Tatras are a part of the area with the highest
diversity of plant species in Slovakia. The dominant plant community in the area is forest, with the
presence of extensive forest ecosystems [28]. The Sumava mountains are an extensive mountain range
on the border of Czechia, Austria, and Germany. The mean altitude is 928 m above sea level. In Czechia,
since 1963, the territory has been managed as a protected landscape area, and as a national park since
1991. The area of the national park is approximately 681 km2 [19,49]. The dominant land cover is
a coniferous forest, which is under pressure from biotic, abiotic, and anthropogenic influences [14,15].

In total, five study areas of interest were selected (three in the Sumava NP and two in the NAPANT),
where the field research was conducted (Table 1). All the study areas are depicted in the map (Figure 1).
The study areas represent different areas according to the type of the forest vegetation degradation
(areas affected by a disturbance and areas without any significant disturbances). The extent of all the
study areas was defined as 60 × 60 m (3600 m2). This extent ensures pure pixels (unmixed) of the
individual forest type and it is compatible with the 10-/20-m bands of the Sentinel-2 (6 × 6/3 × 3 pixels).

Table 1. Characteristics of the study areas. Source: author’s own work (2020).

Study Area Country (National
Park)

Latitude
(WGS84)

Longitude
(WGS84) Altitude (m) Disturbance Description

SA1dist
Czechia (Sumava

National park) 13.45196 49.02482 1040 YES

Bark beetle calamity
(red-attack 2015,

gray-attack prevailed
2016–2017). From 2018
in the recovery phase.

SA2recov
Czechia (Sumava

National park) 13.52290 48.98473 1160 YES

Recovery phase after
bark beetle calamity.
Small spruces and

shrubs as undergrowth.

SA3non-dist
Czechia (Sumava

National park) 13.47758 49.04568 1035 NO

Stable ecosystem with
spruce trees, grass and
moss as undergrowth.

Visible impact of
drought in last years.

SA4recov
Slovakia (Low Tatras

National Park) 19.61421 48.89590 1300 YES

Recovery phase after
bark beetle calamity.

Small trees and shrubs
as undergrowth.

SA5non-dist
Slovakia (Low Tatras

National Park) 19.66245 48.95963 1335 NO Stable ecosystem with
spruce trees.

SA—study area; dist—disturbance, recov—recovery, non-dist—no disturbance; area number (1–3 from Czechia,
4–5 from Slovakia).



Remote Sens. 2020, 12, 1914 6 of 26

Remote Sens. 2020, 12, x FOR PEER REVIEW  6  of  26 

 

Table 1. Characteristics of the study areas. Source: author’s own work (2020). 

Study 

Area 

Country 

(National Park) 

Latitude 

(WGS84) 

Longitude 

(WGS84) 

Altitude 

(m) 
Disturbance  Description 

SA1dist 

Czechia 

(Sumava 

National park) 

13.45196  49.02482  1040  YES 

Bark beetle calamity (red‐attack 2015, 

gray‐attack prevailed 2016–2017). 

From 2018 in the recovery phase. 

SA2recov 

Czechia 

(Sumava 

National park) 

13.5229  48.98473  1160  YES 

Recovery phase after bark beetle 

calamity. Small spruces and shrubs 

as undergrowth. 

SA3non‐dist 

Czechia 

(Sumava 

National park) 

13.47758  49.04568  1035  NO 

Stable ecosystem with spruce trees, 

grass and moss as undergrowth. 

Visible impact of drought in last 

years. 

SA4recov 

Slovakia (Low 

Tatras National 

Park) 

19.61421  48.8959  1300  YES 

Recovery phase after bark beetle 

calamity. Small trees and shrubs as 

undergrowth. 

SA5non‐dist 

Slovakia (Low 

Tatras National 

Park) 

19.66245  48.95963  1335  NO  Stable ecosystem with spruce trees. 

SA—study  area;  dist—disturbance,  recov—recovery,  non‐dist—no  disturbance;  area  number  (1–3  from 

Czechia, 4–5 from Slovakia). 

 

Figure  1. Study  areas of  the Sumava National Park  (Czechia)  and  the Low Tatras National Park 

(Slovakia). Source: author’s own work (2020)/Web Map Service (WMS) Orthophoto by Czech Office 

for Surveying, Mapping and Cadastre (CUZK) (2019)/WMS ZBGIS (Digital map app) by Geodesy, 

Cartography and Cadastre Authority of the Slovak Republic (UGKK SR) (2018). 

Figure 1. Study areas of the Sumava National Park (Czechia) and the Low Tatras National Park
(Slovakia). Source: author’s own work (2020)/Web Map Service (WMS) Orthophoto by Czech Office
for Surveying, Mapping and Cadastre (CUZK) (2019)/WMS ZBGIS (Digital map app) by Geodesy,
Cartography and Cadastre Authority of the Slovak Republic (UGKK SR) (2018).

The study area 1 (SA1dist) area was selected in the Sumava NP. In this area, a bark beetle attack
occurred in 2015 (the red attack). A gray-attack prevailed in 2016–2017 and the study area has been in
recovery phase since 2018 (Figure 2). The average altitude is 1040 m above sea level.

The study area 2 (SA2recov) represents a place where a massive bark beetle attack occurred in the
Sumava NP with the culmination around the year 2012 (the disturbance occurred between 2009–2012).
Currently, the slow renewal of the ecosystem is taking place without any forest management intervention.
More than 50% of the area is still covered by non-logged dead trees (spruces). Although this SA2recov is
a wetland area, the location has been under pressure from drought over the years since 2017. New small
trees (spruces) and shrubs are visible in the territory (Figure 3). The average altitude is 1160 m above
sea level.

The study area 3 (SA3non-dist) located in the Sumava NP has not incurred any significant calamity
or disturbance over the past 30 years. The altitude is approximately 1035 m above sea level (Figure 4).
This is a forest ecosystem covered by grass and moss in the undergrowth that maintains a stable
humidity. However, in recent years, we can see the impact of the drought on the forest. A reduction in
the number of needles on the trees during the long-term field survey was observed.

The study area 4 (SA4recov) is located in the NAPANT with an average altitude of 1300 m above
sea level. This study area represents a place where the bark beetle outbreak gave rise to a decline in the
spruce trees on the upper edge of the forest line level between the years 2007–2012 (Figure 5). In 2007,
the wind calamity Kyrill took place, which caused, after 2007, a massive expansion of the bark beetle
calamity in the surrounding areas. After the disturbance, the damaged trees were not logged and,
currently, the recovery phase is still in progress.
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Figure 2. Study area 1 (SA1dist, Sumava NP, Czechia) in detail: with a bark beetle outbreak (aerial photo
created by CUZK in 2019). Source: author’s own work (2020)/WMS Orthophoto by CZUK (2019).
The area of interest is in the red polygon.
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Figure 3. Study area 2 (SA2recov, Sumava NP, Czechia) in detail: with a recovery phase after the bark
beetle outbreak (aerial photo created by CUZK in 2019). Source: author’s own work (2020)/WMS
Orthophoto by CUZK (2019). The area of interest is in the red polygon.
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Figure 5. Study area 4 (SA4recov, the Low Tatras, Slovakia) in detail: with a recovery phase after the bark
beetle outbreak (aerial photo created by UGKK SR in 2018). Source: author’s own work (2020)/WMS
ZBGIS by UGKK SR (2018). The area of interest is in the red polygon.
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The study area 5 (SA5non-dist) is located in the NAPANT and represents a place without any
disturbance, with approximately 70-year-old trees clearly in good condition (Figure 6). The average
altitude is 1335 m above sea level. The predominant representation of the forest trees is spruce
(Picea abies), which naturally creates a functioning ecosystem of mountain spruce forests in the NAPANT.
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Figure 6. Study area 5 (SA5non-dist, the Low Tatras, Slovakia) in detail: with minimal disturbances
(aerial photo created by UGKK SR in 2018). Source: author’s own work (2020)/WMS ZGBIS by UGKK
SR (2018). The area of interest is in the red polygon.

2.2. Optical Data

2.2.1. Sentinel-2

For this study, the atmospherically corrected Sentinel-2 L2A data (using the Sen2Cor correction)
without snow and cloud cover were used. The cloud and snow cover were identified by visual
interpretation of the images using true and false color RGB band combinations. We worked with
Sentinel-2 L2A data (sensed by satellites 2A and 2B) with 10- and 20-m spatial resolution. The Sentinel-2
data were used for the calculation of the vegetation indices and TS analysis.

2.2.2. Landsat 8

The second source of satellite data was the Landsat 8 images with a 30-m spatial resolution.
Landsat 8 data were used for the evaluation of the temporal and spatial resolution based on a comparison
with the Sentinel-2.

Both the available Sentinel-2 and Landsat 8 data were retrieved from the Sentinel Hub archive.
The completeness of the archive of the Sentinel Hub application was validated/checked using the
Copernicus Open Access Hub (for Sentinel-2) and using the United States Geological Survey (USGS)
Earth Explorer (for Landsat 8). The observation period was from 28 March 2017 (release of Sentinel-2
L2A data) to 31 December 2019.
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2.3. Data Processing

2.3.1. Evaluation of the Spatial and Temporal Resolution

The comparison and evaluation of the spatial resolution of the Sentinel-2 and Landsat 8 was
performed in all study areas. Based on images that were received at a similar time, the abilities of both
data sets for the interpretation of the landscape/forest structure were visually evaluated and compared.
The goal was to show a significant progress of Sentinel-2 data in the detection of the forest structure
(different types of forest) and shadows in the local scale.

Second, the abilities of both data sets (Sentinel-2 and Landsat 8) regarding to the time–availability
(temporal resolution) in all five study areas were evaluated based on the time–availability charts.
These charts presented and compared the number of cloud- and snow-free images of the Sentinel-2
and Landsat 8 available within the months of 2017–2019. The Sentinel Hub data archive was used to
compare both missions. The data collection of this archive was verified/checked using the Copernicus
Open Access Hub (for the Sentinel mission) and the USGS Earth Explorer (for the Landsat mission).

2.3.2. TS Analysis

Subsequently, the TS analysis using the Sentinel-2 data was performed. The data were processed
in the Configuration Utility of the Sentinel Hub using scripts in the JavaScript Language. The Sentinel-2
data of both satellites 2A/2B were used and the indices were calculated for the period of 2017–2019
from the cloud- and snow-cover-free data. In total, 33 cloud-free images for SA1dist; 31 images for
SA2recov; 27 images for SA3non-dist; 37 images for SA4recov; and 52 images for SA5non-dist were used
(see Figure 7).

To ensure pure pixels (unmixed) of the individual forest type and a compatibility with the Sentinel
Hub configuration (the bounding box), the extent of the study area was delimited with 6 × 6 pixels
(with a 10-m spatial resolution) or 3× 3 pixels (with a 20-m spatial resolution, respectively). The selection
of the extent was inspired by similarly oriented studies [29,50,51]. The extent (minimal mapping
unit (MMU)) was defined as the area of 60 × 60 m (3600 m2). This MMU ensured a sufficient areal
representation of the evaluated type of forest and compatibility with the 10-m and 20-m bands of the
Sentinel-2. Each area of interest was localized using GPS during the field research. The in situ and
auxiliary data were used to be determined the observed type of forest. The value of the index was
calculated as the mean value of 3 × 3 pixels (with a 20-m resolution) for the normalized difference
moisture index (NDMI) or as the mean value of 6 × 6 pixels (with a 10-m resolution) for the normalized
difference vegetation index (NDVI), tasseled cap greenness (TCG) and tasseled cap wetness (TCW).
The selected 20-m bands of the Sentinel-2 were resampled and defined as a 10-m pixel for calculation
of the TCG and TCW indices.

On the basis of several elaborated studies focused on the TS and an evaluation of the forest
vegetation [23–27] we decided to use the following vegetation indices in our study. The normalized
difference vegetation index (NDVI) (Equation (1)) [52]:

NDVI = (NIR − RED) / (NIR + RED), (1)

where the Sentinel-2 bands B04 (RED) and B08 were used (NIR) with a 10-m spatial resolution
(Table A1). The normalized difference moisture index (NDMI) (Equation (2)) by Xiao et al. (2019) [53]
was calculated:

NDMI = (NIR − SWIR) / (NIR + SWIR), (2)

where the Sentinel-2 bands B8A (NIR) and B11 (SWIR) were used with a 20-m spatial resolution
(Table A1).
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Figure 7. Spatial resolution comparison by the different types of sensors (from left—aerial photo used
for validation, Sentinel-2, Landsat 8). Source: author’s own work (2020)/European Space Agency
Sentinel-2 data product (2019)/United States Geological Survey Earth Explorer Landsat 8 data product
(2019)/WMS Orthophoto by CUZK (2019)/WMS ZBGIS by UGKK SR (2018). The area of interest is in the
red polygon. SA—study area; dist—disturbance, recov—recovery, non-dist—no disturbance; area number
(1–3 from Czechia and 4–5 from Slovakia). Time of acquisition of Landsat 8 data: 21 September 2019 for
Czechia and 25 October 2019 for Slovakia. Time of acquisition of Sentinel-2 data: 21 September 2019
for Czechia and 27 October 2019 for Slovakia. Data with atmospheric corrections were used.

These indices were selected on the basis of the above-mentioned publications as the most
recommended remote sensing indices for assessing the health of the vegetation. The NDMI vegetation
index was designed to investigate the changes in the physiology of the vegetation and so this should
be a suitable indicator to detect the disturbances in the forest [20]. The combination of the NIR with
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the SWIR removed variations induced by the leaf internal structure and leaf dry matter content,
improving the accuracy in retrieving the vegetation water content. The range of NDMI could reach
values from −1.00 to 1.00. The advantage of the NDVI index was the precise detection of the scarcely
disturbed vegetation structures [12,25]. The range of NDVI could reach values from −1.00 to 1.00.
The higher the NDVI value, the higher the amount of the vegetation (biomass) and also the better the
health status [52]. This index is often used in agriculture and forestry. The highest values are deciduous
forests (0.85–0.95) and coniferous forests (0.75–0.90), while values lower than 0.70 are mostly vegetation,
and the bare ground registers even lower values. Values lower than 0.30 represent man-made surfaces.
Water surfaces have the lowest values, reaching zero or negative values [25].

In addition, orthogonal indices were also selected for the analysis: tasseled cap greenness
(TCG) (Equation (3)) and tasseled cap wetness (TCW) (Equation (4)). To create these indices,
the following equations with the exact parameters (IDB: index database from the University of
Bonn, www.indexdatabase.de) for the Sentinel-2 data were used. The list of bands (B02–B11) can be
seen in Table A1:

TCG = −0.28482 ∗ B02 − 0.24353 ∗ B03 − 0.54364 ∗ B04 + 0.72438 ∗ B08 + 0.084011 ∗ B11 − 0.180012 * B12, (3)

TCW = 0.1509 ∗ B02 + 0.1973 ∗ B03 + 0.3279 ∗ B04 + 0.3406 ∗ B08 − 0.7112 ∗ B11 − 0.4572 ∗ B12. (4)

The spatial resolution was 10 m in both cases of the TCW and TCG. The spectral bands with 20-m
resolution were resampled to 10 m with the nearest neighbor method (the resampled pixel grid was
identical to the original 10-m bands) [54,55]. The tasseled cap transformation is the conversion of the
values in a set of bands; thus, it transforms the image data to a special coordinate system with a set of
orthogonal axes. Typically, there are three axes: brightness, greenness, and wetness (and sometimes
yellowness). The greenness is associated with the green vegetation and the wetness with the soil
moisture [51,56–58]. The Sentinel-2 NIR bands differed in their spatial resolution: the NDVI and
tasseled cap indices used band B08 (NIR 1) and NDMI used band B8A (NIR 5). Band B8A has the same
spatial resolution as band B11 (20 m); the spatial resolution of band B08 is 10 m (Table A1).

The TS of the vegetation indices and the tasseled cap indices were evaluated using statistical
methods. The values were exported to a spreadsheet editor, where the TS charts with value curves were
created. The polynomial trends (2nd grade) for these curves were used to define the approximate or
anticipated cyclic phenomena, focused on their variability across the different types of areas. A detailed
statistical evaluation of the achieved values was performed, and aggregate mathematical statistical
plots were created. The standard deviation was calculated for all the areas of interest.

The suitability of the individual vegetation indices for monitoring healthy vegetation and the
recovery phase was assessed by statistical tests using RStudio software. The Shapiro–Wilk test was
used to check the normality of the data. Due to the nonparametric data set, the Wilcoxon test was
used to assess the ability to distinguish different phases of the forest vegetation affected by the
disturbance. The aim was to prove the differences between the individual groups of forest (not affected,
under disturbance in the individual phases of the recovery mode) obtained from the in situ and
auxiliary data. The determined level of significance was α = 0.05.

3. Results

3.1. Comparison of the Spatial and Temporal Resolution of Sentinel-2 and Landsat 8

Figure 7 shows the comparison of the spatial resolution of the Landsat 8 (30 m) and Sentinel-2
(20 and 10 m) for all the study areas. The areas of interest sensed by the Sentinel-2 with the 10-m spatial
resolution contained nine times more pixels than the same area sensed by the Landsat 8. The Sentinel-2
image allowed us to recognize the more detailed structure of the landscape, e.g., roads, groups of trees,
shadows of trees and clear-cuts. This detailed landscape structure was mixed in pixels (mixels) of the
Landsat 8 with the lower spatial resolution. With a higher resolution, clouds and shadows can be

www.indexdatabase.de
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better detected, especially cirrus clouds that may not at first be visible and may affect the results of
TS. The Sentinel-2 data proved to have a better spatial resolution and have progressive abilities in the
detection and classification of the forest vegetation.

Figures 8 and 9 and Table 2 document the temporal distribution/resolution of the Sentinel-2 and
Landsat 8 images and the number of the selected images without clouds and snow cover in the study
areas for 2017–2019. For SA1dist, we found 123 Landsat images; for SA2recov and SA3non-dist, we found
126 Landsat images; and for SA4recov and SA5non-dist, we found 125 Landsat images. According to
our investigation, three Landsat images were missing in the Sentinel Hub archive (one for SA1dist,
one for SA4recov and one SA5non-dist). These three extra images were found in the USGS Earth Explorer
Hub and were included into the total number of available images. Concerning the Sentinel-2 data,
185 images were found for each of the SA1dist, SA2recov, and SA3non-dist (the Sumava National Park).
For the SA4recov, we found 362 Sentinel-2 images, and 367 Sentinel-2 images were found for the
SA5non-dist (both from the NAPANT). Clearly, many more Sentinel-2 images were found for the study
areas in the NAPANT. Concerning the temporal resolution of the Sentinel-2, the NAPANT areas had
better data availability and a new image was acquired approximately every two or three days, because,
e.g., the SA5non-dist was overlapped by more scenes (34UCV, 34UDV) as detailed in Figure 8. For the
Sumava NP, the new image was acquired every five days. The Sentinel-2 data brought a new dimension
in the data availability and its improved spatial resolution, achieved by the two satellites (2A and 2B),
was much more operational for forest monitoring than the traditional Landsat data (Figure 9).Remote Sens. 2020, 12, 1914 14 of 27 
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Figure 8. The total number of the Landsat 8 and Sentinel-2 images available and used for the study
areas. Source: author’s own work (2020)/Sentinel Hub and ESA Sentinel-2 data product/USGS
Earth Explorer Landsat 8 data product (2020). SA—study area; dist—disturbance, recov—recovery,

non-dist—no disturbance; area number (1–3 from Czechia, 4–5 from Slovakia).

Remote Sens. 2020, 12, 1914 14 of 27 

 

  
Figure 8. The total number of the Landsat 8 and Sentinel-2 images available and used for the study 
areas. Source: author’s own work (2020)/Sentinel Hub and ESA Sentinel-2 data product/USGS Earth 
Explorer Landsat 8 data product (2020). SA—study area; dist—disturbance, recov—recovery, non-dist—no 
disturbance; area number (1–3 from Czechia, 4–5 from Slovakia). 

Table 2. The number and percent of the Landsat 8 and Sentinel-2 images available and used for the 
study areas in the years 2017, 2018, and 2019. Source: author’s own work (2020)/Sentinel Hub and 
ESA Sentinel-2 data product/USGS Earth Explorer Landsat 8 data product (2020). 

 SA1dist SA2recov SA3non-dist SA4recov SA5non-dist Total 

Landsat images available in 2017 34 35 35 33 33 170 

Landsat images used in 2017 9 9 8 4 6 36 

% of the used images (L8 in 2017) 26.47 25.71 22.86 12.12 18.18 21.18 

Sentinel images available in 2017 41 41 41 78 81 282 

Sentinel images used in 2017 7 8 8 12 14 49 

% of the used images (S-2 in 2017) 17.07 19.51 19.51 15.38 17.28 17.38 

Landsat images available in 2018 43 45 45 44 44 221 

Landsat images used in 2018 9 9 12 5 6 41 

% of the used images (L8 in 2018) 20.93 20.00 26.67 11.36 13.64 18.55 

Sentinel images available in 2018 73 73 73 140 141 500 

Sentinel images used in 2018 16 13 9 14 22 74 

% of the used images (S-2 in 2018) 21.92 17.81 12.33 10.00 15.60 14.80 

Landsat images available in 2019 46 46 46 48 48 234 

Landsat images used in 2019 5 5 6 6 7 29 

% of the used images (L8 in 2019) 10.87 10.87 13.04 12.50 14.58 12.39 

Sentinel images available in 2019 71 71 71 144 145 502 

Sentinel images used in 2019 10 10 10 11 16 57 

% of the used images (S-2 in 2019) 14.08 14.08 14.08 7.64 11.03 11.35 

SA—study area; dist—disturbance, recov—recovery, non-dist—no disturbance; area number (1–3 from 
Czechia, 4–5 from Slovakia). 

 

0

50

100

150

200

250

300

350

400

SA(d)1 SA(r)2 SA(n)3 SA(r)4 SA(n)5
Nu

m
be

r o
f I

m
ag

es
Landsat images available Sentinel images available Landsat images used Sentinel images used

SA3non-dist SA4recov SA5non-distSA1dist SA2recov

5        6 7        8 9       10      11     12       1        2       3        4       5        6 7        8 9       10      11     12       1        2       3       4        5        6 7        8 9 10          
2017 2018 2019

Sentinel-2
Landsat 8

SA1dist

SA2recov

SA3non-dist

SA4recov

SA5non-dist

Figure 9. Timeline of the available cloudless and snowless Landsat and Sentinel-2 images for the selected
study areas. Source: author’s own work (2020)/Sentinel Hub and ESA Sentinel-2 data product/USGS
Earth Explorer Landsat 8 data product (2020). SA—study area; dist—disturbance, recov—recovery,

non-dist—no disturbance; area number (1–3 from Czechia, 4–5 from Slovakia).
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Table 2. The number and percent of the Landsat 8 and Sentinel-2 images available and used for the
study areas in the years 2017, 2018, and 2019. Source: author’s own work (2020)/Sentinel Hub and ESA
Sentinel-2 data product/USGS Earth Explorer Landsat 8 data product (2020).

SA1dist SA2recov SA3non-dist SA4recov SA5non-dist Total

Landsat images available in 2017 34 35 35 33 33 170
Landsat images used in 2017 9 9 8 4 6 36

% of the used images (L8 in 2017) 26.47 25.71 22.86 12.12 18.18 21.18

Sentinel images available in 2017 41 41 41 78 81 282
Sentinel images used in 2017 7 8 8 12 14 49

% of the used images (S-2 in 2017) 17.07 19.51 19.51 15.38 17.28 17.38

Landsat images available in 2018 43 45 45 44 44 221
Landsat images used in 2018 9 9 12 5 6 41

% of the used images (L8 in 2018) 20.93 20.00 26.67 11.36 13.64 18.55

Sentinel images available in 2018 73 73 73 140 141 500
Sentinel images used in 2018 16 13 9 14 22 74

% of the used images (S-2 in 2018) 21.92 17.81 12.33 10.00 15.60 14.80

Landsat images available in 2019 46 46 46 48 48 234
Landsat images used in 2019 5 5 6 6 7 29

% of the used images (L8 in 2019) 10.87 10.87 13.04 12.50 14.58 12.39

Sentinel images available in 2019 71 71 71 144 145 502
Sentinel images used in 2019 10 10 10 11 16 57

% of the used images (S-2 in 2019) 14.08 14.08 14.08 7.64 11.03 11.35

SA—study area; dist—disturbance, recov—recovery, non-dist—no disturbance; area number (1–3 from Czechia,
4–5 from Slovakia).

The collection of the Sentinel-2 data in the archive of Sentinel Hub was validated/checked using
the Copernicus Open Access Hub. We found the same number of images of Sentinel-2 in both the
Sentinel Hub archive and the Copernicus Open Access Hub for all the study areas. All the available
images were visually checked, and images affected by the cloud and snow were excluded from the
list of used images. In total, 106 Landsat 8 images were selected from all 625 available images (17%),
and a total of 180 Sentinel-2 images were selected from all 1284 available images (14%) as detailed in
Table 2.

3.2. Time Series of the Vegetation Indices Using Sentinel-2 Data

The results contain the values of the selected indices in the observed areas. The SA1dist, SA2recov,
and SA4recov were impacted by disturbances and, on the contrary, the SA3non-dist and SA5non-dist were
without any significant disturbance. For this part of our study, only the Sentinel-2 data were used.

3.2.1. NDVI Time Series

Figure 10a shows the curves of the NDVI vegetation index during the observed years in the study
areas. It is possible to see a different trend in the range of values of the disturbed and undisturbed study
areas from the graph. The values of the areas without a disturbance range from 0.70 to 1.00, and the
values of the study areas with the disturbances do not exceed 0.82. The values of the area affected
by disturbances in different phases of recovery differed from each other. The SA1dist, which was in
an initial phase of the transition from the disturbance to recovery phase is clearly visible and detectable
in Figure 10a. The SA4recov in the NAPANT had a wider range of values and overlapped with the
values of the undisturbed areas. It is possible to find a high variation of the values in the SA2recov

and SA4recov, which was caused by the various composition of trees and herbs in these areas in the
recovery mode.



Remote Sens. 2020, 12, 1914 15 of 26

Remote Sens. 2020, 12, x FOR PEER REVIEW  15  of  26 

 

3.2.3. Tasseled Cap Greenness (TCG) Time Series 

Figure  10c  represents  the  values  of  the  TCG  orthogonal  index.  The  chart  shows minimal 

differences in the values of the study areas with recovery phase or healthy forest, so it is difficult to 

find any specific characteristic values related to the type of the study area. The differences between 

the disturbed area with an initial phase of recovery (SA1dist) and undisturbed areas or areas in the 

more advanced recovery phases are visible. The values of the disturbed forest vegetation with an 

initial recovery phase represent a range from 0.02 to 0.09 and the undisturbed or in the recovery phase 

range  from 0.02  to 0.20. The  study area 1 under a  strong  impact of disturbance had much  lower 

variability of the values than the areas in the advanced recovery phase (SA2recov and SA4recov). 

 

Figure 10. Comparison of the index values by the different type of vegetation indices. Source: author’s 

own  work  (2020)/Sentinel  Hub  and  ESA  Sentinel‐2  data  product  (2020).  NDVI—normalized 

difference vegetation  index; NDMI—normalized difference moisture  index; SA—study area;  dist—

disturbance,  recov—recovery,  non‐dist—no  disturbance;  area  number  (1–3  from  Czechia,  4–5  from 

Slovakia). 

SA(d)1
SA(r)2
SA(n)3
SA(r)4

SA(n)5

SA(d)1
SA(r)2
SA(n)3
SA(r)4

SA(n)5
Polyn. (SA(d)1)
Polyn. (SA(r)2)

Polyn. (SA(n)3)
Polyn. (SA(r)4)
Polyn. (SA(n)5)

0.01

0.03

0.05

0.07

0.09

0.11

0.13

0.15

0.17

0.19

0.21

01.01.2017 01.01.2018 01.01.2019 01.01.2020

In
d
e
x 
V
a
lu
e
: 
Ta

ss
e
le
d
 C
a
p
 G
re
n
n
e
ss

Date(c)

SA1dist
SA2recov
SA3non‐dist
SA4recov
SA5non‐dist

Polyn. SA1dist
Polyn. SA2recov
Polyn. SA3non‐dist
Polyn. SA4recov
Polyn. SA5non‐dist

‐0.20

‐0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

01.01.2017 01.01.2018 01.01.2019 01.01.2020

In
d
e
x 
V
al
u
e
: 
N
D
M
I

Date(b)

‐0.10

‐0.08

‐0.06

‐0.04

‐0.02

0.00

0.02

0.04

01.01.2017 01.01.2018 01.01.2019 01.01.2020
In
d
ex

 V
al
u
e
: 
T
as

se
le
d
 C
ap

 W
e
tn

e
ss

Date(d)

0.40

0.50

0.60

0.70

0.80

0.90

1.00

01.01.2017 01.01.2018 01.01.2019 01.01.2020
In
d
e
x 
V
al
u
e
: 
N
D
V
I

Date(a)

Figure 10. Comparison of the index values by the different type of vegetation indices. Source:
author’s own work (2020)/Sentinel Hub and ESA Sentinel-2 data product (2020). (a) values of the NDVI
vegetation index; (b) values of the NDMI index; (c) values of the TCG orthogonal index; (d) values
of the TCW orthogonal index. NDVI—normalized difference vegetation index; NDMI—normalized
difference moisture index; SA—study area; dist—disturbance, recov—recovery, non-dist—no disturbance;
area number (1–3 from Czechia, 4–5 from Slovakia).

3.2.2. NDMI Time Series

Figure 10b shows the values of the NDMI index. The values of the index are evidently divided
(grouped) by the specific type of study area (with or without the impact of a disturbance). The values
of the disturbed and undisturbed almost do not overlap and create obvious groups with a border in
the graph within the values threshold from 0.28 to 0.37. The values of the index of the disturbed forest
approximately range from −0.12 to 0.28 and the undisturbed areas range from 0.37 to 0.69. We can
recognize the low differences in the evolution of the values between SA2recov and SA4recov. Both areas
were in the recovery phase at a moderately advanced stage (by the in situ data and the archive records
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of the national parks). The values of SA1dist were the lowest from all the study areas. This area was in
the onset of the recovery phase.

3.2.3. Tasseled Cap Greenness (TCG) Time Series

Figure 10c represents the values of the TCG orthogonal index. The chart shows minimal differences
in the values of the study areas with recovery phase or healthy forest, so it is difficult to find any
specific characteristic values related to the type of the study area. The differences between the disturbed
area with an initial phase of recovery (SA1dist) and undisturbed areas or areas in the more advanced
recovery phases are visible. The values of the disturbed forest vegetation with an initial recovery phase
represent a range from 0.02 to 0.09 and the undisturbed or in the recovery phase range from 0.02 to
0.20. The SA1dist under a strong impact of disturbance had much lower variability of the values than
the areas in the advanced recovery phase (SA2recov and SA4recov).

3.2.4. Tasseled Cap Wetness (TCW) Time Series

The TCW orthogonal index allowed us to define the specific groups of the values (Figure 10d).
Differentiating the values of the disturbed and undisturbed study areas was possible. The values
of the disturbed forest or recovery forest were concentrated in a range approximately from −0.10 to
0.01 and the undisturbed study areas ranged from 0.00 to 0.03. The values higher than 0.00 could be
mostly considered as an undisturbed forest and the lower values as a forest under disturbance or in
the recovery phase. Concerning the disturbed and recovery areas (SA1dist, SA2recov, and SA4recov),
it is possible to recognize the more apparent recovery phase of the forest in SA4recov (NAPANT)
characterized by the higher increasing the values of the TCW index. At the end of 2019, the values of
SA4recov were higher than the values of SA1dist and SA2recov.

3.2.5. Statistical Analyses

Figures 11 and 12 demonstrate the values of the indices and their differences based on the
mathematical statistical boxplots of all the study areas for the whole observed period. The results
show that the SA3non-dist healthy forest both in the Sumava NP Czechia) or SA5non-dist in the NAPANT
(Slovakia) had very similar values in all the observed indices. The differences in the values between the
disturbed (or in the recovery mode) and undisturbed areas were possible to document on the basis of
the NDVI, NDMI, and TCW (higher values in SA3non-dist and SA5non-dist and lower values in SA1dist,
SA2recov, and SA4recov). On the other hand, very similar values were documented in the TCG index;
only the SA1dist had slightly lower values. The disturbed areas documented a lower average value of
the NDVI, NDMI, and TCW indices. The variability of the values in the disturbed areas was much
higher than in the areas without disturbance. The SA1dist with the initial phase of recovery reflected
a lower value of NDVI and NDMI than the SA2recov and SA4recov, which were in the more advanced
recovery phase. The abilities of the TCG for the detection of undisturbed and disturbed vegetation in
the different phases of recovery were weak and unsuitable for this purpose. Table 3 shows the standard
deviation of the selected indices.

Table 4 shows the p values of the Shapiro–Wilk test for the individual indices and for all the study
areas. The values, where the null hypothesis holds (at α = 0.05), are in italics and bold. None of the
indices had a normal distribution for all the study areas. Based on these results, we decided to apply
the Wilcoxon nonparametric test.
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Figure 12. NDVI, NDMI, TCG, and TCW statistics. Source: author’s own work (2020)/Sentinel
Hub and ESA Sentinel-2 data product (2020). Boxplots are divided into two parts by the median.
The cross indicates the arithmetic mean. Dots indicate outliers. SA—study area; dist—disturbance,

recov—recovery, non-dist—no disturbance; area number (1–3 from Czechia, 4–5 from Slovakia).

Table 3. Comparison of the standard deviation for all the vegetation indices/study areas. Source:
author’s own work (2020)/Sentinel Hub and ESA Sentinel-2 data product (2020).

SA1dist SA2recov SA3non-dist SA4recov SA5non-dist

NDVI 0.057 0.070 0.044 0.140 0.076
NDMI 0.066 0.062 0.041 0.075 0.064
TCG 0.017 0.038 0.012 0.078 0.027
TCW 0.015 0.012 0.006 0.019 0.010

SA—study area; dist—disturbance, recov—recovery, non-dist—no disturbance; area number (1–3 from Czechia,
4–5 from Slovakia).
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Table 4. The Shapiro–Wilk test for all study areas and vegetation indices. Source: author’s own work
(2020)/Sentinel Hub and ESA Sentinel-2 data product (2020).

SA1dist SA2recov SA3non-dist SA4recov SA5non-dist

NDVI 0.001383 0.023480 0.719900 0.000001 0.003258
NDMI 0.789300 0.044700 0.823200 0.002179 0.378700
TCG 0.773300 0.046910 0.004701 0.000001 0.000703
TCW 0.010030 0.128700 0.652100 0.131400 0.013750

Values in italics and bold have a normal distribution, the non-italic and non-bold (regular) values do not. SA—study
area; dist—disturbance, recov—recovery, non-dist—no disturbance; area number (1–3 from Czechia, 4–5 from Slovakia).

Table 5 shows the results of the Wilcoxon test for each study area combination and for each
vegetation index. The values of the combinations, for which no statistically significant difference was
found, are in italics and bold. The results of the Wilcoxon test show that the NDMI index seems the
most appropriate for distinguishing the recovery and healthy vegetation. The Wilcoxon test indicates
similarities between the SA1dist and SA2recov combination or SA3non-dist and SA5non-dist combination
for the TCW index and thus confirmed the distinction between disturbed (or recovery mode in the
initial phase, not the more advanced phase like SA4recov) and undisturbed areas. For the NDVI index,
similarity was shown only for SA3non-dist and SA5non-dist combination; other study areas reflected
different values. The test also proved the unsuitability of the TCG index for distinguishing individual
forest phases. The results may be affected by multiple testing.

Table 5. The Wilcoxon test for selected vegetation indices with all combinations of study areas. Source:
author’s own work (2020)/Sentinel Hub and ESA Sentinel-2 data product (2020).

NDVI NDMI

SA1dist SA2recov SA3non-dist SA4recov SA1dist SA2recov SA3non-dist SA4recov

SA2recov 2.80 × 10−7 SA2recov 2.00 × 10−9

SA3non-dist 1.60 × 10−15 4.80 × 10−15 SA3non-dist <2 × 10−16 6.10 × 10−16

SA4recov 1.60 × 10−9 0.023 3.40 × 10−8 SA4recov 1.10 × 10−9 0.510 <2 × 10−16

SA5non-dist 1.30 × 10−13 3.90 × 10−13 0.377 8.50 × 10−10 SA5non-dist 6.30 × 10−14 1.70 × 10−13 0.190 8.40 × 10−15

TCG TCW

SA1dist SA2recov SA3non-dist SA4recov SA1dist SA2recov SA3non-dist SA4recov

SA2recov 2.20 × 10−11 SA2recov 0.371
SA3non-dist 2.30 × 10−16 0.972 SA3non-dist 2.30 × 10−16 6.90 × 10−16

SA4recov 0.002 0.182 0.346 SA4recov 3.20 × 10−5 1.20 × 10−4 1.30 × 10−15

SA5non-dist 5.30 × 10−11 0.972 0.133 0.098 SA5non-dist 6.30 × 10−14 1.70 × 10−13 0.075 1.90 × 10−14

Values in italics and bold show significant dependence between the area combination, otherwise the non-italic
and non-bold (regular) values show independence. SA—study area; dist—disturbance, recov—recovery,
non-dist—no disturbance; area number (1–3 from Czechia, 4–5 from Slovakia).

4. Discussion

Disturbance phenomena, such bark beetle and wind calamities, are one of the most urgent
problems in the forest ecosystems of Central Europe. Their overgrowth is closely related to climate
changes and the spread of non-indigenous coniferous trees in Central Europe, e.g., spruce (Picea abies).
In both observed national parks (the Sumava National Park in Czechia and the NAPANT in Slovakia),
spruce is the dominant tree. The dominance of spruce monocultures was caused by foresters due
to market-oriented forest management. Currently, under new environmental politics and under the
influence of the climate changes, national parks have implemented more environmentally oriented and
sustainable management practices, often without any interventions of the foresters. The primary task
of that management is to achieve a natural and environmentally stable forest. Spruce monocultures,
higher temperatures and abiotic calamities can cause the appropriate conditions for bark beetle
calamities. On the other hand, a sustainable management should create a natural ecosystem suitable
for richer communities of species compared to the spruce monoculture.

Different approaches are now visible in forest management in Europe. The forests in the NAPANT
national park are mostly forestry managed. In the case of the occurrence of a bark beetle outbreak,
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the obligation of the owner/administrator to cut down the forest in the intervention zone exists.
Typically, more than half of the dead trees are harvested after the calamity. However, about 15% of
the national park area is currently in a non-intervention mode (SA4recov). In the case of a bark beetle
occurrence, an obligation of the owner/administrator to cut down the forest in intervention zone exists,
despite the value of the nonprofit functions in the nature–close management of forests. On the other
hand, a forest management practice with very limited intervention was implemented in the Sumana
NP. Hence, a natural renewal of the forest ecosystem has been taking place in the Sumava NP on
a prevailing area. New small trees and shrubs are visible in the recovery territories (SA2recov).

In this study, we applied and tested the Sentinel-2 data for the evaluation and monitoring of the
forest ecosystems in Czechia (the Sumava National Park) and Slovakia (the NAPANT). Due to the
dynamic changes in the forests in Czechia and Slovakia that occurred over the last years, there exists
a suitable opportunity to apply the Sentinel-2 TS for the detection of disturbance events (bark beetle)
and to evaluate the forest health (forest condition before, during, and after the disturbance events).
For this reason, the study areas represent a forest under different circumstances and development
(the dead trees after a bark beetle outbreak, the recovery mode after a bark beetle outbreak, and the forest
vegetation without any significant influence). The selected vegetation indices and their trajectories
of the TS were interpreted and validated in relation to the in situ data investigated during the field
research or provided by the administration of the national parks and to the aerial photographs.

The Copernicus Program with the Sentinel-2 data has brought new opportunities and perspectives
in the landscape/forest monitoring. Thanks to the temporal and spatial resolution, we were able to
obtain a short TS for observing the health status and changes in the forest ecosystems [59]. Due to
the advanced parameters of the Sentinel mission (e.g., two satellites—Sentinel A and Sentinel B),
the Sentinel-2 data allowed us to observe the status and changes of the vegetation repeatedly in a short
time period (5 days or less) with multispectral characteristics in the data (13 bands). The Sentinel’s
TS with the higher temporal and spatial resolution were undoubtedly one of the greatest benefits of
studying regional or even global phenomena [60]. Other authors [61] claimed that the probability of
acquired cloud-free pixels by the Landsat 8 during a summer period in the U.S. was 0.78.

This fact often led researchers to study the changes in the forest over several years rather than
during the seasons of the year (phenophases). We proved, in this study, that the Sentinel-2 data had
a significantly higher density in the TS when compared with the Landsat 8 data. Clearly, many more
images of the Sentinel-2 (2A and 2B), compared with the Landsat images, were available for all
the areas in 2018 and 2019. Due to the launch of the Sentinel-2B, the temporal resolution rapidly
increased. This resolution is a very important factor for the evaluation of the forest with dynamic
changes (e.g., under a disturbance aspect) in mountainous areas where cloud cover is a relevant
problem. The Sentinel-2 data brings a new dimension in the data availability and its improved temporal
resolution using two satellites (2A and 2B) was more suitable for the monitoring of the forest dynamic
than the traditionally used Landsat data.

Concerning the processing of the data with a lower temporal resolution (such as Landsat),
several preprocessing steps for preparing the datasets are necessary. To obtain comparable results,
it is necessary to use normalization [20,62,63], cross-calibration methods, specialized harmonizing
algorithms (like LandsatLinkr [29]), or to use other methods (like LandTrendr [64,65]). However,
in the case of the Sentinel-2 data, normalization methods were not necessary for processing for the
TS when using the entire set of measurements with a high temporal resolution (outliers caused by
inhomogeneity of the environment during the year may be filtered out—or the data may be fit).

The Sentinel-2 data brought much sharper images, especially due to the 10-m resolution bands.
This spatial resolution allowed us to better recognize individual elements, such as damaged forests,
shadows, clouds, and other covers. However, due to the low spatial resolution of Landsat, it was difficult
to detect cirrus clouds. For the Landsat 8 data, it was possible to use panchromatic images with a 15-m
resolution and to perform pan-sharpening methods to obtain a better spatial resolution. However,
this was only possible for visible bands and this approach required complex image preprocessing.
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The cloud-based Sentinel Hub application was used for the processing and analysis of the
Sentinel-2 data. The cloud-based tools allowed for the effective and end-user friendly processing and
analysis of the EO data. An advantage of the Sentinel Hub was the option to prepare and use scripts in
the Configuration Utility for the semi-automatic processing of the data and the calculation of the indices
from the Sentinel-2 data (NDVI, NDMI, tasseled cap greenness, and tasseled cap wetness). The Sentinel
Hub also contained prepared algorithms for the calculation of the most used indices. Performing land
use/land cover classifications and other image analyses was also possible. Several programming scripts
using JavaScript language were written for the calculation of the vegetation indices in this study.

The impact of the disturbances on the forest vegetation was evaluated using the NDVI, NDMI,
TCG, and TCW indices. The trends (similarities and differences) in the values of the studied indices
were analyzed using the TS methods. We found that the vegetation indices NDVI, NDMI, and TCW
were able to distinguish healthy and disturbed/damaged forests and they gave most relevant results
for the research purposes of this study. The reflectivity of the healthy forest vegetation was higher in
the NIR band than the SWIR; however, the SWIR reflectivity was higher in the case of disturbances.
This aspect played an important role as the SWIR bands responded sensitively in the case of the
degradation of the forest. The NDMI index using the SWIR band was evidently able to precisely
distinguish the individual types of areas affected by disturbances (without disturbance and under
disturbance or after disturbance in the individual phases of recovery). The values of the disturbed and
recovery areas did not overlap with the undisturbed areas and create specific groups in the TS chart.

The values of the NDMI for the unaffected areas ranged approximately from 0.37 to 0.69, and the
areas affected by the disturbances or in a recovery phase had evidently lower values of the NDMI
with a range from −0.12 to 0.28. The orthogonal TCW index had a similar ability; however, it was not
able to precisely distinguish the disturbed and recovery phases/areas. The values of the TCW index
were documented from −0.10 to 0.00 in the disturbed and recovery areas and from 0.00 to 0.03 for the
unaffected areas. The NDVI index, which is based on the visible band and the NIR ratios, was able
to reflect an evolution of the plants and shrubs that quickly covered the disturbed area during the
recovery phase (see Figure 10). Concerning the TCG index, the abilities of this index did allow us to
detect the disturbances in the gray-attack phase. However, it was difficult to distinguish the different
recovery phases of the study areas. Our results are in accordance with comparable studies [66,67].
The novelty of this study was to use and test the Sentinel-2 data in the TS of the dynamic forest changes;
therefore, we did not find any similar studies with comparable results of the value indices in the TS
analysis based on Sentinel-2 data.

An important finding gained in this study was the high relevance of the data of the forest
management practices in the national parks. The data contained in the forest management plans
appeared to be excellent as a source for the validation of the results of the EO/TS investigation. The forest
management plans contained a wide range of useful information, and this information is regularly
updated. The data from the in situ research provided highly detailed data on the recovery of the forest
ecosystems, especially with regards to the restoration of the herbaceous and woody undergrowth.

The use of the Sentinel-2 data in the evaluation of the forest vegetation and the consequences
of the differentiated approaches to conservation and forestry activities provided excellent capacities
and opportunities for the monitoring of the forest and the implementation of the EO data and the TS
method into the protection and management of the forest. In addition, the new Landsat 9 (with similar
OLI and TIRS sensor) will be sent into orbit soon (March 2021). If the Landsat 8 is still working in the
following years, the new temporal coverage of the Landsat images will be higher (similar to Sentinel-2A
and Sentinel-2B). The harmonization of the Landsat 8 (or Landsat 9) and Sentinel-2 data could also
increase the temporal coverage of the TS [68]. The possibilities to increase the temporal and spectral
resolution can be seen in the data fusion of optical and SAR data also (e.g., Sentinel-1 and Sentinel-2).
From the method point of view, it would be useful to test an application of the cloud-based Google
Earth Engine (GEE), which allows for the analogical analyses of the EO data, such as the Sentinel Hub.



Remote Sens. 2020, 12, 1914 21 of 26

Another idea is to carry out a comparative study in other national parks in Europe and validate our
achieved results in the different forest ecosystems.

5. Conclusions

In our study, we evaluated the changes in forest vegetation affected by the bark beetle in selected
national parks in Czechia and Slovakia (the Sumava NP and the NAPANT). The study used the
open data of Sentinel-2 from the Copernicus program. The TS analysis using the selected vegetation
indices was performed in the areas in both countries. Based on our achieved results, we argue that the
Sentinel-2 data were able to accurately distinguish the areas that were not affected by disturbances
and the areas under disturbances and to detect the individual phases of the recovery mode of the
forest vegetation. The results confirm the abilities of the NDVI, NDMI, and TCW indices to distinguish
disturbed and undisturbed areas.

The NDMI vegetation index was useful for the detection of the disturbed forest and forest recovery
after bark beetle outbreaks and provided relevant information regarding the health of the forest
(the individual stages of the recovery mode). On the contrary, the TCG index demonstrated limited
abilities. The TCG could distinguish the gray-attack disturbance phase; however, it was difficult to use
this index for the detection of different recovery phases and to distinguish recovery phases from healthy
forests. The data were processed in the cloud-based tool of the Sentinel Hub, which allowed for very
flexible data processing and analyzing. A combination of a cloud-based easy operated system with the
open data of Sentinel-2 with a high spatial, temporal, and spectral resolution provided a powerful
tool for forest research. This study should serve as an example for the application of advanced remote
sensing methods and as data if the impact of the disturbances on the forest vegetation is analyzed using
vegetation indices. These results and methods should be useful and inspirational for forest managers
to determine appropriate forest management practices under the circumstances of forest disasters.
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Appendix A

Table A1. Sentinel-2 and Landsat 4–8 spectral bands and their differences.

Mission Radiometric
Resolution

Temporal
Resolution

Spectral
Band

Coastal/Aerosol
(B01)

Blue
(B02)

Green
(B03)

Red
(B04)

NIR
2

(B05)

NIR
3

(B06)

NIR
4

(B07)

NIR
1

(B08)

NIR
5

(B8A)

Atmospheric/Water
Vapour (B09)

Cirrus
(B10)

SWIR
1

(B11)

SWIR
2

(B12)
Panchromatic

Thermal
Infrared

1

Thermal
Infrared

2
Date

Landsat
4 and 5

8bit (16bit
rescaled)

16 days

Central
Wavelength

(nm)
- 485 560 660 - - - 830 - - - 1650 2215 - 11450 - 16 July 1982

(deactivated:
15 June 2001)/
1 March 1984
(deactivated:
5 June 2013)

Bandwidth
(nm) - 70 80 60 - - - 140 - - - 200 270 - 2100 -

Spatial
Resolution

(m)
- 30 30 30 - - - 30 - - - 30 30 - 120 -

Landsat
7

Central
Wavelength

(nm)
- 485 560 660 - - - 835 - - - 1650 2215 710 11450 -

15 April 1999
(active, data

failure:
31 May 2003)

Bandwidth
(nm) - 70 80 60 - - - 130 - - - 200 270 380 2100 -

Spatial
Resolution

(m)
- 30 30 30 - - - 30 - - - 30 30 15 60 -

Landsat
8

12bit (16bit
rescaled)

Central
Wavelength

(nm)
440 480 560 655 - - - 865 - - 1370 1610 2200 590 10895 12005

11 February
2013 (active)

Bandwidth
(nm) 20 60 60 30 - - - 30 - - 20 80 180 180 590 1010

Spatial
Resolution

(m)
30 30 30 30 - - - 30 - - 30 30 30 15 100 100

Sentinel-2A

12-bit

10-day
(5-day

with both
satellites)

Central
Wavelength

(nm)
443.9 496.6 560 664.5 703.9 740.2 782.5 835.1 864.8 945 1373.5 1613.7 2202.4 - - -

23 June 2015
(active)

Bandwidth
(nm) 27 98 45 38 19 18 28 145 33 26 75 143 242 - - -

Spatial
Resolution

(m)
60 10 10 10 20 20 20 10 20 60 60 20 20 - - -

Sentinel-2B

Central
Wavelength

(nm)
442.3 492.1 559 665 703.8 739.1 779.7 833 864 943.2 1376.9 1610.4 2185.7 - - -

7 March 2017
(active)

Bandwidth
(nm) 45 98 46 39 20 18 28 133 32 27 76 141 238 - - -

Spatial
Resolution

(m)
60 10 10 10 20 20 20 10 20 60 60 20 20 - - -

Source: author’s own work (2020)/ESA (2015): Resolution and swath. Downloaded from: https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload/Resolution-and-
swath/USGS (2020): Spectral Response of the Operational Land Imager In-Band, Band-Average Relative Spectral Response. Downloaded from: https://landsat.gsfc.nasa.gov/preliminary-
spectral-response-of-the-operational-land-imager-in-band-band-average-relative-spectral-response. The NIR 2-4 are the Vegetation Red Edge bands.

https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload/Resolution-and-swath
https://sentinel.esa.int/web/sentinel/missions/sentinel-2/instrument-payload/Resolution-and-swath
https://landsat.gsfc.nasa.gov/preliminary-spectral-response-of-the-operational-land-imager-in-band-band-average-relative-spectral-response
https://landsat.gsfc.nasa.gov/preliminary-spectral-response-of-the-operational-land-imager-in-band-band-average-relative-spectral-response
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