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Abstract: Building boundaries play an essential role in many applications such as urban planning
and production of 3D realistic views. In this context, airborne LiDAR data have been explored for the
generation of digital building models. Despite the many developed strategies, there is no method
capable of encompassing all the complexities in an urban environment. In general, the vast majority
of existing regularization methods are based on building boundaries that are made up of straight
lines. Therefore, the development of a strategy able to model building boundaries, regardless of
their degree of complexity is of high importance. To overcome the limitations of existing strategies,
an iterative CD-spline (changeable degree spline) regularization method is proposed. The main
contribution is the automated selection of the polynomial function that best models each segment
of the building roof boundaries. Conducted experiments with real data verified the ability of the
proposed approach in modeling boundaries with different levels of complexities, including buildings
composed of complex curved segments and point cloud with different densities, presenting Fscore and
PoLiS around 95% and 0.30 m, respectively.
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1. Introduction

Geographic information systems (GIS) are used in a variety of applications such as urban planning,
evaluation of damage caused by natural disasters, planning telecommunications networks, surveillance,
and transportation. According to The United Nations [1], in 2018, it was estimated that 55% of the
world’s population lives in urban areas, a proportion that is expected to increase to 68% by 2050.
The high percentage illustrates the importance of urban planning by focusing on sustainable and
organized development of cities and its population. Thus, obtaining and maintaining accurate and
up-to-date cartographic products over urban areas is essential. In this context, buildings have a
primordial role, since a high percentage of an urban area is covered by such objects and urban
development is directly related to the implantation of new buildings. Considering these aspects,
automated and semi-automated detection and modeling of building have been an active area of research.

Building detection and modeling can be performed using different remote sensing data such as
LiDAR point cloud [2–7], aerial images [8,9], and satellite images [10]. This research work explores
the use of point clouds acquired by airborne LiDAR systems, which have some advantages and
disadvantages when compared with conventional photogrammetry. The main advantage of LiDAR is
related to direct acquisition of dense 3D point clouds, eliminating the need for the photogrammetric
matching process. Although some new image matching techniques, e.g., dense image matching,
contribute to the solution, there are still some limitations, especially in regions with occlusion and
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repetitive patterns. Compared to image data, LiDAR point cloud does not have semantic information
about the objects. Moreover, the quality of the LiDAR-derived boundaries is directly affected by the
point density and discrete sampling of the surface. The integration of LiDAR data and aerial imagery
is an alternative to overcome the limitations of either technology. Kim and Habib [11], Du et al. [12],
and Gilani et al. [13] have explored the synergistic characteristics of these data sources. Despite showing
good results, the integration of photogrammetric and LiDAR data is still faced with some challenges
due to the varying nature of these datasets (e.g., regular versus irregular data structure and ensuring
the alignment of both datasets to a common reference frame).

In terms of building roof boundary modeling, existing strategies can be divided into two
approaches: model-driven and data-driven. According to Kwak and Habib [11], the difference between
these approaches is related to the amount of building-related information that is incorporated during
each process. Model-based approaches (i.e., top-down processes) assume predefined parametric
models, whose parameters are estimated using the information derived from existing data. Despite the
fact that model-driven strategies are robust, they are limited to known models. Considering this
limitation, data-driven approaches have been explored by many researchers. Data-driven approaches
(i.e., bottom-up processes) model building boundaries regardless of their form. The data-driven
methods try to fit building shape to the available data without a-priori definition of specific models.

According to Sampath and Shan [14], before starting the modeling process, the LiDAR data is
usually subjected to a filtering stage, which is followed by a segmentation phase. The filtering mainly
deals with grouping the LiDAR points into ground and non-ground. The segmentation process is
performed over non-ground points and aims at identifying different clusters of points that belong to
an individual building. Another processing strategy is to carry out a classification process over the
entire point cloud and use only building points in the segmentation process. The modeling of building
boundary is conducted while using the building points obtained from the segmentation and starts with
identifying the boundary points (edge points) and tracing their contour. In [14,15] and [2], the authors
used a modified convex hull, which enables the extraction of outer boundaries made up of concave
and convex segments. In [16–19], the authors explored the use of the alpha-shape algorithm, proposed
by Edelsbrunner et al. [20], to detect both inner and outer boundaries. In [21–23], the authors proposed
modeling building boundary using the outside edges of the Delaunay triangulation.

Extracted boundaries using LiDAR data would present an aliasing shape (zigzag); thus,
a regularization process is usually applied to obtain a contour closer to the real building boundary.
In [14,15,21–23], the authors used a least squares adjustment technique to derive the straight-line
segments that made up the boundary. The set of points belonging to each segment is selected and a least
squares adjustment is performed. In this adjustment, parallelism and/or perpendicularity constraints
could be applied. Additionally, some approaches consider more complex building boundaries,
which have non-right-angled corners [15,22] and curved segments [15]. In [17,18], straight-line
segments of the boundary are obtained using the fuzzy Hough transform approach, followed by
a refinement process where parallelism and perpendicularity constraints are also enforced. In [2],
the building regularization is performed through a recursive minimum bounding rectangle (RMBR)
algorithm, which determines the rectangle or combination of rectangles that best fit the boundary points.
In the work of Chen and Yu [24], the authors consider both straight-line and curve regularization,
which is based on an improved cubic B-spline method.

Despite the diversity of developed strategies, there is no general approach capable of encompassing
all the complexity of the buildings in an urban environment. Moreover, the vast majority of
these approaches normally assume that building boundaries are made up of straight-line segments.
Considering the existing approaches observed in the literature, only [15,24] model curved segments.
In [15], the authors limited their approach to curves of degree two (i.e., a parabola) and the regularization
is carried out in bidimensional space. In [24], the authors use the improved cubic B-spline curve fitting
algorithm to regularize derived features from terrestrial laser scanning (TLS) data. Although less
frequent than rectangular, buildings with curved contours of different complexities can be found
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in the real environment, especially when dealing with modern architecture. Therefore, it is of high
importance to develop a strategy that is able to model any type of boundaries, regardless of their
degree of complexity.

In this regard, the changeable degree (CD) spline concept (denoted henceforth as CD-spline for
short), proposed by Shen and Wang [25], was explored to perform the building boundary regularization
in tridimensional space. According to Shen and Wang [25], CD-spline corresponds to a more general
case of B-spline, that is usually applied in computer graphics applications. The main advantage of
CD-spline is the ability to model contours formed by segments with different levels of complexity,
i.e., different degrees. Therefore, after modeling each contour segment, the CD-spline is defined as
a parametric function responsible for representing the entire contour. The remaining challenge for
adopting such strategy is the definition of initial boundary points, critical points (responsible for
identifying a change of direction), and the degree of the function used to model each segment.

In this paper, the determination of boundary points and critical points are addressed.
The alpha-shape algorithm is used to obtain the boundary points, whereas the Douglas–Peucker
algorithm followed by angle-based generalization is applied to select the critical points. To determine
the degree of polynomial function, an iterative approach based on CD-spline modeling is proposed.
The proposed methodology automatically selects the polynomial function that best models each segment
by analyzing the estimated residuals at each iteration, eliminating the need for prior knowledge of the
function degree.

The main contribution of the proposed strategy is the development of an iterative CD-spline
approach, which allows automatic modeling of boundaries with different levels of complexities,
in tridimensional space. Moreover, the assessment of the results is obtained by qualitative and
quantitative analysis under different conditions, such as building with different complexities,
LiDAR data with different densities, and buildings with vegetation occlusion problems. Finally,
the work presents a brief investigation to verify the influence of some regularization parameters on
final results.

The remainder of this paper starts with a brief introduction to the CD-spline concept in Section 2.
The proposed methodology is then described in Section 3, which is divided into building detection,
building boundary extraction, and regularization. The datasets used in the experiments are described
in Section 4. The experiments and discussion of results are presented in Sections 5 and 6. Finally,
conclusions and expectations are summarized in Section 7.

2. CD-Spline Principles

CD-spline is a piecewise polynomial function applied to model free form shapes. Using the
boundary points as an input data, a parametric curve is modeled considering a mathematical model
composed of two terms (Equation (1)) as described in [25].

C(t) =
n∑

i=1

Ni,D(t)Pi (1)

where C(t) represents the piecewise polynomial function used to model the curve through the boundary
points, D corresponds to the biggest degree considered in the modeling process (D = max{di}).

The first term in Equation (1) is related to CD-splines basis functions (Ni,D) with elements computed
considering the degree of the polynomial (di), knot points, and continuity type between connected
adjacent segments. The degree of the polynomial is an integer value and is related to the degree of the
polynomial used to model each segment, whereas the knot points are responsible for identifying the
beginning and end of each segment. The type of continuity corresponds to the curvature at the joining
point between two adjacent segments. The second term (Pi) is formed by control points, which controls
the shape of the curve and is determined through an estimation process. Figure 1 shows an example of
modeled contour (blue line) using the CD-spline approach. In this example, the boundary points are
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represented by hollow black circles, whereas the knot points are symbolized by solid blue squares,
and the control points are represented by hollow red circles.
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Figure 1. Contour modeling using changeable degree (CD)-spline. Boundary points (a), knot points
(solid blue squares) (b), contour obtained using the CD-spline concept (blue line) and control points
(hollow red circles) (c)—adapted from Shen and Wang [25].

Assuming that one set of m+1 points in 3D space is available, i.e., (Q0, Q1, . . . . .. , Qm), these points
can be represented by the vector Qr (Equation (2)), with Q j = [x j y j z j].

Qr= {Q0, Q1, . . . . .. , Qm} (2)

Equation (3) presents the chord length formulation, which is considered to parameterize the
coordinates of the piecewise polynomial function C(t).

t0= 0 t j= t j−1 +
‖Q j − Q j−1‖

L
tm= 1 (3)

where:

L =
m∑

j=1

‖Q j−Q j−1‖ (4)

The CD-splines basis functions are defined over a knot vector (U) and a degree vector (G).
For CD-spline basis functions, it is necessary to know the polynomial degree for each interval between
each knot element, defining a segment. Considering that U = {ui} is a non-decreasing real number
sequence and G = {di} is bounded by positive integer sequence, Shen and Wang [25] imposed the
following constraint on these two sequences:

If ui−1 < ui= ui+1= . . . = ui+m−1 < ui+m, then di= di+1= . . . = di+m−1 and max(1, d i−di−1+1) ≤
m ≤ di.

For k = 0, 1, . . . , D, where D = max{di}, CD-spline basis functions are defined over U and
G vectors.

Ni,k
(
t j
)
=


0 di < D − k{

1 f or ui ≤ t j < ui+1

0 otherwise
di = D− k

t j−ui
ui+k−ui

Ni, k−1(t j) +
ui+k+1−t j

ui+k+1−ui+1
Ni+1,k−1(t j) di > D− k

(5)

The control points are estimated utilizing the least-squares adjustment concept (Equation (7)).
In this context, the error function presented in Equation (6) is considered [26]. It is assumed that all
segments have order continuity 0 (C0), i.e., all neighboring segments meet at the same point.

φ =
m∑

j=0

∣∣∣Q j − C(t j)
∣∣∣ (6)

P =
(
ATA

)−1
(ATQr) (7)



Remote Sens. 2020, 12, 1904 5 of 21

The vector Qr is obtained by Equation (2), whereas the matrix A is defined by the following
formulation:

A =



N0,D(t0)

N0,D(t1)

.

.

.
N0,D(tm)

N1,D(t0)

N1,D(t1)

.

.

.
N1,D(tm)

.

.

.

.

.

.

.

.

.

Nn,D(t0)

Nn,D(t1)

..
.

Nn,D(tm)


(8)

3. Proposed Method

A simplified flowchart of the proposed strategy is shown in Figure 2, which is divided into
two main steps. The first step involves building detection and boundary extraction. In the second
step, the building boundary regularization is performed using an iterative implementation of the
CD-spline, while using a stopping criterion that is based on residual analysis through an F statistical
test. In sequence, the different steps of the proposed method are described.
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Figure 2. Flowchart of the proposed method.

3.1. Building Detection and Boundary Extraction

The LiDAR data may contain undesired outliers, e.g., extremely high and/or low points, due to
external factors present in the scene [27,28]. In order to detect and eliminate such outliers, the proposed
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approach by Carrilho et al. [29] was used. Designated as cell histogram filter, the approach aims
at identifying outlier points through an analysis of a locally generated height frequency histogram.
The separation between the ground and non-ground points was performed using the progressive TIN
(Triangulated Irregular Network) densification strategy proposed by Axelsson [30] and implemented
in the lasground tool of LAStools (http://rapidlasso.com/lastools/). This is an iterative method that can
work directly on the raw point cloud.

To obtain the set of the points corresponding to each grouping within non-ground points, a region
growing strategy was implemented. The region growing was executed in the spatial domain using
an approach similar to the one presented by Sampath and Shan [14]. In this process, two thresholds
were adopted [31]: planimetric distance (TDxy) and altimetric distance (TDh). The identification of
building groupings was carried out using the method proposed by Santos et al. [31], which considers
the entropy concept to determine the attributes related to each cluster, and the k-means algorithm to
perform automatic classification considering two classes: building and vegetation. The advantage of
this approach is the automatic identification of clusters, dispensing the need for a training step.

The building boundary extraction was performed on the point cloud clustering derived from
the k-means algorithm. The approximate boundaries were extracted using the adaptive alpha-shape
algorithm approach [32], which is a variant of the original alpha-shape algorithm presented by
Edelsbrunner et al. [20]. The general idea of the algorithm consists of the use of an alpha parameter to
identify pairs of points that compose each edge segment of the object. In Santos et al. [32], this parameter
is estimated automatically based on local point spacing. In Figure 3, we show an example of the results
derived from the separation between ground and non-ground (Figure 3b), region growing (Figure 3c),
building cluster detection (Figure 3d,e), and building boundary extraction (Figure 3f).
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Figure 3. Building detection and building boundary extraction. Original point cloud (a). Result
derived from the separation between ground (orange) and non-ground (blue) (b). Clusters obtained
from region growing (c). Separation between building and vegetation (green) (d). Building clusters (e).
Building boundaries extracted using the adaptative alpha-shape algorithm (f).

3.2. Regularization Using the Proposed Iterative CD-Spline

The determination of the parametric curve C(t) using the original CD-spline from Equation (1)
is performed in a single iteration. In this sense, it is necessary to have a priori knowledge of the
following information: boundary points, critical points, and degree of the function used to model

http://rapidlasso.com/lastools/
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each segment. In this work, the boundary points were obtained using the adaptive alpha-shape
algorithm approach proposed by Santos et al. [32], whereas the critical points were determined using the
well-known Douglas–Peucker algorithm, followed by angle-based generalization, similar to Lee et al.
[15]. Douglas–Peucker was executed in the tridimensional space using a distance threshold (Tdist)
followed by the elimination of redundant critical points while applying an angle threshold (Tang).
In the angle-based generalization step, we calculate the angles between two adjacent lines formed by
connecting adjacent critical points. If the angle is smaller than the angle threshold (Tang), the point is
regarded as a redundant point and is discarded. Figure 4 shows an example of the results derived from
critical point determination step. In Figure 4a only the boundary points (black dots) are displayed,
whereas in Figure 4b,d the critical points (blue squares) derived from Douglas–Peucker algorithm and
angle-based generalization are shown, respectively. In Figure 4c the geometric representation of the
angle θ between two adjacent lines (blue lines) is shown.
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In order to automatically determine the degree of polynomial, an iterative CD-spline modeling
was proposed. The strategy adopted for polynomial degree evaluation is based on significance analysis
of residuals for each segment, within an iterative CD-spline process. In the first iteration, all segments
are modeled by a first-degree polynomial. After this modeling, the residuals for each boundary point
are estimated and the sum of residuals for each segment is determined. The degree of the segment
that has the biggest sum of residuals is increased by one. In the following iterations, the boundary is
modeled considering the new polynomial degree for the segment with the largest sum of residuals.
The process is repeated until there is no significant difference between the modeled boundaries between
two successive iterations k−1 and k, while using a prespecified level of significance (α).

To verify whether the difference between two successive iterations is significant, the statistical
F-test was used [33,34], by comparing the standard deviation of absolute residuals between these
iterations. In the following, we present all the steps of the iterative CD-spline approach:

Step 1—All segments are modeled by a polynomial of degree 1 (straight lines);
Step 2—The CD-spline is performed over the boundary points to obtain the regularized boundary

(modeled boundary);
Step 3—For each point, in a given segment, the magnitude of the residual (rj) is estimated using
Equation (9):

r j =
∣∣∣∣C(t j) − Q j

∣∣∣∣ (9)

Step 4—The sum of the all rj for each segment is computed, with each segment defined by the
critical points (knot points);

Step 5—The degree of the polynomial function related to the segment with largest sum is increased
by one;

Step 6—If it is the first iteration→ return to Step 2. Otherwise, go to Step 7;
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Step 7—A statistical F-test is conducted using the estimated statistic (Fc) (Equation (10))

Fc =

(
sk

r

sk−1
r

)2

(10)

computed considering the standard deviations of residuals in iteration k and k − 1, respectively;
compared to the theoretical statistics (F α

2 , n−1, n−1, F1− α
2 , n−1, n−1), based on the number of boundary

points (n) and level of significance (α), until the stopping criterion has been met, as can be seen
in [33,34]: {

F α
2 , n−1, n−1 < Fc < F1− α

2 , n−1, n−1 → go to Step 8
otherwise → return to Step 2

(11)

Step 8—The process is finished. Regularized boundary obtained in iteration k − 1 is adopted as
the final result.

In Equation (10) the standard deviations of residuals, corresponding to iteration k and k − 1, i.e.,
sk

r and sk−1
r , respectively, are computed considering all boundary points.

In Figure 5, intermediate steps of the proposed iterative CD-spline are illustrated for one building
with segments that are modeled by different degree polynomials, i.e., two straight-line and two curved
segments. For each iteration, the following information are presented: boundary points (black points),
critical points (blue square, indicated by blue arrows), regularized boundary using the CD-spline
approach (blue line), the degree of the polynomial for each segment (number adjacent to each segment),
and residual plot. In this figure, the blue vertical lines delimit the set of points corresponding to each
segment. In this example, as can be seen in Figure 5, four iterations were required to model the contour
of this building. In the first iteration, all segments were modeled by a polynomial function of degree 1
(straight-line segment). In the second iteration, the segment corresponding to the highest sum of the
magnitude of residuals was modeled by a polynomial of degree 2. In this case, the regularized contour
obtained in the third iteration (Figure 5c) was adopted as the final result, since there is no significant
improvement in the fourth iteration (Figure 5d).
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Figure 5. Illustration of the regularization process using the iterative approach of CD-spline. Results
obtained in the first (a), second (b), third (c) and fourth (d) iteration. Black points represent the
boundary points, whereas blue square and blue contours correspond to the critical points and the
regularized boundary, respectively. The adjacent number to each modeled segment corresponds to
the degree of the polynomial used to model this segment. The graphics illustrating the magnitude
of residuals for each boundary point with each segment delimited by the vertical blue lines are also
shown to the right of the modeled boundary through the different iterations.
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3.3. Quality Parameters

The assessment of the regularized building boundaries was performed both qualitatively and
quantitatively. The qualitative analysis was carried out through a visual inspection, whereas the
quantitative analysis was performed using quality parameters, such as Fscore, PoLiS metric, and root
mean squared error (RMSE) estimated for each boundary segment and then for each building. For details
related to these quality indicators, interested readers can refer to [35–37]. To perform the quantitative
analysis, the boundary extracted by the proposed method was compared with the reference boundary
for two datasets. For the first dataset, the reference boundary was manually generated from aerial
images using a photogrammetric restitution procedure on an ERDAS IMAGINE LPS system (version
2015). For the second dataset, the reference boundary was available, as described in Section 4.

Assuming an extracted polygon (A) and the reference polygon (B), Fscore can be obtained through
the harmonic average between recall and precision, that can also be directly computed from true
positive (TP), false positive (FP), and false negative (FN) using:

Fscore= 2 ar(TP)/(2ar(TP) + ar(FP) + ar(FN)) (12)

where ar( .) is the measured area; ar(TP) = A∩B; ar(FN) = ar(B) − A∩B; and ar(FP) = ar(A) − A∩B.
The PoLiS metric p(A, B) between two polygons A and B is defined by Equation (12) [37]:

p(A, B) =
1
2q

∑
a j∈A

min
b∈∂B
‖a j − b‖+

1
2r

∑
bk∈B

min
a∈∂A
‖bk − a‖ (13)

where q and r correspond to the number of vertices of polygons A and B, respectively; ∂A and ∂B
denote the boundary of polygons A and B, respectively; and ‖a − b‖ is the Euclidean distance between
points a and b.

The values of the PoLiS range from 0 to +∞. When the value approaches zero, it is an indicator
that the extracted boundary approaches the reference boundary.

4. Datasets

The experiments were performed using two airborne LiDAR datasets. The first dataset was
generated from three different flying heights over the city of Presidente Prudente/Brazil by Sensormap
Geotecnologia, as described in [38]. The point clouds were acquired from average flying heights
of 1300, 900, and 550 m, resulting in point densities of approximately 2.9, 5.8, and 12.5 points/m2

(Figure 6a–c), respectively. The airborne LiDAR system used in the acquisition was the RIEGL
LMS-Q680i. The second dataset comes from the ISPRS Test Project on Urban Classification, 3D Building
Reconstruction and Semantic Labeling, which was captured over Vaihingen/Germany [39]. This second
dataset was acquired at an average flying height of 500 m using a Leica ALS50 system with an average
point density of 4 points/m2 (Figure 6d).
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5. Boundary Regularization Results

The proposed strategy was evaluated considering several scenarios, such as using different
regularization parameters, buildings with different complexities, datasets with varying point density,
and buildings with vegetation occlusion. The experiments were executed considering buildings
selected from Presidente Prudente/Brazil (Figure 7) and Vaihingen/Germany (Figure 8) datasets.
Buildings B1 and B4 correspond to simple buildings of rectangular shape with different dimensions.
Building B2 is composed of a gable roof, producing an inverted "V" shaped contour, as shown in the
corresponding profile. Building B3 has a more complex shape, which is composed of straight-line
segments of different sizes and a hole in the middle of the roof. Buildings B5 and B7 are formed by
a curved roof, as can be seen in both profiles. Building B6 is made up of straight-line and curved
segments. Building B8 has a highly complex boundary, having straight-line and curved segments of
different dimensions. For this building, the curved part resembles a spiral. Building B9 has a circular
shape, whereas buildings B10, B11, B12, and B13 have vegetation at their surroundings. In contrast,
the buildings of Vaihingen/Germany dataset have less complex contour (Figure 8). Buildings B14–B23
have a rectangular shape, being B14–B16, B18–B21, and B23 with gable roofs. Building 17 consists of
several roofs with different heights.
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In the proposed method, thresholds are used during pre-processing and post-processing steps.
In pre-processing, the values of TDxy and TDh were defined according to [31]. As the focus of the work
is the regularization, the following discussion provide a detailed analysis of the thresholds used in the
post-processing/regularization stage.

In the regularization process, it is necessary to define three different thresholds: Tdist, Tang, and α
(level of significance). To verify the influence of such parameters, the proposed strategy was executed
considering different configurations. For each configuration, we estimated the Fscore and PoLiS metrics,
as can be seen in Figure 9a–c. These metrics were carried out considering five buildings (B2, B3, B5,
B8, and B9), selected from the point cloud with 12.5 points/m2. In the first configuration (Figure 9a),
Tdist assumed the following values: 0.3, 0.6, and 1 m, whereas Tang and α are kept fixed to 50◦ and 10%,
respectively. In Figure 9b the parameter Tang assumes the values 15◦, 30◦, and 50◦, whereas Tdist and
α are constant, 0.6 m and 10%, respectively. Finally, Figure 9c shows the results related to variation
of the level of significance (α): 1%, 5%, and 10% with Tdist and Tang set to 0.6 m and 50◦, respectively.
Figure 10a,b shows the final results for buildings B2, B8, and B9 using different values of Tang.

Remote Sens. 2020, 10, x FOR PEER REVIEW  11 of 21 

 

respectively. In Figure 9b the parameter Tang assumes the values 15°, 30°, and 50°, whereas Tdist and α 
are constant, 0.6 m and 10%, respectively. Finally, Figure 9c shows the results related to variation of 
the level of significance (α): 1%, 5%, and 10% with Tdist and Tang set to 0.6 m and 50°, respectively. 
Figure 10a,b shows the final results for buildings B2, B8, and B9 using different values of Tang. 

 

Figure 8. Buildings selected for the experiments (B14–B23) from Vaihingen/Germany dataset. 

 

Figure 9. Quality parameters for buildings B2, B3, B5, B8, and B9, while varying Tdist (a), Tang (b), and 
level of significance (c). 

Figure 9. Quality parameters for buildings B2, B3, B5, B8, and B9, while varying Tdist (a), Tang (b),
and level of significance (c).



Remote Sens. 2020, 12, 1904 12 of 21
Remote Sens. 2020, 10, x FOR PEER REVIEW  12 of 21 

 

 

(a) 

 
(b) 

Figure 10. Results using different Tang values for buildings B2, B8, and B9. Representation of 
regularized boundaries and corner points in bidimensional space (a), and regularized boundaries in 
tridimensional space (b). 

To evaluate the regularization process for different types of buildings, buildings B1–B9 and B14–
B23 were considered (Figures 7 and 8). The building boundaries of buildings B1–B9 were derived 
from point cloud with a density of 12.5 points/m2, the following regularization parameters being 
used:  = 0.60 m, = 50°, and α = 10%. For buildings B14–B23 the following values were 
considered:  = 0.80 m, = 40°, and α = 10%. In Figure 11 the regularized boundaries for 
Presidente Prudente/Brazil dataset are shown, whereas in Figures 12 and 13 the results corresponding 
to Vaihingen/Germany dataset are shown. The estimated quality parameters for selected buildings, 
as well as the average value of each metric are shown in Table 1. In Figure 14, we show the reference 
and regularized boundary for buildings B6 and B17 with highlighted discrepancies between the 
contours. In the Presidente Prudente/Brazil dataset, the reference boundaries were derived from 
images with 10 cm ground sampling distance (GSD), resulting in contours with accuracy around 16 
cm in planimetry and 22 cm in altimetry. In the Vaihingen/Germany dataset, images with 8 cm were 
used, obtaining reference contours with accuracy around 10 cm in planimetry and altimetry [40]. 

Figure 10. Results using different Tang values for buildings B2, B8, and B9. Representation of regularized
boundaries and corner points in bidimensional space (a), and regularized boundaries in tridimensional
space (b).

To evaluate the regularization process for different types of buildings, buildings B1–B9 and
B14–B23 were considered (Figures 7 and 8). The building boundaries of buildings B1–B9 were derived
from point cloud with a density of 12.5 points/m2, the following regularization parameters being
used: Tdist = 0.60 m, Tang= 50◦, and α = 10%. For buildings B14–B23 the following values were
considered: Tdist = 0.80 m, Tang= 40◦, and α = 10%. In Figure 11 the regularized boundaries for
Presidente Prudente/Brazil dataset are shown, whereas in Figures 12 and 13 the results corresponding
to Vaihingen/Germany dataset are shown. The estimated quality parameters for selected buildings,
as well as the average value of each metric are shown in Table 1. In Figure 14, we show the reference
and regularized boundary for buildings B6 and B17 with highlighted discrepancies between the
contours. In the Presidente Prudente/Brazil dataset, the reference boundaries were derived from
images with 10 cm ground sampling distance (GSD), resulting in contours with accuracy around 16 cm
in planimetry and 22 cm in altimetry. In the Vaihingen/Germany dataset, images with 8 cm were used,
obtaining reference contours with accuracy around 10 cm in planimetry and altimetry [40].
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Figure 11. Presidente Prudente/Brazil dataset. Building boundary regularization results derived from
the proposed strategy using a point cloud with 12.5 points/m2. Boundaries and corner points (square
blue) over roof points (a), and building boundaries projected onto the aerial image (b).
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Figure 13. Building 17 in Vaihingen/Germany dataset. Results derived from region growing (top left),
boundary extraction using the adaptative alpha-shape algorithm (middle left) and boundary regularization
using the iterative CD-spline (bottom left). 3D representation of regularized boundaries (right).
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Table 1. Quality parameters using the iterative CD-spline regularization method for selected buildings
from both datasets.

ID Fscore
(%)

RMSEX
(m)

RMSEY
(m)

RMSEZ
(m)

PoLiS
(m) ID Fscore

(%)
RMSEX

(m)
RMSEY

(m)
RMSEZ

(m)
PoLiS

(m)
B1 98.8 0.046 0.016 0.052 0.120 B17-a 93.3 0.212 0.194 0.137 0.425
B2 96.6 0.049 0.176 0.238 0.307 B17-b 94.2 0.171 0.088 0.092 0.297
B3 96.7 0.097 0.027 0.087 0.269 B17-c 93.1 0.115 0.053 0.151 0.467

B4-a 98.4 0.155 0.041 0.024 0.190 B17-d 92.2 0.142 0.350 0.198 0.463
B4-b 92.3 0.086 0.092 0.031 0.184 B17-e 93.8 0.180 0.178 0.162 0.362
B5 97.3 0.124 0.254 0.007 0.343 B17-f 95.0 0.072 0.145 0.033 0.195
B6 94.1 0.097 0.150 0.016 0.390 B17-g 94.4 0.188 0.063 0.096 0.389
B7 97.2 0.210 0.091 0.012 0.222 B18 97.6 0.271 0.029 0.122 0.310
B8 92.8 0.237 0.103 0.007 0.445 B19 95.4 0.090 0.056 0.098 0.261
B9 96.1 0.082 0.116 0.012 0.173 B20 95.7 0.175 0.093 0.118 0.268

B14 97.6 0.117 0.034 0.094 0.198 B21 95.2 0.129 0.099 0.078 0.391
B15 97.3 0.114 0.022 0.013 0.221 B22 91.5 0.194 0.111 0.035 0.471
B16 97.8 0.043 0.033 0.029 0.168 B23 95.7 0.151 0.058 0.047 0.299

Mean 95.4 0.136 0.103 0.077 0.301
Remote Sens. 2020, 10, x FOR PEER REVIEW  15 of 21 

 

 
(a) 

 
(b) 

Figure 14. Representation of the reference (green) and regularized boundary (blue) from the proposed 
method for buildings B6 (a) and B17 (b). 

Table 1. Quality parameters using the iterative CD-spline regularization method for selected 
buildings from both datasets. 

ID Fscore 

(%) 
RMSEX 

(m) 
RMSEY 

(m) 
RMSEZ 

(m) 
PoLiS 

(m) ID Fscore 

(%) 
RMSEX 

(m) 
RMSEY 

(m) 
RMSEZ 

(m) 
PoLiS 

(m) 

B1 98.8 0.046 0.016 0.052 0.120 B17-a 93.3 0.212 0.194 0.137 0.425 

B2 96.6 0.049 0.176 0.238 0.307 B17-b 94.2 0.171 0.088 0.092 0.297 

B3 96.7 0.097 0.027 0.087 0.269 B17-c 93.1 0.115 0.053 0.151 0.467 

B4-a 98.4 0.155 0.041 0.024 0.190 B17-d 92.2 0.142 0.350 0.198 0.463 

B4-b 92.3 0.086 0.092 0.031 0.184 B17-e 93.8 0.180 0.178 0.162 0.362 
B5 97.3 0.124 0.254 0.007 0.343 B17-f 95.0 0.072 0.145 0.033 0.195 

B6 94.1 0.097 0.150 0.016 0.390 B17-g 94.4 0.188 0.063 0.096 0.389 

B7 97.2 0.210 0.091 0.012 0.222 B18 97.6 0.271 0.029 0.122 0.310 
B8 92.8 0.237 0.103 0.007 0.445 B19 95.4 0.090 0.056 0.098 0.261 
B9 96.1 0.082 0.116 0.012 0.173 B20 95.7 0.175 0.093 0.118 0.268 
B14 97.6 0.117 0.034 0.094 0.198 B21 95.2 0.129 0.099 0.078 0.391 
B15 97.3 0.114 0.022 0.013 0.221 B22 91.5 0.194 0.111 0.035 0.471 
B16 97.8 0.043 0.033 0.029 0.168 B23 95.7 0.151 0.058 0.047 0.299 

      Mean 95.4 0.136 0.103 0.077 0.301 

Figure 14. Representation of the reference (green) and regularized boundary (blue) from the proposed
method for buildings B6 (a) and B17 (b).

The regularization process may be affected by different factors, among them are point density and
occlusion caused by vegetation. To verify the robustness of the proposed approach while using point
clouds with different point density, the strategy was applied to buildings B5, and B7–B9, which were
selected from the available point clouds, as shown in Figure 15. To verify the impact of potential
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occlusions by vegetation, buildings B10–B13 were considered (Figure 16). The results in Figures 15
and 16 were generated considering the following thresholds: Tdist = 0.60 m, Tang= 50◦, and α = 10%.
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As can see in Figure 2, we divided the method in pre-processing and post-processing steps.
Since the aim of the paper was focused on the introduction of the proposed approach, we do not focus
on discussing and evaluating the performance in terms of processing time. In fact, the processing time
is function of the hardware, software, and available data. The pre-processing step was implemented
in ANSI C language, compiled in Code: Block IDE. In this step, the LAStools was used in one part,
as explained in Section 3.1. The post-processing step was implemented in GNU Octave environment.
All the experiments were processed in one notebook running with Intel core i7-5500 U processor at
2.4 GHz, 64-bits, 8 GB RAM, and 500 GB disk. Considering the region shown in Figure 3 with 175.151
points and density of 12 points/m2, the total processing time was 243 s. This result indicates that
the elapsed time was around 2.31 min/100k points. It is relevant to mention that this number can be
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modified by optimizing the software and changing the platform. Besides, the processing time is also
affected by the point cloud density, number of buildings, and the complexity of the buildings.

6. Discussion of Results

Considering the results in Figure 9a, the variation of the Tdist threshold did not produce significant
changes in the quality metrics. This is an indication that the regularization process has similar results
using different values of Tdist.

In terms of the mean value of Fscore, Tang of 15◦ leads to the best value (Figure 9b). Concerning the
average value of the PoLiS metric, Tang of 50◦ correspond to the best result. Despite this, the quality
parameters did not show significant variation using different values of Tang. Performing a visual
analysis of the results in Figure 10a, it is possible to notice that several corner points were identified on
the curved segment when using Tang of 15◦ and 30◦. In these cases, the curved contour was modeled
by several small segments of straight lines instead of a curve. The use of Tang of 50◦ allowed the correct
modeling of the curved contours, however, the corner point of segment “V” was not identified and
consequently was represented by a curved segment. Therefore, it is noted that the Tang parameter has
a direct influence on the selection of corner points and consequently on the determination of the type
of polynomial function used to model the contour.

In Figure 9c, it is possible to observe that the quality metrics related to the three values of
significance level were identical. These results indicate that the proposed approach is not sensitive to
the significance level values considered (α = 1%, α = 5%, and α = 10%).

From the visual analysis of the results in Figures 11–13, it can be seen that most of the corner
points were correctly determined. In general, the regularization method produced consistent results,
since straight-line and curved segments were properly modeled, as can be seen in Figures 11–13.
Even in the case of complex boundaries (B3, B5, B8, and B9), the method behaved robustly. However,
the method had problems modeling small segments, as can be observed in Figure 11 (distinguished by
the small arrows), since two small segments were not properly extracted for buildings B3 and B4-b.
In both cases, the distinguished segments were modeled by a curved segment, instead of a straight-line.
In Figure 13, it is observed that the different roof levels of building B17 were correctly identified,
allowing to model each roof contour separately. However, some modeling problems occurred in B17,
which are related to small details (Figure 13-I, Figure 13-III, and Figure 14b-VIII) and some rectangular
edges (Figure 13-II, Figure 14b-VI). In Figure 14, one can observe some discrepancies between reference
and regularized boundaries, which result from the modeling of segments and corners. From these
results, it is possible to conclude that the proposed strategy has the potential to model building
boundaries with different complexities, despite having limitations when dealing with small segments.

The modeling of the building with gable roof (B2) presented some inconsistencies. In Figure 11a,
one can see that important corner points were not identified. In this case, the “V” shape of the boundary
was modeled as a curved segment rather than two straight lines. This problem is related to the
selected Tang threshold used for the critical point determination process, as highlighted in Figure 10.
By changing this threshold to a smaller value, Tang = 30◦ for example, the corners points are correctly
extracted (Figure 10a). In contrast, all gable roofs (B14–B16, B18–B21, and B23) were correctly modeled
in the Vaihingen/Germany dataset, as can be seen in Figure 12b. In this case, it was adopted Tang = 40◦

in the regularization process.
In terms of the Fscore metric (Table 1), building B1 has the best value of 98.8%, and building B22

has the worst value of 91.5%. Buildings composed of curved segments presented an average Fscore

value of 95.5%, against 95.4% for other buildings. In general, the average Fscore value was around 95%.
These values indicate that modeling quality was similar for different types of buildings, and there is a
high agreement between the regularized results and the reference boundaries.

Comparing the RMSE values for the derived boundaries with the reference ones (Table 1), one can
verify that the best RMSE value of around 0.08 m corresponds to the Z component. This result was
expected since LiDAR data has better accuracy in altimetry. For the XY coordinates, the proposed
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strategy produced a mean RMSE value of 0.17 m. The metric PoLiS, which is directly related to RMSE,
has an average value of around 0.30 m. For buildings with some type of curved segments, the average
PoLiS was 0.31 m, against 0.30 m for other buildings. These values indicate the potential of the proposed
method in modeling building boundaries of different complexities.

Considering the results using point clouds with different densities (Figure 15), it can be observed
that the proposed strategy was able to model boundaries regardless of point cloud density. In general,
curved segments were correctly modeled, including those of building B8 which has a complex shape.
As expected, comparing the results in Figure 15g,i, one can observe the limitation of using a lower
density point cloud when modeling small details. These results indicate the robustness of the proposed
method when working with point clouds of different densities.

In Figure 16, it is possible to notice that the presence of vegetation near the building roof can cause
occlusions (information loss), or even the grouping of vegetation points in the building class. In these
regions, the modeled boundary presented irregular shape, i.e., different than expected. In spite of this,
the proposed method was able to model the complete building boundaries producing correct results
in the regions free of vegetation. Although not explored in this paper, the proposed strategy can be
improved by applying selective corner points estimation in such areas.

In summary, the qualitative and quantitative analysis indicates that the proposed strategy has the
potential to model different types of boundaries, including boundaries formed by curved segments
with different complexity.

Criteria for Threshold Selection

The proposed method makes use of some thresholds, whose values must be carefully selected in
order to achieve the desired results. Table 2 provides a brief summary of the thresholds considered in
pre-processing and post-processing steps, the elements considered in prediction, and possible negative
impacts. Among the possibilities to derive their values, the suggested ones are based on the available
data which can be either measured, computed, or assessed from the point cloud.

Table 2. The proposed method’s thresholds, their prediction, and possible negative impacts.

Thresholds Prediction Possible Negative Impacts

TDxy

Based on point spacing and
planimetric separation between

two roofs

Under-segmentation,
over-segmentation

TDh

Based on altimetric accuracy and
altimetric separation between

adjacent roofs

Under-segmentation,
over-segmentation

Tdist
Based on point cloud spacing and
smallest detail to be represented

Loss of contour details, incorrect
modeling

Tang
Based on the smallest angle

between adjacent edges
Loss of contour details, detection

of multiple corners

α (level of significance)
Based on the probability of

rejection the null hypothesis when
it is true (Type I error)

The impact of this parameter is not
critical in the proposed approach,
but it can lead to loss of contour
details and incorrect modeling

7. Conclusions

This paper proposes a method for building roof boundary extraction from airborne LiDAR data.
The main contribution is related to the use of an iterative approach of CD-spline, which makes it possible
to automatically select the degree of the polynomial function that models each segment. This method is
robust in modeling boundaries with different levels of complexities, including buildings composed of
complex curved segments and point clouds with different densities. In general, the proposed method
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presented Fscore and PoLiS around 95% and 0.30 m, respectively. The drawback of the proposed strategy
is directly related to the process of corner point selection, since boundary details can be missed.

The proposed strategy generates accurate building boundaries but there are some sources of errors
that can affect the results, such as occlusions caused by vegetation, and inaccurate initial boundary.
Therefore, the integration of LiDAR data and imagery will be considered to improve the accuracy and
to mitigate some occlusion problems. Moreover, we will explore a more robust procedure for corner
point determination.
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