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Abstract: Rockfall inventories are essential to quantify a rockfall activity and characterize the
hazard. Terrestrial laser scanning and advancements in processing algorithms have resulted in
three-dimensional (3D) semi-automatic extraction of rockfall events, permitting detailed observations
of evolving rock masses. Currently, multiscale model-to-model cloud comparison (M3C2) is the most
widely used distance computation method used in the geosciences to evaluate 3D changing features,
considering the time-sequential spatial information contained in point clouds. M3C2 operates by
computing distances using points that are captured within a projected search cylinder, which is locally
oriented. In this work, we evaluated the effect of M3C2 projection diameter on the extraction of 3D
rockfalls and the resulting implications on rockfall volume and shape. Six rockfall inventories were
developed for a highly active rock slope, each utilizing a different projection diameter which ranged
from two to ten times the point spacing. The results indicate that the greatest amount of change
is extracted using an M3C2 projection diameter equal to, or slightly larger than, the point spacing,
depending on the variation in point spacing. When the M3C2 projection diameter becomes larger
than the changing area on the rock slope, the change cannot be identified and extracted. Inventory
summaries and illustrations depict the influence of spatial averaging on the semi-automated rockfall
extraction, and suggestions are made for selecting the optimal projection diameter. Recommendations
are made to improve the methods used to semi-automatically extract rockfall from sequential
point clouds.

Keywords: rockfall; change detection; M3C2; frequency-magnitude; spatial averaging; terrestrial
laser scanning

1. Introduction

1.1. Rockfall Hazard in Mountainous Terrain

Linear infrastructure systems which traverse rugged mountainous terrain can be exposed to various
landslide hazards, including rockfall. Rockfall is characterized by fragment(s) of rock which detach
from a cliff face and, subsequently, fall, bounce, and roll as the fragment(s) propagate downslope [1].
Although smaller in magnitude than other classes of landslides such as rockslides, rockfalls pose a
significant threat to humans due to their intensity (kinetic energy) and their frequency, both temporally
and spatially [2]. Rockfalls further challenge the safe operation of transportation corridors because it is
difficult to prioritize the allocation of resources to be utilized to mitigate rockfall hazard across long
transportation routes [3]. This task is particularly challenging in Canada, where there is over 45,000
km of rail track [4] which is susceptible to various geohazards. Rockfall hazard can be quantified along
transportation corridors by conducting a rockfall hazard assessment [5]. As part of a quantitative hazard
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assessment, developing frequency-magnitude relationships from an inventory of events has become a
common procedure [6]. These are power law relations; for rockfall, they are expressed as cumulative
frequency-magnitude relationships. Cumulative frequency-magnitude relationships are derived by
accessing inventories of known rockfall events, although spatial and temporal censoring of events
can result in an inaccurate measurement of the hazard [3]. Censoring is caused by underreporting or
inaccurate documentation of events, the lack of sufficient time to adequately capture high magnitude
and low frequency events, or systematic censoring as a result of mitigation efforts obscuring or
removing rockfall evidence [3]. Additional factors which can contribute to rockfall censoring include
difficulties associated with observing rockfall source zones from infrastructure-level vantage points,
heavy alteration of a rock mass preventing observation of fresh surfaces (an indicator of recent rockfall),
and propagation of rockfall material well beyond the area of interest which, subsequently, eliminates
evidence of a rockfall occurring.

1.2. Terrestrial Laser Scanning for Rockfall Monitoring

Terrestrial laser scanning (TLS) is a ground-based light detection and ranging (Lidar) method.
Lidar is a remote sensing method used to acquire terrain information in the form of point clouds;
a collection of data points in three-dimensional (3D) space. Lidar rapidly measures the reflected
energy from an emitted laser [7,8], thus, acquiring detailed terrain point clouds with highly accurate
measurements of the surface geometry. Over the last decade, TLS has become a routinely used data
source for the characterization and monitoring of rock slopes, particularly, because the terrestrial
platform is effective for capturing oblique views of vertical rock slopes [9]. TLS technology continues
to advance, and as a result, practitioners have been able to capture data faster, at higher densities,
and higher levels of accuracy [8]. Automated workflows have been developed to process these datasets,
and therefore practitioners can spend more time analyzing and interpreting the data. Readers are
referred to Lemmens [7] for a practical overview of TLS in the realm of remote sensing and geomatics,
and to Telling et al. [8] for a review of the earth sciences research conducted with TLS.

With sequential datasets, practitioners can monitor active geomorphic processes occurring on
rock slopes. Change detection between sequential TLS point clouds delineates rockfall source zones,
from which volume is estimated and frequency-magnitude relationships can be derived [10]. A degree
of automation has been added to the extraction of discrete rockfall events by utilizing clutter removal
and density-based clustering algorithms [11]. Further improvements have been made in the accuracy
of rockfall analysis, particularly for volume and shape calculations. Surface reconstruction algorithms
have been used to construct 3D triangular meshes from rockfall point clouds, for estimating 3D
volume [12–14]. There is, however, difficulty estimating 3D volumes because surface reconstruction
algorithms are not always robust enough to consistently produce triangular meshes which are
fully watertight (i.e., free of holes) and manifold (i.e., no overlapping facets and consistent normal
orientation), while also effectively reconstructing and approximating the geometry of the object [15].
Bonneau et al. [16] showed that 3D computation of rockfall volume was highly sensitive to the surface
reconstruction algorithm being utilized, and the authors provided recommendations for improved
3D rockfall volume calculations. Rockfall shape has also been quantified using 3D methods [17].
The shape of a rockfall is known to have a significant effect on its passage down the slope and its
runout [18,19]. Detailed 3D rockfall shape has been carried forward into a new generation of rockfall
models, which have incorporated custom rockfall objects and detailed terrain models [20–22].

Rockfall volume computation is commonly simplified using 2.5D raster methods [23,24].
While rasterized methods are robust, their output is highly sensitive to the selection of cell size
and the affine transformation used to project the data onto the raster. Therefore, rockfall extraction
and computation using the 2.5D method is, generally, less accurate as compared with the 3D method,
as shown by Benjamin et al. [13].
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1.3. Recent Developments for Rockfall Monitoring Using Laser Scanning

In addition to the research on rockfall extraction and analysis, recent studies have looked at
upscaling monitoring programs with respect to spatial extents and data acquisition frequency. For the
improvement of spatial extents, Benjamin [25] showed that a mobile laser scanning (MLS) system
mounted onto a helicopter was capable of capturing detailed point clouds, and demonstrated the
extraction of rockfall events along a 20 km length of coastal cliffs in England. A study of this size would
not have been feasible using TLS. Furthermore, the helicopter mounted mobile platform resulted in an
oblique view of the cliffs. Therefore, the system was capable of capturing topographic information
on near vertical surfaces, which could not have been achieved with downward looking aerial laser
scanning (ALS) surveys. Continuous terrestrial laser scanning systems have been investigated [26–28]
for improving acquisition frequency. Williams et al. [24] established a workflow for automated rockfall
extraction from hourly TLS datasets from an automated, fixed position TLS system. They found
that increasing the time interval between data acquisitions resulted in a significant reduction in the
number of small rockfall events captured [29]. The reduction in small magnitude events was due to
the coalescence of multiple small rockfalls over the monitoring time interval [29]. However, there are
limitations with regard to the spatial extent of the rock slopes that can be monitored with the use
of fixed-position continuous TLS systems. Further research in (1) rockfall extraction methodologies,
(2) systems for large extent data capture, and (3) frequent data capture or correction factors for
infrequent data, would improve our ability to accurately measure rockfall hazard using laser scanning
over large regions. This study focuses on the first research area outlined; improving rockfall extraction
methodologies, specifically, through appropriate parameter selection in a commonly utilized change
detection method.

1.4. Methods of Change Detection

Change detection between two datasets taken at different times can delineate active rockfall areas,
from which information related to the rockfall events can be extracted and analyzed. There are several
common change detection methods which have been used to capture surficial changes as a result
of geomorphic processes, each with their respective advantages and disadvantages. These methods
include the following: digital elevation model of difference (DoD), cloud-to-cloud (C2C), cloud-to-model
(C2M), and multiscale model-to-model cloud comparison (M3C2).

Point clouds can be oriented and projected onto the x-y plane and rasterized into digital elevation
models (DEMs). The subtraction of two DEMs produces a DEM of difference (DoD), which highlights
change in one direction along the z-axis [30,31]. This method results in simple and fast computations,
although for accuracy, it relies on the DEMs being capable of accurately modelling the terrain geometry;
oriented terrain surfaces should be relatively orthogonal to the z-axis. An additional consideration is
that DEMs cannot model overhanging features in the terrain, and the grid size can diminish the level
of detail that can be captured from the DoD change detection [13]. Therefore, the DoD method is not
very suitable for change detections on geometrically complex terrain with overhanging features and
wide arrays of surface orientations. In order to improve the DoD accuracy across a challenging site,
segments with similar orientations can be grouped together for separate analysis, although this can
complicate processing and data interpretation [32].

Cloud-to-cloud (C2C) change detection computes the distance from each point in the second
cloud to the closest point in the reference cloud [33]. Therefore, the direction along which the distance
is computed is somewhat arbitrary, as it is based on whichever neighboring point is the closest.
The measured C2C distance is sensitive to point spacing and surface roughness, and it is best suited
for quickly computing distances between dense point clouds [32,33]. C2C distance computations
do not provide directionally signed results [33,34], and therefore this method is less suitable for
geomorphology studies where the ability to identify areas of loss and areas of deposition is desired [35].

Cloud-to-model (C2M) change detection computes the distance from each point in the second
cloud to the closest point on a facet of a triangulated surface model of the reference cloud. Triangular
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facets allow interpolation between the reference point cloud, and thus result in distance calculation
vectors which are less arbitrary as compared with the C2C method. Implementations of C2M have
been used for semi-automated rockfall extraction [11,12,23], and for manual extraction using 3D
software [36–38]. The accuracy of C2M depends on how well the surface mesh is able to model the
terrain without over interpolating the original geometry of the input point cloud.

The multiscale model-to-model cloud comparison (M3C2) algorithm created by Lague et al. [34]
measures the distance along a local normal vector estimated from each point’s neighborhood, and thus
considers local surface orientation in the distance computations. The algorithm projects search cylinders
along the local normal vectors to find the locally averaged change between the two clouds. The M3C2
algorithm operates directly on the point clouds, and therefore requires no meshing or gridding,
which can induce geometry errors in the terrain model as noted earlier. As a result, M3C2 has become
a widely used and preferred method for change detection in various fields, including the monitoring of
rock slopes and cliffs with TLS [13,14,24–26,29,39], landslide deformation [27], retrogressive thaw slump
monitoring [32], rockfall model calibration [22], archaeological monitoring and preservation [40,41],
structure from motion (SfM) photogrammetry monitoring and error analysis [42–44], and various other
monitoring applications in the geosciences [35,45–47]. The M3C2 method is also widely used because
it is freely available as a plugin within the open-source software CloudCompare [48]. Direct operations
on the point cloud and locally oriented distance computations make the M3C2 algorithm ideal for
identifying change on structured rock masses with laser scanning data. Because it is a commonly used
change detection method, M3C2 was chosen to be the focus of this study as we evaluated the influence
of a key M3C2 parameter on the outcome of semi-automated rockfall extraction from sequential
TLS datasets. An explanation of the M3C2 algorithm and its input parameters is provided in the
following section.

1.5. Multiscale Model-to-Model Cloud Comparison (M3C2)

The M3C2 algorithm calculates a local average cloud-to-cloud distance for a point in the reference
cloud, termed the core point, through the use of a search cylinder projected along a locally oriented
normal vector (Figure 1) [34]. Then, the distance is assigned as an attribute of the core point.
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Figure 1. A depiction of the steps involved in multiscale model-to-model cloud comparison (M3C2)
distance computation. (a) In Step 1, the local normal vector, N, is estimated from Cloud 1 by fitting a
plane to the points within a radius of D/2 from Pcore; (b) In Step 2, a cylinder is projected from Pcore

along the normal vector. The average position is computed for each cloud, along the normal vector,
using the points encompassed within the search cylinder. The difference in the average positions is
the M3C2 distance. The projection diameter da and the maximum search length La are defined by the
user; (c) Step 2 is shown with a larger projection diameter db, resulting in more spatial averaging in the
distance computation. A larger search length, Lb, is also shown. Modified from Crawford et al. [47].
In reality, the search cylinder is projected in both directions, looking for Cloud 2.

The entire reference cloud can be defined as core points, or a subsampled set of the reference
cloud. The original resolution of both point clouds is used in the M3C2 computations regardless of
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whether the data is subsampled in the process. The core point’s normal vector is estimated from its
surrounding neighborhood, which should be of a scale such that it captures the surface geometry
without being sensitive to local surface roughness [34]. Points encompassed by the search cylinder
are used to compute the average position of Cloud 1 and Cloud 2. The distance between the average
positions (along the normal vector) is the M3C2 distance (Figure 1). The search cylinder geometry is
defined by the user, which controls the degree of spatial averaging that occurs, as shown in Figure 1,
where two different projection diameter sizes are depicted. If there are no Cloud 2 points captured
within the cylinder, no distance is computed. The projection diameter size is chosen based on the
application, point spacing, and surface complexity [34]. Readers are referred to Lague et al. [34] for
further details on the M3C2 algorithm.

1.6. Study Objectives

Although there has been much research utilizing M3C2 to monitor and extract changes in terrain,
there is little guidance on the optimal parameters to be used. Furthermore, there is a lack of reporting
of the M3C2 parameters used in various studies. M3C2 parameters should be chosen as a function
of the type and magnitude of the process that is being investigated, the density of data, and the
complexity of the terrain [34]. This study aims to help users select appropriate M3C2 parameters for
effective extraction of rockfall. The impact of the M3C2 projection diameter on semi-automated rockfall
inventory results is investigated. Included in this study are the following:

• An overview of a five-year TLS monitoring campaign for an active rock slope along the Fraser
River, in the interior of British Columbia, Canada;

• The full presentation of the semi-automated workflow used in this work for extracting rockfall
and computing 3D volume and shape;

• The creation of six different rockfall inventories using different M3C2 projection diameters ranging
from two times the average point spacing to ten times the average point spacing;

• An analysis of the impact that the M3C2 projection diameter has on automated rockfall extraction;
• A discussion on the considerations that should be made when selecting appropriate M3C2

parameters for future work;
• Recommendations for improvements on automated rockfall extraction.

1.7. Study Site

The study site, Canadian National (CN) Ashcroft Mile 109.4, is a rock slope located along the
Fraser River in the interior of British Columbia (BC), Canada, approximately 150 km northeast of
Vancouver, BC. The study site spans roughly 250 m of the CN track, which traverses the base of the
slope (Figure 2). The Trans-Canada Highway lies above the top of the rock slope.

The slope morphology largely consists of exposed bedrock with areas of talus, scattered vegetation,
and an overlying layer of soil on the upper reach of the slope. The bedrock is part of the Jackass
Mountain Group, a thick succession of Cretaceous shallow-water deltaic sedimentary rock [49],
with bedding that dips at moderate angles into the slope [50]. The slope is comprised of the following
five units: a highly fractured greyish brown argillite, a sandy siltstone, a thin black shale layer,
a sandstone, and a thick bedded pebble conglomerate. The five units and a bedrock geology model are
presented in Figure 3. The mean slope angle ranges from 45 to 55◦ [51]. There are four major joint sets
which contribute to sliding, wedge, and toppling failures [50,51] plotted in Figure 4.
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Figure 3. Overview of the five lithological units of the CN Ashcroft Mile 109.4, depicted in
a photogrammetry point cloud, high-resolution photographs, and a mapped bedrock model.
The photogrammetry point cloud was generated from a series of photographs taken from a helicopter.
Further information involving the construction of the photogrammetry dataset and subsequent
geological mapping is presented in Sections 2.1.3 and 2.2.7, respectively.
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Figure 4. A stereonet plot of the four major joint sets present at CN Ashcroft Mile 109.4. Modified from
Sturzenegger et al. [50].

Mile 109.4 has been of particular interest due to the high activity of slope movements, most notably
a 53,000 m3 rockslide occurring in November 2012 (Figure 5a,b). The rockslide was bounded by two
local faults which crosscut the slope [50]. The rockslide covered the track with more than 15 m3 of
debris and destroyed the pre-existing rock shed [52]. An 80 m long rock shed was designed and
completed in the fall of 2014. The design allows for a talus cone to build on top of the structure,
which then guides future failures over top of the track (Figure 5c,d). For more information on the
geological units and the 2012 rockslide, readers are referred to Sturzenegger et al. [50].Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 29 
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Figure 5. Site photos showing major natural and engineered slope changes at CN Ashcroft Mile 109.4
in the previous number of years. (a) 36 h before the 53,000 m3 rockslide; (b) 12 h following the rockslide
which buried the track, destroyed a protective structure, and put the track out of service for 4 days [50]
photos courtesy of Tom Edwards; (c) The construction of the rock shed. A drape mesh can be seen
above the structure which was installed to protect the construction area; (d) The eventual talus cone
buildup over the shed allowing for rockfall fragments to traverse overtop of the track.
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2. Materials and Methods

2.1. Data Collection

2.1.1. Terrestrial Laser Scanning

Terrestrial laser scanning was conducted at CN Ashcroft Mile 109.4 at weekly to seasonal intervals
from November 2013 to December 2018. The survey consisted of a singular scan position approximately
400 m from the study slope across the Fraser River, on a soil slope above the CP track (Figures 2
and 6). Additional scan positions with a suitable viewpoint of the slope were not possible due to site
accessibility and obstruction by dense vegetation. Two time-of-flight TLS systems were used to collect
data at the site throughout the 5-year monitoring period. A timeline of the TLS data acquisitions is
outlined in Figure 6.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 29 
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Figure 6. Data acquisition timeline. (a) The Optech ILRIS 3D-ER system; (b) The RIEGL VZ-400i system;
(c) Hillshade site map colorized to show the monitoring duration with respect to slope extents. Warmer
colors indicate areas that have been scanned more frequently and through longer time intervals.

Monitoring began in November of 2013 using an Optech Ilris 3D time-of-flight system (Figure 6a).
The Optech Ilris 3D system has a manufacturer-specified accuracy of 7 mm in range, and 8 mm in
vertical and horizontal directions from a distance of 100 m [53]. The maximum range at 20% target
reflectivity is approximately 800 m [54]. A total of 23 scans were taken from November 2013 to
late August 2017 with the Optech system. Monitoring with the Riegl VZ-400i time-of-flight system
(Figure 6b) commenced in early September 2017. Laser scanning hardware influences the error in
the spatial terrain information captured; the wavelength the systems are operating at, the precision
and accuracy of the systems, beam divergence at range, the minimum angular increment both in
vertical and horizontal, the maximum range at select target reflectivity, in addition to the environmental
sensitivities of the systems [55]. Therefore, a separate Riegl baseline scan was taken after the last
Optech scan, to avoid comparing datasets from different scanners. The Riegl VZ-400i scanner has
a manufacturer-specified accuracy of 5 mm and precision of 3 mm from a distance of 100 m [56].
The maximum range with a 100 Hz pulse rate and 20% target reflectivity is approximately 400 m [56].
A total of 8 scans were taken with the Riegl system from early September 2017 to December 2018.
Figure 6c shows the total number of days on which various portions of the slope were monitored.
The extents of the scan area generally increased over time. Additional variations were due to the fact
that the scan extents were uniquely defined during each site visit by different personnel.

With each TLS scan, the associated intensity of the reflected laser pulse was dependent on surface
characteristics (color, roughness, and moisture), the beam wavelength, and the presence of atmospheric
particles such as dust and water [9,55], as well as ash and smoke from forest fires. Conducting TLS
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surveys when there was no moisture on the slope was not possible through late fall and winter months
due to higher amounts of precipitation in the region. As a result, scans taken during less optimal
weather conditions have poor returns and holes in the data. A total of 4 scanning dates were omitted
from the study in order to optimize the spatial resolution of datasets without overly increasing the
time intervals between scans.

Optech Ilris scans were parsed using Optech Parsing software. Vegetation and non-stable
infrastructure (i.e., slide detector fences and metal mesh installed on the slope surface) were manually
removed from the raw point clouds using the Polyworks PIFEdit module [57]. Then, the cleaned point
clouds were aligned to the November 2013 baseline using the Polyworks IMAlign module [57]. First,
a coarse alignment was performed by manual point picking of stable areas of the slope with sharp
identifiable geometry, such as stable bedrock and infrastructure. The coarse alignment was followed
by a fine alignment process using Polyworks’ iterative surface matching based on the iterative closest
point (ICP) algorithm [58]. Areas of significant known change were manually removed from the fine
alignment process to improve the quality of alignment [52]. The Riegl VZ-400i scans were processed in
a similar fashion solely using the RiScan Pro software package [59]. Coarse and ICP fine alignment
was conducted to align the scans to the September 2017 baseline. The registration error for all the
datasets varied between 1 and 2 cm. The point spacing typically ranged between 3 cm and 10 cm
across the site for all datasets.

2.1.2. High-Resolution Panoramic Photography

High-resolution panoramic photos were generated from a series of photos captured during each
field campaign to aid in the interpretation of TLS data. High-resolution photographs were taken
from the scan position (Figures 2 and 6) using a 36 megapixel Nikon D800 full frame (November 2013
to September 2017) and a Nikon 24 megapixel D7200 cropped (September 2017 to December 2018)
DSLR camera, both equipped with a Nikkor 135 mm f/2.0 prime lens. The camera was mounted onto
a Gigapan Epic Pro motorized panoramic head [60]. The photos were stitched together using the
GigaPan Stitch software, resulting in a seamless high-resolution panoramic photo of the rock slope.

2.1.3. Oblique Helicopter Photogrammetry

An oblique aerial photogrammetry survey from helicopter (OAP-H) was conducted in December
2014 after two 200 m3 rockfall events and a 3300 m3 event [51]. Photos were captured using a Nikon
D800 full-frame DSLR camera equipped with a Nikkor 50 mm prime lens. Structure-from-motion
multi-view-stereo (SfM-MVS) photogrammetry was used to build a model from 162 photos using the
Agisoft PhotoScan Professional V.1.3.2 software package [61]. The point cloud was built using a typical
SfM-MVS workflow [62,63]. The point cloud was aligned and scaled to the September 2017 Riegl TLS
baseline using point picking coarse alignment and ICP fine alignment within CloudCompare [48],
resulting in a root mean square error of approximately 3.3 cm. To improve the results, areas of
significant known change were excluded from the alignment procedure.

2.2. Rockfall Extraction and Database Aggregation

The rockfall extraction process is depicted in Figure 7. Change detection was conducted to outline
active areas of change due to rockfall. Change forward in time (A to B) highlights the back surfaces of
areas of loss. Change backwards in time (B to A) highlights the fronts of changing features. A limit of
detection threshold was used to extract the fronts and backs of loss features. The extracted features
were merged to create an unorganized point cloud of loss objects. Clutter and change detection artifacts
were manually removed from the point cloud. Clutter was generated as a result of random noise
within the TLS datasets and change detection. Artifacts were generated as a result of systematic
errors within the M3C2 change detection algorithm, mainly edge effects near occlusions and noise
caused by the search cylinder passing through multiple separate surfaces [24]. Objects attributed to
talus, soil, and vegetation movements were also manually removed, resulting in an unorganized point
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cloud of solely rockfall objects. Density-based clustering was used to give a unique ID to each of the
rockfall objects, and to remove any remaining noise left over. For each object, 3D volume and shape
were computed, and the lithology was classified by comparing the rockfall centroids to a mapped 3D
geological model of the site. Lastly, false positive rockfalls were filtered out using: (1) a ratio threshold
of positive to negative points and (2) a lowest volume threshold [14]. These steps were conducted for
each sequential TLS dataset, resulting in 25 clustered rockfall datasets, each containing the extracted
rockfall events with the numerous computed attributes. Further details of the rockfall extraction
workflow are explained in the following subsections.
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2.2.1. M3C2 Batch Change Detection

M3C2 change detection was conducted for all 26 sequential TLS datasets using a Python batching
script to access the command line API of CloudCompare. An intermediate affine transformation
was applied to the TLS datasets prior to the M3C2 distance computation to align the point clouds
with a Cartesian axis, which ensures the correct orientation of normal vectors. Core points were
defined at a subsampled point spacing of 10 cm, representing the maximum point spacing across
the datasets. Subsampling normalized the point spacing across the study site and was important for
the use of a density-based clustering algorithm in a later step of the workflow. The full resolution of
the clouds was used for the normal vector estimation and distance computations, even though the
data was subsampled. The projection diameter was varied at the following six different multiples
of the point spacing: 20, 30, 40, 50, 75, and 100 cm. The projection length was fixed at 15 m for all
computations. In order to ensure that the normal vector orientation is not affected by roughness, it has
been recommended that the normal search diameter, D, is at least 20–25 times larger than the roughness
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computed at the equivalent scale [34]. The normal search diameter was fixed at 1 m, which was
approximately 30 times the average surface roughness.

2.2.2. Extraction of 3D Loss Objects

M3C2 calculations were conducted for all sequential datasets, forward in time. Negative change
areas corresponded to rockfall back scarps and areas of talus or soil depletion. Significant negative
change was extracted using a consistent 5 cm limit of detection at 95% confidence (LoD95), representing
two times the maximum root mean square error determined during the point cloud alignment
procedure. Then, M3C2 calculations were conducted for all sequential datasets, backward in time.
Similarly, positive change extracted using the LoD95 delineated the fronts of rockfalls, talus, or soil
movements. For each pair of sequential datasets, the extracted negative and positive change were
merged together, resulting in a point cloud of 3D loss objects yet to be clustered. Clutter and artifact
points could remain in the loss object cloud, as a result of their M3C2 distances being larger than
the LoD95.

2.2.3. Classification of Rockfall and Removal of Clutter and Artifacts

Objects that were not the result of rockfalls had to be removed, such as remaining low-lying
vegetation, talus, and soil. The classification of points corresponding to rockfall can be automated by
comparing extracted objects to a 3D classified mask, as demonstrated by Bonneau et al. [17]. Work has
been undertaken to start automatically classifying point clouds into areas of vegetation, soil, talus,
and bedrock [64], although in complex terrain such as at Mile 109.4, automated classification methods
may not be sufficiently robust to have complete confidence in the resulting mapping. Additionally,
the study site has undergone significant natural and engineered slope changes throughout the period
of the monitoring program (Figure 5). A singular bedrock classification mask would likely not suffice
for accurate automated rockfall classification. Therefore, this step was done manually to maximize the
accuracy of classification, and to prevent the omittance of events or inclusion of false positives as a
result of potential systematic error within an automated workflow.

Points not attributed to rockfall were removed in CloudCompare using the snipping tool. Gigapixel
panoramic photos taken with each data acquisition were used to identify loss features that were
located in areas of talus, soil, and vegetation. Additional tools within CloudCompare were used to
aid in classifying the change signatures. These tools included the visualization of normal vectors and
slope angle in an underlying terrain model, and the visualization of accumulation areas in previous
change detection time intervals. For a singular change detection time interval, the point clouds
corresponding to all six projection diameters were processed simultaneously to ensure the equal
treatment of each dataset.

Remaining clutter and artifacts were removed in parallel with the rockfall classification.
This included edge effects near the borders of occluded data (areas not in the line of sight of
the scanner), noise as a result of high scanner incidence angles and positional uncertainty, and noise
generated by the M3C2 projection cylinder contacting multiple surfaces [24]. This process was a much
simpler task as compared with rockfall classification, as these points were apparent with strong linear
features or noisy sporadic magnitudes of change, with little to no defined geometry.

2.2.4. Clustering Individual Rockfalls

As discussed by Tonini and Abellan [11], an adaptation of the density-based spatial clustering of
applications with noise (DBSCAN) algorithm [65] was used to cluster individual rockfall events from
the unorganized input point cloud. The DBSCAN algorithm is depicted in Figure 8. The clustering
algorithm uses a search radius and a minimum number of points to define a cluster. These two
parameters were tested in a trial and error process using datasets of varying difficulty, and the results
were visualized in CloudCompare. Similar to the findings by van Veen et al. [14], it was determined
that the DBSCAN algorithm performed optimally when using a minimum of 12 points and a 30 cm
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search radius. The DBSCAN algorithm was implemented in C++. The clustering process resulted in a
point cloud of grouped rockfall objects, each with a unique ID.
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Figure 8. The DBSCAN algorithm and two generated clusters. There are three types of points as follows:
key points (red) are points that satisfy the cluster criteria (termed core points by Ester et al. [65]); border
points (blue) do not satisfy the cluster criteria but are within a key point’s reach; noise points (grey)
are neither of the two aforementioned types. The DBSCAN algorithm uses the two following rules:
(1) points within the search radius of a key point are part of its cluster and (2) key points which share
common border points are part of the same cluster, shown for p1 and p2 in Cluster 1. Adapted from
Tonini and Abellan [11].

2.2.5. Volume Calculations

Surface reconstruction was used to compute the volume of each rockfall 3D object extracted.
This study used the alpha-shape algorithm developed by Edelsbrunner and Mücke [66]. An alpha
shape is a generalization of the convex hull of a point set. An alpha shape is defined as the union of all
simplices covered by its alpha complex, where the alpha complex comprises all Delaunay tetrahedra
(and encompassing faces, edges, points) which have empty circumspheres, with radii less than the
defined alpha radius. Therefore, for a set of points, there exists a family of alpha shapes, with each
member corresponding to a different value of alpha radius, ranging from zero to infinity. An infinite
alpha radius produces the convex hull of the set of points, and thus simplifies the geometry. An alpha
radius of zero results in solely the set of points, with no edges or faces defined, thus, having no geometry.
Therefore, an optimal alpha radius is required to best approximate the geometry of the object. Readers
are referred to Edelsbrunner and Mücke [66] for further details and discussions of alpha shapes.

As mentioned earlier, the triangulated mesh resulting from surface reconstruction needs to be
manifold and fully watertight in order to ensure the accuracy and reliability of volume calculations.
The alpha-shape approach does not guarantee either of these characteristics. Therefore, the iterative
alpha-shape approach, by Bonneau et al. [16], was implemented to guarantee that all resulting alpha
shapes were fully watertight and manifold. This was performed by iterating through each member of
the alpha shape family and finding the lowest alpha radius which satisfied the aforementioned criteria.
A lower alpha radius also results in a better approximation of the surface geometry of the rockfall
object, as well as a better estimation of volume. The iterative alpha shape surface reconstruction was
implemented in MATLAB [67].

2.2.6. Shape Calculation

The shape of a rockfall can provide insight into the structure of the sourcing rock and the failure
mechanics. With a new generation of 3D rockfall modeling software, the shape of a rockfall and the
quality of the rock can also give insight into its chaotic interaction with terrain and the potential runout
of the fragment(s) [20–22]. Blott and Pye [68] described shape using four important characteristics;
form, roundness, irregularity, and sphericity. The quantification of form involved the measurement
of the length, breadth, and thickness of a particle, typically with all measurements being mutually
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orthogonal [68]. In 1958, Sneed and Folk [69] proposed a ternary diagram to classify the form of
pebbles into 10 categories, as relations among the longest (A), intermediate (B), and shortest (C) axes.
This study, in addition to several other studies [14,25,28], used the Sneed and Folk classifications
to classify the shape of 3D rockfalls extracted from TLS. The Sneed and Folk ternary diagram and
classifications are shown in Figure 9.
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representation of the different shapes on the depicted on the diagram. The relations between the shape
axes A, B, and C are shown along each ternary axis; (b) The 10 classifications of shape, given by Sneed
and Folk [69].

The rockfall shape was computed using the adjusted bounding box algorithm from Bonneau et al. [17].
The rockfall point cloud is rotated to align the direction of maximum variance with the x-axis in Cartesian
space, and its axes are computed using a bounding box. In contrast to a regular bounding box approach,
this method guarantees that the A-axis is the longest dimension of the object [17].

2.2.7. Lithology Classification

The extracted rockfalls were also classified into different lithologies by comparing the source area
to a geological model. Due to logistical and safety constraints, field mapping of the study slope was
not possible. Therefore, a 3D geological model was created by visually mapping the OAP-H point
cloud in Agisoft PhotoScan into the five lithology classes defined previously (Figure 3). Various visual
aids, in addition to the colored 3D point cloud, were used to improve the geological interpretation.
These included the use of gigapixel panoramic photos where lithological features were prominent,
and reference to the geological interpretation and field mapping conducted as part of the study by
Sturzenegger et al. [50]. Each rockfall object centroid was computed and compared to the geological
model [17]. A vote was conducted using nine nearest neighboring points to give each rockfall a hard
classification of lithology.

2.2.8. Filtering

The last step in the rockfall extraction process was filtering and removal of false positive rockfall
events. First, the rockfalls were filtered based on the ratio of positive to negative points (M3C2 distance),
to ensure all rockfall clusters were 3D objects with fronts and backs. A minimum ratio of 1:3 was
selected [14]. Secondly, volume filtering was conducted to remove rockfalls which were, theoretically,
too small to be extracted given the workflow and data density. A minimum volume of 0.001 m3 was
defined, suggesting a 12-point rectangular prism with dimensions 30 by 10 by 5 cm, corresponding
to the 10 cm point spacing, 5 cm limit of detection, and 12-point minimum cluster size used in the
DBSCAN algorithm.
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3. Results

A total of six rockfall inventories were created for the 20, 30, 40, 50, 75, and 100 cm M3C2 projection
diameters. All inventories contained 25 scan intervals, although in two intervals no rockfall activity
was identified. The centroids of each rockfall in the 20 cm projection diameter inventory are plotted in
Figure 10, with their date range of occurrence and volume discretized.

Table 1 summarizes the number of rockfall events extracted in each inventory and Table 2
summarizes the rockfall volume properties for each inventory. The study site has been fairly active
over the five years of monitoring, likely due to the major slope changes that occurred prior to the
beginning of the monitoring campaign. There is a significant variation in the number of rockfalls in
each of the inventories. As the projection diameter increases, the total number of extracted rockfall
events decreases. This decrease is attributed to a higher degree of spatial averaging occurring with
larger projection diameters, which makes smaller changing features less prominent, and therefore less
likely to be clustered into individual rockfall events.

Table 1. The number of rockfalls extracted and filtered for each inventory with differing M3C2
projection diameters.

Number of Rockfalls 20 cm 30 cm 40 cm 50 cm 75 cm 100 cm

Conglomerate 12 11 11 10 8 5
Sandstone 923 866 804 689 487 308

Shale 897 820 750 639 455 290
Sandy siltstone 1547 1436 1287 1124 815 531

Argillite 262 247 230 200 147 95

Total filtered 14 16 10 11 9 7
Grand total 3641 3380 3082 2662 1912 1229

Table 2. Rockfall volume properties of each inventory with differing M3C2 projection diameters.

Rockfall Volume [m3] 20 cm 30 cm 40 cm 50 cm 75 cm 100 cm

Minimum 1.01 × 10−3 1.02 × 10−3 1.03 × 10−3 1.25 × 10−3 1.11 × 10−3 1.43 × 10−3

Maximum 3850 3852 3856 3859 3913 3862
Median 1.19 × 10−2 1.27 × 10−2 1.50 × 10−2 1.92 × 10−2 3.64 × 10−2 7.39 × 10−2

Average 1.63 1.76 1.96 2.28 3.30 5.19

Total 5944 6002 6113 6186 6443 6582

Table 2 demonstrates the calculated volume of the rockfall events, depending upon the projection
diameter. Increased projection diameters cause the minimum, median, and average rockfall volumes
to increase. The cumulative rockfall volume also increases as the projection diameter increases,
and therefore is controlled by the uncertainties on larger rockfall events, rather than the omittance of
many low magnitude rockfall events. The increase in uncertainty is likely due to spatial averaging
resulting in the extraction of points which are not part of the rockfall area. Extraction of additional
points expands the convex hull of the object, and therefore expands the domain of the alpha shape,
and its volume. Interpolation error following the iterative alpha-shape surface reconstruction can
result in a higher volume captured [16], shown by the volume of the largest event increasing as
the projection diameter increases (Table 2). Interestingly, the maximum rockfall magnitude begins
to decrease between the 75 and 100 cm inventories, suggesting that each rockfall has a projection
diameter which maximizes its boundary and volume estimate. Beyond the volume-maximizing
projection diameter, the degree of spatial averaging begins to reduce the object’s convex hull, therefore,
reducing the boundary of its alpha shape and subsequent volume.
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Figure 10. (a) The photogrammetry model; (b) The centroids of each extracted rockfall event from the
20 cm projection diameter inventory. This inventory contains the most extracted events. Centroids are
colorized and sized based on their date range of occurrence and their volume, respectively. Volume size
references are shown in the legend. Rockfalls that appear on the rock shed and talus cone occurred in
the early intervals of monitoring prior to the construction of the structure and eventual talus buildup.
Areas that appear less active could have been monitored for shorter durations (Figure 6).

Another consideration is the production of larger magnitude rockfalls by the coalescence of
multiple smaller rockfalls, as a result of spatial averaging in M3C2. This would be possible through the
intermediate points separating multiple rockfalls in close proximity, if their calculated M3C2 distances
exceed the LoD95 due to spatial averaging. The intermediate points would be extracted and allow for
the multiple density-based clusters to be connected across them. The trends interpreted and discussed
from Tables 1 and 2 are further illustrated in Figure 11, where the volumetric distributions of rockfall
for each inventory are shown.
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Figure 11. Visual representation of the distribution of rockfall events with respect to their volume and
lithology, for each of the six rockfall inventories. (a) The oblique helicopter photogrammetry point
cloud; (b) The photogrammetry point cloud classified by lithology; (c–h) Histograms for each of the six
rockfall inventories using different M3C2 projection diameters. Rockfalls are binned according to their
volume. The colors in the histograms correspond to the lithologies mapped in (b).

An increase in the projection diameter significantly reduces the number of lower magnitude
rockfalls that are extracted, specifically in the range of 10−3 to 4 × 10−1 m3, shown by the downward
shift in the early portion of the cumulative frequency-magnitude relationships in Figure 12. The linear
portions of all the cumulative frequency-magnitude relationships are similar for the tested projection
diameters. The relative deviations in volume are higher at the magnitudes of 5 to 400 m3, causing the
cumulative frequency-magnitude curves to diverge. The curves converge again at the largest magnitude
event recorded, where there is less relative deviation in volume.
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Figure 12. Cumulative frequency-magnitude curves for all six inventories. The larger projection
diameters cause a downward shift in the beginning of the curve. The linear portion of each curve are
similar, but diverge at magnitudes greater than 5 m3.

Figures 13 and 14 show the reduction of lower magnitude rockfall events, spatially, at select areas
of the study site. As the M3C2 projection diameter increases, the smaller rockfalls are not captured in
the inventories. Remaining rockfalls begin to lose their defined shape as the change detection signature
can appear ”blurred” as a result of the spatial averaging. In special cases of multiple discrete rockfall
events in close proximity to one another, the blurring of the change detection signature causes events
to be coalesced into one clustered rockfall.

The shift in the change detection signatures resulting from increasing the spatial averaging is
further reflected in the shape of the extracted rockfall events. The shape of each rockfall was computed
using the adjusted bounding box approach discussed in the Methods section. Two distinctly different
lithologies, the shale and the sandy siltstone, were analyzed to see how the M3C2 projection diameter
influences the shapes of the rockfall events. The average shape for (a) the sandy siltstone rockfalls
and (b) the black shale rockfalls is plotted in Figure 15. The average rockfall shape for both the sandy
siltstone and the shale tended to be bladed, with the shale being slightly more bladed. It is noted
that the average shape of rockfall, ranging from 10−3 to 1 m3, generally becomes more platy as the
projection diameter is increased. The extraction of more points bordering the rockfall events is a result
of the spatial averaging. These additional points increase the A and B axes of the shape (Figures 13
and 14), while the C axis (which is typically the thickness for bladed rockfalls) exhibits little change.
The end result is the shapes becoming more platy.
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Figure 13. A depiction of the effect of spatial averaging on the rockfall inventories as a result of
increasing the M3C2 projection diameter. Individual rockfall point clouds are colorized by binning
their volume as shown in the color scale. Cooler colors indicate smaller volumes and warmer colors
indicate larger volumes. Each cluster of a distinct color represents a single rockfall event. All change
detection timesteps are plotted at once.
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Figure 14. A second depiction of the effect of spatial averaging on the rockfall inventories as a result 
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Figure 14. A second depiction of the effect of spatial averaging on the rockfall inventories as a result
of increasing the M3C2 projection diameter. Individual rockfall point clouds are colorized by binning
their volume as shown in the color scale. Cooler colors indicate smaller volumes and warmer colors
indicate larger volumes. Each cluster of a distinct color represents a single rockfall event. All change
detection timesteps are plotted at once.
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events and the potential implications of M3C2 projection diameter on our ability to understand 
progressive failure of the rock mass. Precursor rockfalls bounding the zone of an eventual failure 
have been detected [37]. A 16.7 m3 rockfall was captured between 12 October 2016 and 8 April 2017; 
over the preceding several years, precursor rockfalls bounded the area of the eventual failure. The 
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Figure 15. Sneed and Folk ternary plots showing the average shape of the extracted rockfalls for each
projection diameter. Average shapes are plotted with color corresponding to the projection diameter.
(a) The average sandy siltstone rockfall shape; (b) The average shale rockfall shape. The rockfalls were
sorted into bins of differing orders of magnitude, considering that interaction of different joint sets is
responsible for differing rockfall magnitudes and shapes.

The last comparison among the databases discusses the spatial relationship between rockfall
events and the potential implications of M3C2 projection diameter on our ability to understand
progressive failure of the rock mass. Precursor rockfalls bounding the zone of an eventual failure have
been detected [37]. A 16.7 m3 rockfall was captured between 12 October 2016 and 8 April 2017; over
the preceding several years, precursor rockfalls bounded the area of the eventual failure. The rockfall
event is outlined in Figure 16.

1 
 

 
Figure 16. A 16.7 m3 rockfall occurred at interbeds between the argillite and sandy siltstone layers,
displayed in gigapixel photographs and in TLS data. (a) Rockfall data with the area of interest circled;
(b) Pre-failure photograph and surface model overlaid with the outline of the post failure rockfall
boundary; (c) Post-failure identification of the rockfall back scarp.

The precursor rockfall activity is illustrated in Figure 17. As with the previous results, the lower
magnitude rockfall events are no longer extracted by the inventories using larger M3C2 projection
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diameters; this is noticeable at the projection diameter of 75 cm (or 7.5 times the average point spacing).
Too much spatial averaging therefore reduces some precursor rockfall indicators.
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Figure 17. Precursor rockfall activity seen prior to the 16.7 m3 event, which can be seen outlined by the
white dashed line. All six inventories are shown, and events are colored according to their time range
of occurrence. Events within the perimeter of the eventual failure correspond to fragments which failed
off the face of the eventual 16.7 m3 event.

4. Discussion

This study shows that rockfalls can be extracted in 3D from sequential TLS datasets utilizing a
semi-automated workflow, developed with the consideration and inclusion of methods from several
of the aforementioned studies. The workflow removes the aforementioned censoring issues that are
present in visual inspection-based rockfall inventories, however, there is a limitation of the spatial
coverage with a terrestrial laser scanning platform. A similar rockfall extraction workflow could be
utilized on large mobile laser scanning datasets to increase the spatial coverage of the 3D rockfall
inventories, assuming that the mobile scanner is positioned to be able to capture oblique views of
near-vertical rock slopes [25].

There are many processes within the 3D rockfall extraction workflow, all of which can certainly
have an impact on the resulting rockfall inventory (Figure 7). Here, we show that the M3C2 projection
diameter is a key consideration for 3D rockfall extraction and analysis. Six rockfall inventories were
created using M3C2 projection diameters ranging from two times the point spacing to ten times the
point spacing. The key findings are summarized as follows:

• Smaller projection diameters result in more detailed change objects delineated. More rockfalls can
be captured and extracted, at the cost of accepting more random noise in the computed distances.

• A projection diameter which is large in comparison to the footprint of a rockfall reduces the
likelihood that the rockfall can be extracted. Spatial averaging causes the changing feature’s outer
boundary M3C2 distances to fall beneath the LoD95. This ultimately reduces the likelihood that
the rockfall’s extracted points meet the density-based cluster criteria.

• Missed lower magnitude events inhibit our ability to identify and document precursor rockfall
activity observed prior to the occurrence of larger magnitude rockfalls.

• An increased projection diameter results in the average shape of rockfalls in sedimentary sequences
to become more platy.



Remote Sens. 2020, 12, 1885 22 of 27

• Spatial averaging causing an expansion of a rockfall feature footprint can challenge clustering
algorithms in cases where multiple discrete events have occurred in close proximity.

To extract the optimal rockfall data from sequential TLS datasets, the best projection diameter
is, therefore, the smallest possible diameter which guarantees that at least one point is captured by
the projected cylinder. This diameter would be one to two times the point spacing, depending on the
expected variability in point spacing. For example, Williams et al. [24] found that a projection diameter
of 0.15 m (approximately the point spacing) was found to be optimal to capture the shape of rockfalls,
however, they found that a 0.25 m search diameter was able to approximate the shape of the rockfalls
while ensuring at least one point was consistently captured within the search cylinders.

Although a diameter that is one to two times the point spacing extracts the most rockfalls from the
TLS datasets, it may not be the most optimal value to be incorporated in a semi-automated workflow.
There is a benefit with spatial averaging, which is, that it reduces the amount of random noise left over
in the M3C2 distances. The amount of noise generated from M3C2 increases with a smaller projection
diameter and an increasingly irregular rough surface [25]. Ample noise which satisfies cluster criteria
results in the inclusion of false positive rockfalls. Moreover, noise that is included in a clustered rockfall
object can increase its boundary, its alpha shape, and ultimately, its volume. Therefore, the presence
of noise is potentially a setback which would make users opt for a larger diameter. In this study,
the majority of clutter (artifacts and noise) was very diligently removed by an experienced 3D program
user. This is certainly inefficient and infeasible in circumstances where there are larger numbers of
TLS datasets. Therefore, the optimal selection of the M3C2 projection diameter for rockfall extraction
depends on numerous factors as follows:

1. Point spacing;
2. Complexity and roughness of the terrain (generates more noise);
3. Quality of data (precision, accuracy, atmospheric conditions, human processing error);
4. Importance of preserving rockfall geometry;
5. Effectiveness of noise removal by the combined effort of filtering and clustering algorithms;
6. The minimum rockfall volume that is of interest for the particular rockfall inventory/study.

As noted, the purpose of the inventory can influence the projection diameter selection. For example,
CN Rail utilizes a rockfall hazard and risk assessment system (CNRHRA) where rockfall fragments
with largest dimensions of 0.3 to 1 m are a concern for potential derailment; this fragment range is
capable of wedging underneath locomotives [70]. A projection diameter able to effectively capture the
equivalent minimum volume would be acceptable in the scope of the CNRHRA analysis. In contrast, if
highly focused active monitoring were to be conducted, on a pit wall for example, a smaller projection
diameter able to pick up small precursor activity would be more suitable for the application. To
this date, however, no studies have utilized automated precursor rockfall extraction, in addition to
deformation, to forecast rockfall.

The selection of the projection diameter utilized within an automated framework is case dependent
and, to some degree, subjective. Future users of this methodology should be aware of the information
that they are able to extract and the impact that parameter selection in their workflow can have on
resulting inventories. These impacts include low magnitude rockfall censoring, coalescing events,
volume overestimation, and skewed rockfall shape estimates. Semi-automated rockfall inventories
derived from TLS datasets should be presented with reference to their limitations and with a complete
disclosure on the methods and parameters used. It is likely that practitioners will find a use for
remotely sensed rockfall inventories, particularly for frequency-magnitude studies and regional hazard
assessments in areas where there are few records of rockfall activity. Inaccurate or undisclosed methods
can result in an incomplete assessment of rockfall hazard, which jeopardizes the effectiveness of a risk
management framework.

As discussed earlier, M3C2 is a preferred change detection methodology for rock slopes with
challenging geometries, because it computes distances along locally oriented normal vectors, instead
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of arbitrary vectors determined by the nearest points (C2C), mesh facets (C2M), or by a predetermined
raster grid orientation (DoD). M3C2 normal vectors are computed using a plane fitted to the core
point’s equidistant local neighborhood (Figure 1). The geometry of blocky rock masses, with discrete
boundaries, thus, are not well represented with these equidistant normal vector computations. Points
proximal to discrete changes in surface orientation have normal vectors influenced by multiple differing
surfaces. Whether the M3C2 surface normal vectors are accurate and suitable, is therefore a site-specific
question. The development of methods for automatic mapping of geological structures and segmenting
planes in point clouds has been an active area of research [71,72]. The incorporation of structural
information into M3C2 operations would make the change detection more suitable for rock masses
with well-defined structures at variable scales.

Another consideration for automated rockfall extraction is to have adequate temporal frequency.
Williams et al. [29] noted the effect of coalescing rockfalls on the cumulative frequency-magnitude
power law relation, which had a significant shift downwards (reduction in the frequency of large
magnitude events) once acquisition intervals were reduced below 12 h. van Veen et al. [14] also noted
this trend, but to a lesser extent, as their data acquisition frequencies ranged from 38 to 461 days.
Because reducing the data acquisition frequency is not feasible for most monitoring programs, methods
should be investigated to increase the accuracy of remotely sensed rockfall inventories which have
infrequent data collection. Such methods should include different clustering algorithms that are capable
of separating coalescing change detection features. All of the studies to date have utilized variations
of the DBSCAN algorithm [65], however, other approaches exist that are more robust at separating
clusters in close proximity or touching one another. Utilization of these other approaches requires
information regarding how the rockfall occurred. In other words, was it a discrete event or a series of
smaller events? Unless there is a high enough temporal frequency of data acquisition to determine this
question, practitioners are forced to select either a method which lumps all the events together or which
potentially induces artificial breaks that may not exist. This phenomenon is one of the central issues
associated with the presented approaches to date; the workflow at present cannot distinguish between
these two potential types of false positive rockfall events. Future work is suggested to investigate the
implications of using alternative clustering algorithms and the implications on database development.
However, as demonstrated with the present study, all of this work is predicated on having confidence in
the parameters used in the change detection process to minimize noise and capture true slope activity.

5. Conclusions

Rockfall inventories are essential for capturing rockfall activity and understanding hazard.
TLS platforms have resulted in detailed monitoring and documentation of rockfall activity at a new
level of accuracy and detail. Automation of workflows to automatically extract rockfall as 3D objects
and conduct analysis on their shape and volume have improved the accuracy and efficiency of remotely
sensed rockfall inventories. The initial step of the rockfall extraction workflow relies on the extraction
of moving features using change detection and limit of detection thresholding. M3C2 has become the
preferred change detection method with two key input parameters: (1) the normal search diameter and
(2) the cylindrical projection diameter. The projection diameter and its influence on semi-automated
rockfall extraction was analyzed in the presented study. Six rockfall inventories were produced by
varying the M3C2 projection diameters from two times the point spacing to ten times the point spacing.
It was determined that the projection diameter has a substantial impact on the automated rockfall
inventories. The largest number of rockfalls are captured with the smallest possible projection diameter
that is able to consistently capture at least one point within the searching cylinder; roughly one to two
times the normalized point spacing. Increasing the projection diameter beyond this optimal size results
in substantial censoring of lower magnitude rockfall events. Complex terrain and rough surfaces can
generate a considerate amount of noise within the M3C2 distances which cannot be filtered through a
limit of detection threshold of 95% confidence. Therefore, increasing the diameter beyond the optimal
level could be preferred in certain circumstances, as long as users understand the features that are
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not extracted. With advancements in technology allowing for higher spatial and temporal resolutions
of TLS datasets [8], we can decide to observe earth surface processes at higher levels of detail, or to
leverage the resolution for a higher confidence in the changing features we detect. For automated
rockfall extraction, improvements can be made which include the determination and incorporation
of normal vectors indicative of rock structure to be used in M3C2 change detection, incorporation of
clutter and smart artifact removal, further automation of change detection feature classification, and use
of clustering algorithms capable of separating coalescing rockfall events. Future methods to reduce the
effect of coalescing rockfalls captured with infrequent data acquisition should be investigated.
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