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Abstract: This article defines the land cover classes used in Meter-Scale Urban Land Cover (MULC),
a unique, high resolution (one meter2 per pixel) land cover dataset developed for 30 US communities
for the United States Environmental Protection Agency (US EPA) EnviroAtlas. MULC data categorize
the landscape into these land cover classes: impervious surface, tree, grass-herbaceous, shrub,
soil-barren, water, wetland and agriculture. MULC data are used to calculate approximately 100
EnviroAtlas metrics that serve as indicators of nature’s benefits (ecosystem goods and services).
MULC, a dataset for which development is ongoing, is produced by multiple classification methods
using aerial photo and LiDAR datasets. The mean overall fuzzy accuracy across the EnviroAtlas
communities is 88% and mean Kappa coefficient is 0.84. MULC is available in EnviroAtlas via
web browser, web map service (WMS) in the user’s geographic information system (GIS), and as
downloadable data at EPA Environmental Data Gateway. Fact sheets and metadata for each MULC
community are available through EnviroAtlas. Some MULC applications include mapping green
and grey infrastructure, connecting land cover with socioeconomic/demographic variables, street
tree planting, urban heat island analysis, mosquito habitat risk mapping and bikeway planning.
This article provides practical guidance for using MULC effectively and developing similar high
resolution (HR) land cover data.

Keywords: high spatial resolution land cover data; remote sensing; EnviroAtlas; ecosystem services;
decision support; image classification; machine learning; object-based image classification; rule-based
image classification; pixel-based image classification; GIS; 1 m pixel

1. Introduction

Land cover (LC) data indicate the type, extent and configuration of the physical materials present
at earth’s surface (e.g., vegetation, built surfaces) and are essential to informed, effective stewardship
of community landscapes, supporting decision making that integrates ecological, social, and economic
factors. Toward this integration, the United States Environmental Protection Agency (US EPA) created
EnviroAtlas (www.epa.gov/enviroatlas), a collection of interactive geospatial tools and resources that
allows users to explore the many benefits people receive from nature, often referred to as ecosystem
goods and services (EGS) [1]. Key components of EnviroAtlas are a multi-scaled interactive map, which
provides easy access to EnviroAtlas data, the Eco-Health Relationship Browser, which shows linkages
between ecosystems, the services they provide, and human health [2], and ecosystem services information
and educational resources, including a range of lesson plans that educators may integrate into classrooms.
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EnviroAtlas is organized at two spatial scales. A coarser national-scale component spans the
conterminous US and builds on the US National Land Cover Dataset (NLCD) [3] with a 30 × 30 m pixel
resolution. For a finer community-scale component, the EnviroAtlas team has developed Meter-Scale
Urban Land Cover (MULC) at 1 × 1 m per pixel resolution, to support analysis and visualization
of ecosystem services at a fine spatial resolution that captures individual trees, buildings and roads
(Figures 1 and 2). For comparison, there are nine hundred MULC 1 × 1 m pixels to one NLCD
30 × 30 m pixel. A webmap of MULC examples can be found here: https://arcg.is/0fXjue0. As of 2020,
there are 30 published EnviroAtlas MULC datasets: Austin, TX; Baltimore, MD; Birmingham, AL;
Brownsville, TX; Chicago, IL; Cleveland, OH; Des Moines, IA; Durham, NC; Fresno, CA; Green Bay,
WI; Los Angeles County, CA; Memphis, TN; Milwaukee, WI; Minneapolis/St. Paul, MN; New Bedford,
MA; New Haven, CT; New York, NY; Patterson, NJ; Philadelphia, PA; Phoenix, AZ; Pittsburgh, PA;
Portland, ME; Portland, OR; Salt Lake City, UT; Sonoma County, CA; St. Louis, MO; Tampa, FL;
Virginia Beach, VA; Washington, D.C.; Woodbine, IA.

The term “meter-scale” indicates the general size range of the smallest identifiable features on the
ground. This corresponds to objects approximately one to four meters in size. The size of the smallest
detectable features varies, depending largely on the spectral and spatial contrast of the target against
its background. Image quality, date and atmospheric conditions are also factors.

Similar high spatial resolution (HR) land cover (LC) data products have been developed by
other groups, translated to MULC, and incorporated into EnviroAtlas. These external sources are
the University of Vermont Spatial Analysis Lab, Sonoma Veg Map, the State of Iowa, Chesapeake
Conservancy, Central Arizona-Phoenix (CAP LTER), Oneida Total Integrated Enterprises (OTIE),
University of Arkansas Center for Advanced Spatial Technologies, and the Missouri Resource
Assessment Partnership (MoRAP). After external LC data are translated to the MULC system,
such data are considered equivalent to MULC, and are accompanied by the full suite of EnviroAtlas
community EGS metrics. External land cover data sources, and how those data are translated to MULC,
are specified in metadata for each MULC community.

As of 2010, approximately 81 percent of the United States (US) population lived in “urban areas”
(US Census terminology for communities with population > 2500) [4]. Expanding urbanization is
one motivation for developing high spatial resolution urban LC data for EnviroAtlas Communities.
By modelling community landscapes at the fine MULC spatial scale of individual streets, buildings,
trees, and lawns, we are better able to quantify landscape properties and patterns that contribute
to human well-being and healthy urban ecosystems (Figures 1 and 2) and these EGS may then
be better represented in making community decisions and policy. Potential MULC users include
planning, commerce, transportation, recreation and public health authorities; water, wildlife and
natural resource managers; community decision makers, teachers, students and citizens.
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Figure 2. MULC examples for six of thirty EnviroAtlas communities. The six inset maps show MULC for
each of the EnviroAtlas communities, with an expanded inset showing MULC at higher magnification.
Community boundaries are from 2010 Census Urban Areas plus 1 km buffer.

The purpose of this paper is to define the EnviroAtlas MULC land cover classes, describe the
processes used to generate MULC, and provide guidance to support the most effective use of MULC
data. In the Materials and Methods section, we present the MULC design, aerial imagery and LiDAR
data specifications, image classification methods and a fuzzy accuracy assessment method. Next,
we define the MULC classes and their characteristics. The Results section summarizes statistics for
30 US EnviroAtlas communities. The Discussion section highlights some MULC applications and
practical guidance for interpreting MULC data.

2. Materials and Methods

The MULC classes are intended to represent common urban landscape composition and features
that can be reliably identified in 1 × 1 m pixels, visible near-infrared digital aerial photography, by
human aerial photo interpreters, and by computer image classification algorithms. MULC classification
design considerations include:

• encompass the LC types anticipated in US community landscapes;
• these LC classes are broadly recognized and understood by users;
• simplicity;
• the size of discrete landscape objects and features readily classifiable in single date,

1 × 1 m pixel imagery;
• minimal confusion between classes;
• broad range of potential applications.

The Level 1 MULC classes are: water, impervious surface, soil-barren, tree, shrub, grass, agriculture
and wetlands. To date, the more specific Level 2 classes have been used only as intermediate classes
during the classification stage; they are provided for potential future analyses requiring more specificity.
The shrub and agriculture classes are optional for a community, as discussed below.
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MULC data span the 2010 to 2018 time period. Several datasets are circa 2010 to match the
EnviroAtlas communities 2010 US Census focus. The date assigned to a community’s MULC data is
the predominant year of aerial imagery collection. Metadata indicate if multiple years of imagery are
used, and year(s) of LiDAR data collection (which are typically not the same as the aerial imagery).

EnviroAtlas Community boundaries are defined by US Census Urban Area Block Groups for
a Census Urban Area [5]. An additional 1 km buffer extends outward to eliminate potential edge
effects when calculating EGS metrics based on moving-window analyses. In three cases, we have used
county boundaries for data provided by external partners (Chicago, IL [comprised of 10 counties],
Los Angeles, CA, and Sonoma County, CA). The county is a convenient geographic unit; it typically
leverages coordinated geospatial, financial, and administrative resources.

2.1. Input Data

The input raster data stack for EPA-developed MULC typically consists of four-band aerial
photography, normalized difference vegetation index (NDVI), and LiDAR data (height above ground
and intensity layers) (Figure 3). Ancillary geospatial data layers (Table 1) are used as available,
advantageous, and appropriate. to overlay agriculture and wetlands on the classified product, and for
performing post-classification error correction.

Imagery from the United States Department of Agriculture (USDA) National Agriculture Imagery
Program (NAIP) [6] is the primary MULC aerial photography. It has multiple advantages:

• high spatial resolution: 1 × 1 m pixels (and finer in some recent imagery);
• free (no cost) and available for most of the US;
• updates every two to three years by state;
• adequate horizontal positional accuracy (≤6 m by specification) (in our experience, NAIP is

co-registered within about two meters of other HR image sources such as Google, Bing and ESRI);
• four spectral bands: three visible light bands (blue, green, red) and one near-infrared (NIR) band,

which is used to derive a normalized difference vegetation index (NDVI).
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Figure 3. National Agriculture Imagery Program (NAIP) air photo and LiDAR raster band stack
used in MULC classification. (a) Seven band raster stack typically used in MULC classification, plus
RGB and NIR for reference. (b) MULC with 50% transparency overlaid on NAIP air photo showing
region of zoomed insets in (a). R (red), G (green), B (blue), NIR (near infrared), NDVI (normalized
difference vegetation index), HAG (LiDAR height above ground), Intensity (LiDAR intensity), RGB
(red-green-blue true color), NRG (NIR-red-green false color composite). Note how different landscape
features express differently between spectral bands.



Remote Sens. 2020, 12, 1909 5 of 19

NAIP imagery is acquired via internet download or external hard drives from the USDA Aerial
Photography Field Office (APFO) or state sources. The standard data format is uncompressed 8 bit
GeoTIFF with uncalibrated radiance represented by 256 grayscale levels in each band. Uncompressed
data are used to retain maximum spatial and spectral fidelity needed in classification. NAIP images
are typically tiled and distributed using the United States Geological Survey (USGS) 7.5 min quarter
quadrangle topographic map series. A few MULC datasets adapted from external sources may use
other HR aerial imagery as indicated in metadata.

While NAIP imagery is available across the entire conterminous US, airborne LiDAR data are not.
We acquire LiDAR data as available from the USGS National Map [7], NOAA [8], and state and county
geospatial data portals and personnel. LiDAR point clouds are interpolated into rasters of the following
layers: digital elevation model (DEM) (all bare earth, ground points), digital surface model (DSM) (first
point returns), height above ground (HAG) (also referred to as normalized DSM, or nDSM; HAG = DSM
− DEM) and return pulse intensity. (Note: five initial EnviroAtlas communities—Durham, NC, New
Bedford, MA, Paterson, NJ, Portland, ME, and Tampa Bay, FL—were produced without LiDAR).

2.2. Image Classification

EPA-developed MULC data are produced by classifying a raster dataset comprised of NAIP
aerial photos, NDVI and LiDAR HAG and intensity data (Figure 3). Externally developed MULC
datasets are classified from similar raster layers as specified in metadata. We have used three different
classification approaches: pixel-based supervised, object-based supervised, and object rule-based.
The approach used in each community is described in the metadata. Figure 4 shows the overall
workflow for producing MULC data. Pixel-based and object-based classification methods are discussed
in [9]. For MULC datasets created by supervised classification methods, training samples are selected
from within the community boundary being mapped.

Table 1. Primary and supplemental data layers used to generate MULC.

Acronym Dataset Name Comments/Usage

NAIP
(Primary data layer used

in classification.)

National Agricultural
Imagery Program

1 m pixel, five band raster stack red-green-blue-near
infrared-NDVI. Approximately three year update cycle.

LiDAR
(Primary data layer used

in classification.)
Light detection and ranging 1 m pixel, two-band raster stack of LiDAR

height-above-ground and intensity bands.

NLCD National Land Cover Dataset Inform algorithms and analysis, 30 m pixel size. Five year
update cycle.

CCAP NOAA Coastal Change
Analysis Program

Inform algorithms and analysis, 30 m pixels. Recently, 1 to
5 m pixel data. Variable update cycle.

NHDPlus v2 National Hydrography Data
Plus Version 2. Water and wetland feature vectors. Variable update cycle.

NWI National Wetlands Inventory Water and wetland feature vectors. Variable update cycle.

CLU Common Land Units Unattributed parcel polygons emphasizing agriculture.
Vintage 2008.

CDL Cropland Data Layer Crop information at 30 m pixel size. USDA.
Updated annually.

Roads and infrastructure Road and utilities data layers Vector data, as available.

Building footprint Building footprint layers Vector data, as available.

The segmentation algorithms used in our object-based classification vary according to the software
used: ArcGIS Desktop (v10.x) [10] and ArcGIS Pro (v2.x) (Segment Mean Shift) [11], ENVI (v5.x)
(Watershed) [12], and eCognition (v9.x) (Multiresolution, Contrast Split) [13]. The analyst prepares
to classify by studying existing land cover information to understand local vegetation, conditions
and landscapes. NLCD and USDA Crop Land Data Layer [14] are particularly useful, in combination
with HR imagery such as Google/Bing/ESRI satellite view, NAIP NIR, Google Street View and Bing
Birdseye view.
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2.3. Post-Classification Operations

2.3.1. Post-Classification Operations

The MULC data are reviewed after classification and errors are addressed in two ways. First,
we perform as many edits as possible using GIS functions (e.g., conditional statements, convolution
filtering). Ancillary spatial layers such as roads and building footprints are useful to mask and focus
edits. We inspect each output layer to detect potential artifacts introduced by post-classification GIS
functions. Second, we perform manual editing (on-screen, heads-up digitizing) to identify and recode
remaining errors. Here the analyst interactively selects pixel groups (or polygons) for recoding from the
incorrect to correct class. Manual editing is labor intensive and time consuming but can substantially
improve the visual appearance.

2.3.2. Fuzzy Accuracy Assessment

We use a fuzzy approach [15] to assess the accuracy of the MULC classification. The motivation is
to better accommodate the non-exclusive nature of land cover class membership: “The need for using
fuzzy sets arises from the observation that all map locations do not fit unambiguously in a single map category.
Fuzzy sets allow for varying levels of set membership for multiple map categories. A linguistic measurement scale
allows the kinds of comments commonly made during map evaluations to be used to quantify map accuracy” [15].

An assessment analyst labels the land cover at each reference point (pixel) and assigns a fuzzy
confidence value to the label on a scale from (1) (incorrect) to (5) (correct). For example, tree canopy
over grass is a situation where both classes could be considered “correct”. The sensor may capture both
the canopy and the ground through thin canopy or canopy gaps. The analyst might assign a tree label
with confidence of 4, and a grass label with a confidence of 3. Another situation is accommodating
the continuum between grass and soil endmembers. The fuzzy approach allows both agriculture
and soil class labels to be considered correct for a barren crop field. Accuracy assessment results are
presented in two confusion (error) matrices, showing errors of omission (producer’s accuracy) and
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errors of commission (user’s accuracy) for each class as well as an overall accuracy value. The fuzzy
confusion matrix is less conservative and based on these fuzzy confidence evaluations; the non-fuzzy
confusion matrix is more conservative and based on strict binary correct/incorrect class membership.

The MULC classification is compared to 500 to 700 randomly distributed photo interpreted
reference points (i.e., an initial target of 100 reference points per class, 5 to 7 classes per community).
If rare classes (e.g., soil, water) are under-sampled (n < 50), additional reference points are collected
to reach n ≥ 50, stratified by class as indicated by the MULC classification. The NAIP imagery input
to the classification serves as the primary photo interpreted reference imagery. This assures spatial
and temporal correspondence of the reference imagery and the MULC classification. Uninterpretable
or ambiguous points may be removed from consideration (e.g., deep shadow or boundary between
classes). Photo interpretation is aided by spatially linked displays of LiDAR-derived layers, NIR
false color composite and other temporally appropriate high resolution imagery as noted above.
Wetland classes (woody and emergent) are not included in the accuracy assessment. Because remote
identification of wetlands is complex and beyond the scope of our study, we assume that the ancillary
wetlands data are reliable. However, reference pixels located in wetland areas are assessed in terms of
their non-wetlands, underlying MULC class.

The final quality assurance step is on-screen visual assessment of the classified MULC by multiple
analysts at scales from 1:50,000 to 1:5000. Known errors and uncertainties are described in the metadata
for each community.

2.4. Definitions of MULC Classes

The standard EnviroAtlas MULC product is provided at a “Level 1” thematic resolution and is
similar but not identical to the Anderson and NLCD Level 1 classes (Table 2) [3,16]. MULC data are
published at Level 1; a structure of Level 2 classes is provided below in anticipation of potential future
analyses requiring greater thematic specificity.

As discussed above, data are either created by EPA EnviroAtlas personnel or incorporated from
external non-EPA sources. Externally produced data must meet these criteria:

• The classes can be unambiguously translated to the MULC system;
• The data are at same or finer spatial resolution;
• The data are sufficiently contemporaneous with the EnviroAtlas period of study;
• The data have an overall target fuzzy accuracy ≥80%. (We perform the standard MULC accuracy

assessment on externally developed LC data.)

To the first point, a dataset acquired from external sources that contains separate building and
street classes can be unambiguously recoded into the MULC Impervious Surface class. However,
a hypothetical residential class defined as “50% impervious surface and 50% vegetation” cannot be
used because impervious, trees, shrubs and grass are inseparably combined into a single class and
cannot be unmixed.
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Table 2. MULC Level 1 and 2 class names, codes, and descriptions.

Standard MULC
Level 1 Class Level 1 Code Level 2 Codes Short Description

Water 10 Water

11 Fresh Water
12 Salt Water
13 (available)

14 Drinking Water Reservoir

The water class includes all natural
and some anthropogenic surface
waters: rivers, streams, canals,
ponds, reservoirs, lakes, bays,

estuaries, and near-shore
coastal waters.

Impervious Surface 20 Impervious Surface

21 Dark Impervious
(low reflectance)

22 Light Impervious
(high reflectance)

23 Road
24 Building

25 Parking Area
26 Soil and Gravel Impervious

27 Solar Panel

The impervious class includes
buildings, paved roads, parking lots,

driveways, sidewalks, roofs,
swimming pools, patios, painted
surfaces, wooden structures, solar

farms and most asphalt and
concrete surfaces. Swimming pools,
and wastewater treatment tanks and
basins, are labeled as Impervious as

described in the text.

Soil-Barren 30 Soil and Barren Land

31 Developed Soil (soil in
developed areas likely

compacted and disturbed)
32 Bare Rock

33 Sand and Gravel
34 Quarry

The soil and barren class (“soil”)
includes bare soil, bare rock, mud,

clay, sand, barren agricultural fields
(for communities with less than 5%

agriculture), construction sites,
quarries, gravel pits, mine lands,
industrial land, parking lots, golf

course sand traps, ball parks,
playgrounds, stream and river sand
bars, sand dunes, beaches and other

bare soil and gravel surfaces.

Tree 40 Tree

41 Deciduous Tree/Forest
42 Evergreen Tree/Forest

43 Mixed Tree/Forest
45 Low Tree (height < 2 m)

46 Medium Tree
(2 m ≤ height < 5 m)

47 High Tree (height ≥ 5 m)

Woody single stem vegetation ≥ 2 m
height. “tall vegetation.” Generally,

the branching starts above a
specified trunk height, in contrast

with shrubs where branching starts
near ground level. Classes 45–47 are
optional and subordinate to height

thresholds defined in the text.
The term Tree comprises trees of
varying extent: individual trees,

stands and forest. The codes 41–47
are provided as guidelines for

potential future analyses; they have
not been used in MULC data to date.

Shrub 50 Shrubs or Shrubland

51 Shrubland or Scrubland
(undifferentiated Shrub,

Soil and Grass)
52 Individual Shrub in Natural

Environment
53 Individual Shrub in

Built/Developed Environment.
55 Low Shrub (height ≤ 2 m)

56 Medium Shrub
(2 m < height < 5 m)

57 High Shrub (height ≥ 5 m)

Woody multiple stem vegetation
with height ≤ 2 m and > 0.5 m.
“medium height vegetation.”

Shrub mapping requires LiDAR
height above ground except in

known shrub land areas.

Grass-Herbaceous 70 Grass

71 Lawns and Other
Managed Grass

72 Roadside Grass
73 Pasture

74 Natural Grassland
(e.g., prairie)

Graminoids, forbs and herbs lacking
persistent woody stems; includes

residential lawns, golf courses,
roadway medians and verges, park
lands, transmission line and natural

gas corridors, recent forest
clear-cuts, meadows, pasture,

grasslands and prairie grass. Also
known as “low vegetation.” Grass

classified in wetlands areas is
recoded to emergent wetlands.
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Table 2. Cont.

Standard MULC
Level 1 Class Level 1 Code Level 2 Codes Short Description

Agriculture 81 Agriculture 80 Row Crops
82 Orchard

Row crops (80) and orchards (82)
(Note: agriculture class numbering

departs from the norm.) Pixels
classified as grass (70) are recoded
to row crop (80) when the ancillary
agricultural polygons are overlaid.

Wetlands 90 Wetlands 91 Emergent Wetland
92 Woody Wetland

Emergent (91) and woody
(92) wetlands

Wetlands polygons are overlaid on
classified MULC using best

available data (e.g., NWI, NHD+).
Grass recodes to emergent wetland.
Trees recode to woody wetland. Soil,

water and impervious classes
remain unchanged. Treatment of
shrubs is indicated in metadata.

2.4.1. Unclassified

The 00 unclassified class is available for special cases or unanticipated LC classes not present in
the existing MULC system.

2.4.2. Water

The water class includes all natural and some anthropogenic surface waters: rivers, streams,
canals, ponds, natural lakes, artificial lakes, dammed valley reservoirs, bays, estuaries and near-shore
coastal waters. Note that wastewater treatment tanks, clarifiers, basins and sumps are labeled
impervious surfaces, as are swimming pools, fountains and similar small anthropogenic water features.
This distinction is made based on their ecosystem services which are very different to those in the
forms of surface water above: they are not biologically active (wastewater treatment notwithstanding);
they are closed systems without natural surface water exchange with the environment; they are
constructed features. The water class is most commonly confused with shadow, trees and dark
impervious surfaces. Bright sun glint on water is confused with highly reflective classes such as soil
or impervious surface. Turbid, sediment-laden brown or tan water is confused with soil. Shallow
water is confused with soil, impervious and vegetation depending on bottom surface optics of the
substrate (e.g., sand, silt, rock, submerged vegetation). Water with floating vegetation may misclassify
as vegetation but is intended to be in the water class. Floating vegetation is assumed to be ephemeral,
and that the LC at such a point is better represented as water than vegetation.

Lakes, ponds, tidal zones, estuaries and other water bodies that vary in extent and shoreline
location over time are mapped according to how they appear in the imagery; i.e., at the date and time
of image acquisition. If circumstances favor using a different shoreline (e.g., authoritative NOAA
shoreline) this is indicated in the metadata.

2.4.3. Impervious Surface

An impervious surface prevents or substantially limits rainfall and other water from infiltrating
into the soil. The impervious class includes paved roads, parking lots, driveways, sidewalks, roofs,
swimming pools, patios, painted surfaces, wooden structures and most asphalt, concrete and paved
surfaces. In MULC, dirt roads, gravel roads and railways are classified as impervious. These areas
are compacted, disturbed and altered leading to a loss of perviousness. Except for bare rock, most
impervious surfaces are anthropogenic and most pervious surfaces are natural (e.g., vegetation, soil).
Bare rock is functionally impervious and is commonly confused spectrally with the impervious class,
but in MULC it is assigned to the soil and barren class. Rooftops and roads that incorporate sand and
clay materials are spectrally confused with soil but belong in the impervious class.
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Level 1 MULC combines roads/pavements and buildings into one impervious class (20), rather
than separate Level 2 roads (23) and buildings (24) because of the requirement for height information
to classify buildings. The original MULC classes are designed to be classified from NAIP imagery,
with or without LiDAR, because of patchy LiDAR availability. If height above ground or building
footprints are available, one can separate roads and buildings.

Solar panel farms (class 27) are a separate impervious Level 2 class. They represent a third type of
impervious built surface after pavements and buildings/rooftops. Solar panels present an interesting
EGS case in that biological functions continue beneath the artificial canopy. The panels provide shade
and collect and distribute rain preferentially.

2.4.4. Soil-Barren

The soil and barren class (“soil”) includes soil, bare rock, mud, clay, sand, barren (fallow)
agricultural fields, construction sites, quarries, gravel pits, mine lands, recreational areas, golf course
sand traps, ball parks, playgrounds, stream and river sand bars, sand dunes, beaches and other bare
soil, sand, gravel and rock surfaces. Soil and barren includes natural areas with widely spaced or no
vegetation cover, including the soil substrate of semiarid and arid rangeland, shrubland and desert.
Unpaved dirt roads, gravel roads, and railways are typically semi-impervious, and are assigned to the
impervious class unless otherwise noted.

Soil is a relatively rare class in humid temperate communities such as Milwaukee, WI, Pittsburgh,
PA and Portland, ME. Soil is more common in arid communities such as Phoenix, AZ and Fresno,
CA. Construction sites are a common soil surface in highly developed urban landscapes, and barren
agricultural fields on the periphery. Soil is commonly confused with light impervious surfaces.

2.4.5. Tree

The tree class includes trees of any kind, from a single individual to continuous canopy forest.
Trees are single stem woody perennial plants with a trunk, branches and leaves and height greater than
2 m. Signature characteristics of the tree class in NAIP imagery include greenness, high NIR reflectance,
NDVI, a mottled textured canopy, tree crowns illuminated and shadowed on opposite facets, visible
trunks, length of shadows and context. Signature characteristics of the tree class in LiDAR include
height above ground, intensity, object shape, multiple LiDAR returns and canopy surface texture.

Level 1 MULC combines deciduous and evergreen trees in one tree class. Shrubs greater than
two meters height are classified as tree unless otherwise indicated. Bamboo is botanically a grass
(family Poaceae) but is classified as tree here if height ≥ 2 m. Trees are most commonly confused with
water, dark impervious, shrub and grass.

Tree canopy pixels that extend over other LC surfaces such as streets, buildings and lawns are
assigned to tree rather than the underlying class. The tree canopy is what the sensor “sees” in its direct
line of sight. This convention reflects an EnviroAtlas emphasis on EGS and the importance of street
trees in urban areas. Thus, where trees extend over a road, driveway, sidewalk or rooftop, the amount
of underlying impervious surface (or grass, soil or water) will be underestimated. The horizontal
surface area of tree canopy will be correctly estimated. If accurate road and building footprint data are
available, one may compute the under-canopy extent of these obscured surfaces.

2.4.6. Shrub

Shrubs are multiple stem woody perennial plants between 0.5–2 m height. Shrubs are recognized
in air photos by context (e.g., desert, rangeland, urban landscaping), the mottled texture of the
canopy (compared to grass), and lesser shadows (compared to trees). Shrubs are recognized by height
(and possibly shape) in LiDAR data.

In some land cover datasets, arid and semiarid natural shrub vegetation is mapped as
undifferentiated shrubland (51). In that case, shrubs, soil, and grass are mixed in a single class,
rather than as differentiated classes of shrub (52), grass (70) and soil (30). In EnviroAtlas, using shrub
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class (52) (individual shrubs) is preferred over shrubland (51). Shrub (52) is at a finer information
granularity to support EGS analysis.

2.4.7. Grass-Herbaceous

The grass and herbaceous class (“grass”) includes the graminoids, forbs and herbs lacking
persistent woody stems. Grass includes residential lawns, golf courses, roadway medians and
verges, park lands, transmission line and natural gas corridors, recently clear-cut forest areas, pasture,
grasslands, and prairie grass. Small shrubs may fall into this category as noted above. It is also known
as “low vegetation.”

For healthy, photosynthetically active grass, the principal identifying characteristics in NAIP
imagery are greenness, high reflectance in the near infrared, high NDVI, urban context and a smoother
image texture than tree and shrub canopy. Context helps in identifying grass (e.g., proximity to
a building, athletic field or highway). NAIP imagery is collected in summer leaf-on conditions
when grass may be green, or brown with heat and moisture stress. Sparse or brown grass is
commonly confused with soil and impervious surfaces. Grass-soil confusion is greater in arid than in
humid-temperate environments.

What to do with indeterminate pixels in NAIP imagery that could be either grass or soil?
Sparse, brown or dead grass are spectrally like soil, and soil and grass intermix along a continuum.
As a guideline, if potential grass or soil pixels/polygons show above-background reflectance in the
near-infrared band (indicative of photosynthetic activity), they are labeled grass. An operational
assumption is that, except in arid regions, soil has the potential to support grass or other vegetation at
some point during the growing season. The analyst consults other HR imagery from different dates to
assess if grass is present at other times.

2.4.8. Agriculture

Agriculture is a layer superimposed on the MULC classification. The USDA Common Land
Unit (polygon) [17] and raster Cropland Data Layer (CDL) [14] are used to help identify agriculture
polygons. Level 2 Agriculture is labeled as row crops (80) if MULC pixels are classified as grass,
shrub, or soil and fall within these ancillary agricultural datasets, and orchards (82) if classified as
tree. (Note: the agriculture class numbering deviates slightly from standard MULC class numbering
conventions due to a transcription error in the initial data upload). Pasture is assigned to the grass
class for two reasons: (1) difference in land management practices between row crops and pasture, and
(2) difficulty differentiating pasture from non-cultivated grass.

The agriculture (“Ag”) class is included in a MULC product if the most recent NLCD indicates
agriculture greater than 5% within the EnviroAtlas community boundary. If agriculture is less than or
equal to 5%, agriculture pixels (polygons) are labeled as whatever LC is on the ground when the NAIP
imagery is acquired (grass, soil, shrub or tree), rather than as agriculture. Twenty of the EnviroAtlas
communities have an agriculture class.

2.4.9. Wetlands

As defined by Section 404 of the Clean Water Act: “Wetlands are areas that are inundated or
saturated by surface or ground water at a frequency and duration sufficient to support, and that under
normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil
conditions” [18]. Wetlands include swamps, marshes, bogs, and other wet and flooded areas [19,20].
Like agriculture, in MULC data, wetlands are delineated using the best available ancillary data,
which to date have been the U.S. Fish and Wildlife Service National Wetlands Inventory (NWI) [21]
and U.S.G.S. National Hydrography Dataset (NHDPlus v2) [22]. Classifying wetlands directly from
imagery/LiDAR is beyond the scope of this study, and generally requires ground validation and
ancillary data. Wetlands boundary polygons are overlaid on the MULC data; areas classified as tree
are labeled woody wetland (91), and areas classified as grass-herbaceous are labeled emergent wetland
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(92). Treatment of shrub areas is indicated in the community metadata. Visual checks are performed
for thematic and positional agreement of wetlands layers and underlying imagery.

3. Results

Here we present statistics characterizing the MULC dataset. Table 3 summarizes the size,
population, year and accuracy statistics for 30 EnviroAtlas communities. MULC communities
range considerably in both aerial extent and population, with the largest community (Chicago)
encompassing more than 14,000 km2 and the smallest (Paterson, NJ) spanning just 47 km2. The mean
area is 3139 km2. Community populations closely aligned with aerial extent in a positive relationship.
The largest community population is over 9.8 million (Los Angeles, CA County, 11,336 km2) and
the smallest is just over 1500 people (Woodbine, IA, 51 km2). The mean population for EnviroAtlas
communities is 2.1 million people according to the 2010 U.S. Census [23].

Table 3. MULC statistics for EnviroAtlas communities. Abbreviations after the community name
indicate the main method used in classification: pixel-based supervised (PBS), object-based supervised
(OBS), or object rule-based (ORB).

EnviroAtlas
Community

Area
(km2)

Population
(2010

Census)

Overall
Accuracy
(Fuzzy)

Kappa
(Fuzzy)

Overall
Accuracy

(Non-Fuzzy)

Kappa
(Non-Fuzzy)

Imagery
Date

LiDAR
Dates

Austin, TX (PBS) 2499 1,334,516 90.7 87.9 86.5 82.6 2010 2007

Baltimore, MD
(ORB) 4545 2,252,753 92.7 90.5 90.1 87.1 2013

2004,
2005,
2011,
2015

Birmingham, AL
(PBS) 2335 763,628 87.6 80.5 83.4 74.2 2011

2010,
2011,
2013

Brownsville, TX
(PBS) 938 223,572 82.3 77.6 76.7 70.6 2014 2011,

2006

Chicago, IL (ORB) 14,687 9,203,201 86.8 83.6 80.8 76.0 2010, 2012,
2013

2006,
2007,
2008,
2010,
2013,
2014

Cleveland, OH
(PBS/ORB) 2737 1,758,114 90.2 86.9 86.2 81.6 2011, 2013 2006

Des Moines, IA
(PBS) 1130 456,017 84.6 80.4 77.6 73.5

1 m for
2008, 2009;
0.61 m for
2007, 2009,

2010

2009

Durham, NC (PBS) 569 340,851 N/A N/A 83.0 78.8 2010 N/A

Fresno, CA (PBS) 753 659,628 86.9 83.5 81.1 76.2 2010 2012

Green Bay, WI (PBS) 857 219,947 94.1 92.7 90.4 87.9 2010 2010

Los Angeles County
(ORB) 11,336 9,818,599 89.2 86.2 61.1 53.4 2014, 2016 2016

Memphis, TN (PBS) 2516 1,091,638 89.0 86.1 86.9 83.5 2012, 2013

2009,
2010,
2011,
2012

Milwaukee, WI
(ORB) 2154 1,373,711 85.5 80.5 76.2 68.9 2010 2010

Minneapolis/St.
Paul, MN (ORB) 3085 2,282,061 87.7 84.4 87.1 83.6 2010 2011

New Bedford, MA
(PBS) 258 151,164 95.0 93.0 92.3 89.2 2010 N/A

New Haven, CT
(PBS) 1422 578,536 92.0 88.8 89.0 83.2 2014

2006,
2010,
2011
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Table 3. Cont.

EnviroAtlas
Community

Area
(km2)

Population
(2010

Census)

Overall
Accuracy
(Fuzzy)

Kappa
(Fuzzy)

Overall
Accuracy

(Non-Fuzzy)

Kappa
(Non-Fuzzy)

Imagery
Date

LiDAR
Dates

New York, NY
(ORB) 1109 8,175,131 87.4 83.2 84.2 79.0 2011 2010

Paterson, NJ (PBS) 47 146,199 92.5 89.2 86.8 81.2 2010 N/A

Philadelphia, PA
(ORB) 7184 5,425,378 86.4 82.3 77.6 70.6 2005–2008,

2012–2015
2006–2008,
2011–2015

Phoenix, AZ (ORB) 5406 3,704,874 75.4 65.9 69.2 57.7 2010 N/A

Pittsburgh, PA (PBS) 1927 1,209,128 89.3 85.1 86.5 81.3 2010 2006

Portland, ME (PBS) 523 191,292 N/A N/A 87.5 85.0 2010 N/A

Portland, OR (PBS) 2507 1,853,233 91.4 89.2 78.5 73.5 2011, 2012 2007,
2010

Salt Lake City, UT
(ORB) 2244 1,030,599 82.5 77.0 78.7 72.0 2014

2006–2007,
2011,

2013–2014

Sonoma County, CA
(OBS) 4910 483,878 80.9 75.8 79.0 73.4 2011,2013 2013

St. Louis, MO (OBS) 4188 2,174,437 90.4 87.9 82.3 77.7 2012,
2014–2016

2008–2010,
2012

Tampa, FL (PBS) 4492 2,517,798 N/A N/A 70.6 65.2 2010 N/A

Virginia Beach, VA
(OBS) 3255 1,541,779 84.1 80.6 83.5 79.9 2013, 2014

2015,
2010,
2013

Washington, DC
(ORB) 5423 4,693,748 91.5 88.7 85.4 80.6 2013, 2014

2004,
2008,
2011,
2012,
2015,
2016

Woodbine, IA (PBS) 51 1555 90.2 84.4 87.0 79.3 2011 2009

Mean 3170 2,188,566 88.0 84.0 82.0 77.0

Total 95,088 65,656,965

N/A means data not available for this community. Fuzzy accuracy assessment was implemented after the first three
communities were created and not retroactively performed.

The data used for classification in each community vary by availability, and typically the most
recent available data are prioritized. Twelve of the 30 communities published to EnviroAtlas are based
on 2010 NAIP imagery and most of the other communities are based on NAIP imagery from 2016 or
earlier (Table 3). Twenty-four community datasets incorporate LiDAR, but, due to the timing of LiDAR
acquisition, only four of those communities have LiDAR matching the imagery collection dates. LiDAR
is not collected as frequently as imagery, and collection years for both LiDAR and imagery often do not
overlap. When imagery and LiDAR are of different dates and do not agree due to land use changes,
the analyst typically defers to the imagery when making post-classification corrections and during the
accuracy assessment process. Data limitations for each community are indicated in metadata.

Table 4 summarizes fuzzy and non-fuzzy MULC accuracies by class for all existing EnviroAtlas
communities. Table 5 is a confusion matrix constructed from 17,760 reference points for the
27 EnviroAtlas communities that have received both fuzzy and non-fuzzy accuracy assessments,
illuminating the nature of interclass confusion.
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Table 4. MULC mean class accuracies across 30 EnviroAtlas communities.

Agriculture Grass Impervious Shrub Soil Tree Water

Fuzzy User Accuracy 90.4 82.6 90.8 79.7 76 86.9 96.1

Fuzzy Producer
Accuracy 94.8 78.5 85.7 80.9 82.4 88.6 95.7

Non-Fuzzy User
Accuracy 82.5 75.1 87.8 71.6 63.2 83.5 95.3

Non-Fuzzy Producer
Accuracy 82.6 68.7 83.3 71.7 73.8 85.3 94.2

Class user and producer accuracies for all communities are generally high and increase between
non-fuzzy and fuzzy assessments (Table 4). The class user accuracy, calculated by dividing the number
of correct reference points (where both the row and column classes agree) for a class by the row total,
indicates how well the land cover represents the class as defined by the reference points. The class
producer accuracy, calculated by dividing the number of correct reference points for a class by the
column total, indicates how well the class is represented in the classification. The most accurate class
in MULC landcover is water. Twenty-eight communities have both fuzzy and non-fuzzy accuracy
assessments. The mean overall accuracy across all EnviroAtlas communities is 88% fuzzy and 82%
non-fuzzy. Overall fuzzy accuracy is always higher than overall non-fuzzy accuracy. Mean kappa
values are 0.84 fuzzy and 0.77 non-fuzzy. The soil class has the lowest user accuracy (77.8%) and
grass class has the lowest producer accuracy (78.9%). Based on the fuzzy confusion matrix (Table 5),
grass class confusion is mostly with soil and tree classes.

Table 5. Fuzzy confusion matrix for n = 27 communities.

Reference Classes

Agriculture Grass Impervious Shrub Soil Tree Water Row Total User Accuracy

Land
cover

Classes

Agriculture 1771 108 4 1 39 10 1 1934 0.92

Grass 19 3100 192 16 98 280 15 3720 0.83

Impervious 2 111 2761 2 86 59 8 3029 0.91

Shrub 3 46 20 441 24 11 0 545 0.81

Soil 27 198 117 23 1446 24 24 1859 0.78

Tree 5 351 129 29 21 4359 13 4907 0.89

Water 0 17 8 0 22 12 1707 1766 0.97

Column
Total 1827 3931 3231 512 1736 4755 1768 17760

Producer
Accuracy 0.97 0.79 0.86 0.86 0.83 0.92 0.97

Overall
Fuzzy

Accuracy
0.88

Kappa 0.85

Three early communities are omitted because they lack a fuzzy accuracy assessment: Durham, NC; Portland, ME;
Tampa, FL.

Soil class mixing is mostly with grass and impervious. Shrub landcover class is mapped in only
six (western) communities and consequently has fewer reference points than the other classes.

4. Discussion

MULC underpins metrics that complement those derived from the national, 30 m resolution land
cover component in EnviroAtlas, offering decision makers, researchers and others the ability to evaluate
ecosystem services and land cover characteristics at household/street, community, neighborhood (block
group), city, and regional levels. MULC and other EnviroAtlas data have been used in a range of
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applications from regional to local scales. In Portland, Oregon, city planners have used MULC to
design street tree planting and green infrastructure for urban heat island mitigation [24]. In Durham,
North Carolina, EnviroAtlas has been used to identify census block groups with low tree cover and
vulnerable populations to explore how tree planting might benefit child development, overall public
health, and environmental quality [25,26]. In Tampa Bay, Florida, a Health Impact Assessment (HIA)
has demonstrated how MULC and EnviroAtlas metrics, tools, and data can assist decision makers
in a health and wellness application [27]. See the EnviroAtlas use case page for more information
(https://www.epa.gov/enviroatlas/enviroatlas-use-cases).

The high level of detail provided by MULC data contributes to diverse research, ranging from
environmental and public health to the economic benefits attributed to EGS. MULC data and derived
EnviroAtlas community metrics support research including epidemiological studies on the salutogenic
effects of natural environment exposure in urban areas [28], mosquito distribution analyses to assess
vector-borne disease risk in Texas [29], and urban revitalization efforts in the Great Lakes region [30],
among others. A bibliography of research using MULC and other EnviroAtlas data can be found on
the EPA EnviroAtlas website: https://www.epa.gov/enviroatlas/enviroatlas-publications.

4.1. Uncertainty in MULC Data

In this section, we discuss MULC interpretation and origins of common uncertainties in MULC
data. It is important that map classification errors be understood so that the EGS metrics can be
accurately estimated, as major map errors can translate into incorrect valuation of ecosystems [31].
A confusion matrix is just one expression of map accuracy and users have varying needs that may
prioritize map characteristics other than the statistical evaluation of reference points. MULC datasets
have been developed using both pixel-based and object-based methods and land cover features,
in actuality, are groupings of pixels representing the real world. MULC users who reside in the
communities represented in the MULC dataset series are likely to possess the best understanding of
accurate (or expected) land cover types in the areas of interest. There are times when a map can have
high statistical accuracy but still possess errors in a particular area of local interest; this can make
users lose confidence in the product. It is important that a map has good statistical accuracy, but also
accurately represents real conditions for local users. It is for that reason that we spend a large portion
of the data development process in quality assurance (QA) to ensure that MULC datasets possess
acceptable statistical accuracies and have minimal visual errors.

4.2. Evaluation and Uncertainty in MULC

We recommend that to evaluate MULC data, the user display MULC at 40–60% transparency
overlaid on the source imagery (e.g., NAIP) basemap and view at multiple zoom levels. This allows
direct comparison of the MULC layer and source imagery. Comparing with higher resolution
(e.g., 0.1–0.5 m) imagery may add additional useful information. Displaying the MULC over a more
recent image basemap may visually highlight sites of land cover change.

There are multiple types of uncertainty and errors in high resolution land cover data for
consideration when evaluating data accuracy and quality:

1. True misclassification (e.g., the image pixel is composed of soil but the map labelled it grass);
2. Non-exclusive class membership (the pixel is a mixture of soil and grass);
3. Inter-observer error (the map developer and the accuracy assessor use different criteria (e.g., pixel

color and brightness) for labeling an ambiguous pixel as either soil or grass)
4. Severity of misclassification (for a specific user application, mistaking grass for tree may be

less significant than mistaking soil for tree [i.e., vegetated versus non-vegetated] or water for
impervious);

5. Items 2 and 3 are allowed greater flexibility as a result of the fuzzy accuracy assessments employed
for MULC datasets.

https://www.epa.gov/enviroatlas/enviroatlas-use-cases
https://www.epa.gov/enviroatlas/enviroatlas-publications
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Sources of errors and uncertainty in MULC data include: ambiguous class membership (e.g., the
grass-soil continuum); shadows; image quality and dynamic range; radiometry and solar geometry
differences between image acquisition dates for a community; different image and LiDAR acquisition
dates; low quality or missing LiDAR data (e.g., non-returns over water); errors or misalignment of
ancillary data.

4.3. Grass-Soil Confusion

Grass and soil show the greatest class confusion (Tables 4 and 5). A pixel may be on a continuum
between all grass and all soil, and brown, senescent grass is spectrally and texturally similar to soil.
Another factor is potential differences in heuristic thresholds used by the MULC data developer
and accuracy assessor to distinguish grass from soil. There are ambiguous or borderline cases for
distinguishing grass and soil, especially in semi-arid and arid locales; e.g., Los Angeles, CA and
Phoenix, AZ. When grass is brown, sparse, stressed or senescent, the green and near infrared reflectance
are reduced and more resemble a soil spectral signature. NAIP data are collected in summer when
non-irrigated vegetation may be brown and water stressed. Because grass and soil land cover have
different ecosystem services and functions, we strive to differentiate them in a community’s MULC.
An EnviroAtlas MULC convention is to assume that most soils (especially in more humid ecoregions)
are capable of supporting some amount of grass or other low vegetation, so the classification algorithms
are tuned to favor a grass label under ambiguous circumstances. The MULC developer examines
ancillary aerial and street imagery from multiple dates to see if grass is present at other times of the
year to determine algorithm thresholds for discriminating grass from soil.

4.4. Soil-Impervious Confusion

Impervious surfaces being misclassed as soil is the second most common misclassification of soil
and one of the major sources of low soil user accuracy (Table 5). Light (high albedo) impervious surfaces
and soil are spectrally and texturally similar and thus easily confused in classification. Light impervious
surfaces can include parking lots, paved roads, compacted dirt roads and light-colored roofs. LiDAR
intensity may be useful for differentiating soil and impervious surfaces which may be otherwise
inseparable in four band optical imagery.

4.5. Grass-Tree Confusion

Grass being misclassed as trees is the second most common misclassification of the grass class and
one of the major sources of low producer accuracy for grass (Table 5). Grass and tree classes overlap
spectrally in imagery, though trees are usually darker and more textured. One common error is the
speckling of apparent grass pixels amidst an otherwise continuous tree canopy. Such pixels may be true
grass pixels visible through canopy gaps, but commonly they are produced by bright, well-illuminated
sun-facing facets of the tree canopy. This effect may be amplified with low sun angle and mixed
tree heights. LiDAR height and intensity layers usually help clarify tree-grass confusion but may
also overcorrect speckling errors and precipitate additional corrections. If LiDAR is unavailable or
inadequate, tree canopy speckle can be reduced using smoothing and majority convolution filters.

4.6. Shadows

Shadows are a common source of error in high resolution imagery. A pixel in shadow receives
only non-direct sunlight which affects its spectral signature and lowers the signal to noise ratio; with
fewer incident photons, fewer reflected photons reach the sensor. Shadows are common at the edges of
buildings, shrubs, trees, and forest patches, and in steep topography. Explicably, shadowed features
tend to be misclassified among the darker classes: tree, impervious, and water. Shadows on water are
commonly misclassified as impervious. Such water errors are sometimes correctable using NHDPlus
or NWI layers and by thresholding on low reflectance values in the NIR band.
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5. Conclusions

We define a classification system for US EPA EnviroAtlas Meter-scale Urban Land Cover
(MULC). At 1 × 1 m pixel size, MULC data supports community mapping, planning, modeling
and decision making at high spatial resolution as fine as individual trees, buildings and roads. MULC
data and more than one hundred sustainability, health, and ecosystem goods and services metrics have
been developed for 30 US communities. MULC and other EnviroAtlas data are free and accessible
via web browser in EnviroAtlas, as web services, and by download through EnviroAtlas and the EPA
Environmental Data Gateway. MULC data are suitable for many applications including tree planting,
green infrastructure siting, watershed protection and modeling, urban heat island and stormwater
runoff mitigation and mosquito habitat risk mapping. Data and information updates are available at
EPA EnviroAtlas. We hope that the guidelines presented here help MULC users and support similar
high spatial resolution mapping efforts.
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