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Abstract: Understanding vegetation dynamics is necessary to address potential ecological threats
and develop sustainable ecosystem management at high altitudes. In this study, we revealed
the spatiotemporal characteristics of vegetation growth in the Lhasa River Basin using net primary
productivity (NPP) and normalized difference vegetation index (NDVI) during the period of 2000–2005.
The roles of climatic factors and specific anthropogenic activities in vegetation dynamics were also
identified, including positive or negative effects and the degree of impact. The results indicated
that the interannual series of NPP and NDVI in the whole basin both had a continuous increasing
trend from 102 to 128 gC m−2 yr−1 and from 0.417 to 0.489 (p < 0.05), respectively. The strongest
advanced trends (>2 gC m−2 yr−1 or >0.005 yr−1) were detected in mainly the southeastern and
northeastern regions. Vegetation dynamics were not detected in 10% of the basin. Only 20% of
vegetation dynamics were driven by climatic conditions, and precipitation was the controlling
climatic factor determining vegetation growth. Accordingly, anthropogenic activities made a great
difference in vegetation coverage, accounting for about 70%. The construction of urbanization and
reservoir led to vegetation degradation, but the farmland practices contributed the vegetation growth.
Reservoir construction had an adverse impact on vegetation within 6 km of the river, and the direct
damage to vegetation was within 1 km. The impacts of urbanization were more serious than that of
reservoir construction. Urban sprawl had an adverse impact on vegetation within a 6 km distance
from the surrounding river and resulted in the degradation of vegetation, especially within a 3 km
range. Intensive fertilization and guaranteed irrigation improved the cropland ecosystem conditions,
creating a favorable effect on the accumulation of crop organic matter in a range of 5 km, with an NPP
trend value of 1.2 gC m−2 yr−1. The highly intensive grazing activity forced ecological environmental
pressures such that the correlation between livestock numbers and vegetation growth trend was
significantly linear negative.

Keywords: vegetation dynamics; climatic factor; urbanization; reservoir construction; agriculture
practices; degree of impact
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1. Introduction

Vegetation has been considered a vital medium in characterizing and clarifying the surface
energy exchange, biogeochemical cycle, and water cycle in global terrestrial ecosystems [1,2].
Vegetation dynamics, as a long-term and complex process, are involved in regulating the carbon
balance and reducing greenhouse gas emissions, as well as directly influencing climate and ecosystem
stability [3,4]. Terrestrial ecosystems are easily subject to a combination of climate factors and
human disturbances [5,6]. The ecosystem services provided by vegetation are easily disturbed by
environmental and management changes such as climate change, land conversions, and agriculture
practices [7–9]. Under the background of global warming and the requirement of sustainable
development, improving our ability to specifically interpret the vegetation response to climatic
and anthropogenic factors contributes to formulating countermeasures and management policies from
a regional or national perspective.

The value of satellite imagery as the major means for monitoring vegetation growth at large
scales has long been recognized [10–12]. The net primary productivity (NPP) and the normalized
difference vegetation index (NDVI) are two key indicators adopted for understanding vegetation
accumulated organic matter and green vegetation coverage, which have been widely employed in the
field of variability in vegetation at both local and global scales [13–15]. In past decades, numerous
issues concerning the mutual relationships between vegetation and climatic variables have been
addressed [16,17]. Numerous studies have confirmed that the responses of vegetation dynamics to
climatic variables are characterized by spatial non-stationarity and temporal heterogeneity [18,19].
However, few studies have been carried out at the watershed scale, especially in southwest rivers.
Several efforts have also been devoted to quantifying the damage of human activities to vegetation
dynamics within a specific region [20–22]. However, these studies either generally illustrated these
effects from the perspective of land use and cover change [23,24] or distinguished the contribution
of human activities based on mathematical formulas such as regression analyses [25,26], which is
not able to take total anthropogenic factors and their complex interactions in consideration. In fact,
anthropogenic activities (e.g., population, afforestation area, urbanization, grazing) can be very
complicated and diverse. Limited attempts have been made to systematically explore the effect of
human activities on the vegetation dynamics within a specific region, where there may be more than
one human activity. Problems such as the specific types of human activities and their range of positive
or negative effects have not been solved.

The Tibetan Plateau (TP) is an important ecological barrier area where the ecosystem is extremely
vulnerable. Therefore, the plateau ecosystem is susceptible to an artificial disturbance [27,28].
Despite the large area of the plateau, the population is mainly distributed in narrow river valleys,
leading to a great intensity of human activities. The Lhasa River Basin is the most densely populated
area on the TP, where the ecosystem service is closely related to the well-being of residents in the
lower reaches and sustainable development of the basin and even the whole TP [29,30]. During the
“eighth five-year plan” period, state and local governments proposed the comprehensive development
project in Lhasa River Basin to promote agriculture and animal husbandry and accelerate economic
development. Thus, the Lhasa River Basin has undergone dramatic changes in recent decades, including
urbanization driven by increasing populations, the construction of large water conservancy projects,
and intensive agriculture practices to ensure production security. These policies orientations attracted
wide attention from society. Urbanization can alter the ecosystem composition and structure due to
land conversions and consequently has a significant effect on ecosystem processes and functioning [31].
The impoundment of reservoirs may lead to the expansion of non-vegetation coverage in the upstream,
and the reservoir reconstruction is responsible for decrease in grasslands [11,32]. Intensified agricultural
management, such as prevailing irrigation and application of chemical fertilizers, has shifted the
vegetation productivity process [9,33]. The overexploitation of the grassland, which is induced by
increasing grazing pressure, led to soil structural decline and further triggered land degradation [34].
The “one river and two tributaries” project was completed in 2000, and climate change has worsened
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in the 21st century. Huang et al. (2016) confirmed the year 2000 as the year of significant climate
change point in Tibet. The responses of vegetation dynamics to climatic conditions and anthropogenic
activities from a watershed ecology perspective remain poorly understood [35].

The objective of this study is to investigate the spatial-temporal change patterns of vegetation
growth, as well as examine the mechanisms of NPP and NDVI responses to climatic factors and human
activities in the Lhasa River Basin during the period of 2000–2005. The purposes are (1) to analyze the
spatiotemporal dynamics of NPP and NDVI in recent decades, (2) to partition the vegetation dynamics
driven by climatic factors, and (3) to quantify the relationship between human-induced factors and
vegetation dynamics, and determine the range of influence. Our findings contribute to making clear
the driving factors of vegetation dynamics and provide important information for regional ecological
environment protection.

2. Materials and Methods

2.1. Study Area

The Lhasa River Basin, which is located in the southwest of the TP, is the largest and most
important tributary of the Yarlung Zangbo River, with a total area of 32,588 km2. The geographical
coordinates are 90◦05′E–93◦20′ E, 29◦20′N–31◦15′N. High mountains and deep gorges are distributed
as a mosaic with a slight slope from northeast (over 7000 m) to southwest (below 3700 m), which has
high landscape heterogeneity. In this study area, the plateau temperate semiarid monsoon climate
is subjected to an annual average temperature of 7.7 ◦C due to the high altitude and a mean annual
precipitation of 440 mm. The precipitation is unevenly distributed throughout the year, with 80% of
the yearly total in summer and autumn.

Human activities are concentrated in the lower valley below 4500 m. In response to the national
policy for development in the One River and Two Tributaries region of Tibet, since 2000, the government
has made great efforts to construct water conservancy facilities and irrigated districts and accelerate
urbanization to improve the living standards of local people. The Zhikong Reservoir (completed in
2006) and Pangduo Reservoir (completed in 2013) formed the cascade structure of hydropower in
the midstream of the Lhasa River (Figure 1a). In mountainous regions, urbanization and reservoir
construction often bring about large-scale physical disturbances, including cut and fill operations that
destroy grasslands and croplands. Additionally, the Moda irrigated district and Pengbo irrigated
district were vigorously developed to ensure local grain yield. The Moda irrigated district is distributed
along the main stream of the Lhasa River, while Pengbo irrigated district is located on both banks
of the Pengbo River (a tributary of Lhasa River) (Figure 1b). The main crops are highland barley,
winter wheat, and potatoes. The population of the Lhasa River Basin is mainly concentrated in the
urban areas of the lower river valley, and there are few people in the upper mountain meadow and
forest area (Figure 1c). Temperate steppe is the dominant ecosystem type above 4500 m, occupying
nearly 70% of the whole basin, where sheep and yak pastures are the most common anthropogenic
activities, while the forest area would show little human disturbance due to few populations and
no grazing.
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Figure 1. The study area: (a) location of the Lhasa River Basin; (b) the land cover map; and (c) spatial 
distribution of people density in 2015. 

Figure 1. The study area: (a) location of the Lhasa River Basin; (b) the land cover map; and (c) spatial
distribution of people density in 2015.
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2.2. Data Source

The annual NPP datasets in 2000–2005at a 1km × 1km spatial resolution were retrieved from the
global MOD17A3 products of the NASA Earth Observation System (EOS) program and processed by the
Numerical Terra Dynamic Simulation Group (NTSG) (http://www.ntsg.umt.edu/project/modis/mod17).
The MOD17 algorithm typically adopted the light-use efficiency model, and validation efforts were
made by using the spatially nonlinear interpolation of the input Global Modeling and Assimilation
Office (GMAO) meteorology, a linear temporal gap-filling technique of leaf area index (LAI) and
absorbed photosynthetically active radiation (FPAR) and recalibrated Biome Properties Lookup Table
(BPLUT); for more details, see Running et al. (2004) [36] and Zhao et al. (2005) [37]. The MOD17 was
able to capture the spatiotemporal variation in NPP under different biomes and climate regimes, and no
consistent overestimation or underestimation was found compared with the field NPP observations [38].
The MOD17A3 products have popularity in previous studies of carbon exchange and ecosystem
productivity at regional and global scales [39–41].

The global 16-day MODIS NDVI products (MOD13A2) with a 1km × 1km spatial resolution
were used in this study (available at https://ladsweb.modaps.eosdis.nasa.gov/). The MOD13A2 data
were generated from atmospherically corrected bidirectional surface reflectance that had been masked
for water, clouds, heavy aerosols, and cloud shadows [42]. A wide range of distribution locations
and ground-truth and validation efforts during the periods were adopted for the evaluation of
accuracy. These data could be used for characterizing land surface biophysical properties and processes.
To reduce the negative impacts of cloud contamination and atmospheric variability, the maximum
value composite (MVC) method was applied to pick the higher value for each pixel of two-period
images to obtain the monthly NDVI. Then, the annual NDVI values were calculated for every year from
2000 to 2015. Only the pixels where the multiyear average NDVI was higher than 0.2 in the basin were
selected to eliminate the disturbance of barren and no vegetated signals [43]. The annual precipitation
and temperature records at a 1km × 1km spatial resolution were obtained from the Data Center for
Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn).
The national 2400 station-based observational data from the National Meteorological Information Center
(NMIC) of the China Meteorological Administration were interpolated using thin-plated smoothing
splines (ANUSPLIN) to produce continuous raster images. Both NDVI data and meteorological data
were resampled and re-projected to ensure the spatial consistency with NPP data. The socioeconomic
data at a county resolution from 2000 to 2015, including the livestock type, herd number data, irrigated
area, and the amount of fertilizers and pesticides, were acquired from the Tibet Statistical Yearbooks.
The herd number data were converted into the unit of a standard sheep to quantify the stocking
intensity for 7 counties. Specifically, 1 head of large livestock (yaks and horses) is equivalent to 5
sheep units.

2.3. Statistical Analysis

The linear trend analysis on a per-pixel basis was used to identify the trends under the long time
series in the NPP and NDVI variables:

slope =
n×

∑n
i=1 i×Xi −

∑n
i=1 i

∑n
i=1 Xi

n×
∑n

i=1 i2 −
(∑n

i=1 i
)2 (1)

where Xi indicates the time-series variable, and i is the sample sequence number, t =1, 2,..., n, where
n is the number of time periods. A slope value greater than zero indicates an upward trend of the
corresponding variable, while a slope value less than zero means a downward trend. The absolute
value of the slope represents the magnitude of change.

http://www.ntsg.umt.edu/project/modis/mod17
https://ladsweb.modaps.eosdis.nasa.gov/
http://www.resdc.cn


Remote Sens. 2020, 12, 1883 6 of 20

Pixel-based partial correlation coefficients between NPP or NDVI and precipitation and
temperature were calculated as follows:

rxy,z =
rxy − rxzryz√

(1− r2
xz)(1− r2

yz)
(2)

where rxy is the Pearson correlation coefficient. rxy,z describes the relationship between the x variable
and the y variable with the effect of the z variable removed. A t-test was used to examine the significance
of the correlations at a significance level of 0.05.

Considering the interaction between the meteorological factors, the multiple correlation coefficient
was used to describe the combined effects of precipitation and temperature on NPP or NDVI at a
significance level of 0.05 by the F-test:

rx,yz =
√

1− (1− r2
xy)(1− r2

xz,y) (3)

The zoning criteria were adopted for identifying the driving factors of vegetation dynamics
(climatic and non-climatic) based on the partial correlation coefficient and multiple correlation coefficient
analysis. We identified the areas where no vegetation dynamics occurred (the change trend of NPP or
NDVI equal to zero) as no change zone (NOC), and then determined the driving factors of vegetation
dynamics in the remaining pixels. Pixels meeting the significant multiple correlation and partial
correlation between NPP (NDVI) and precipitation were defined as precipitation driven type (P);
pixels meeting the significant multiple correlation and partial correlation between NPP (NDVI) and
temperature were defined as temperature-driven type (T); and pixels meeting the significant multiple
correlation and simultaneously meeting the significant or nonsignificant partial correlation were
defined as precipitation and temperature driven type (PT). Those that did not meet the significant
multiple correlation and did not belong to the forest areas were defined as non-climate driven (NC),
as there were few populations in the forest areas and the vegetation dynamics were mainly affected by
climate factors.

3. Results

3.1. NPP and NDVI Spatial Patterns and Interannual Variations

The annual average NPP and NDVI from 2000 to 2015 were calculated based on the pixel-level
statistics (Figure 2a,b). The variable spatial patterns of NPP and NDVI were consistent, with a
gradual increase from upstream to downstream. The northwestern part of the basin was glacial
land with no vegetation cover; thus, the NPP and NDVI values were equal to zero. Higher values
(NPP > 200 gC m−2 yr−1 or NDVI > 0.6) were mainly located in the downstream. The interannual
series of NPP has a steadily increasing trend over the past 16 years ranging from 102 to 128 gC m−2 yr−1

in the whole basin (p < 0.05), with an average value of 122 gC m−2 yr−1. The mean NDVI exhibited a
significant increasing trend, varying between 0.417 and 0.489 (p < 0.05), with a mean value of 0.452.
Figure 2c,d depicts the spatial patterns of the changing trends in NPP and NDVI. During 2000–2015,
approximately 74.73% of the river basin exhibited an advancing trend in NPP. The strongest advanced
trends (>2 gC m−2 yr−1) were detected mainly in the southeastern regions of downstream. Similarly,
more areas increased in NDVI were detected, with 66.25% of the total pixels. The NPP in the northwest
and river valley both experienced a severe declining trend, with magnitudes of changes less than
−1.00 gC m−2 yr−1 and −4.00 gC m−2 yr−1, respectively. A significantly negative NDVI was also
found in the northwest (< −0.05 yr−1) and river valley (<−0.15 yr−1). Figure 2e,f visually presents
the qualitative classification of NPP trend and NDVI trend, whether those are increasing, decreasing,
or unchanged. In general, vegetation degradation was relatively severe in the lower reaches of the basin.
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Figure 2. Spatial and temporal distributions of NPP, NDVI and their trends from 2000–2015: (a) annual
mean NPP, (b) annual mean NDVI, the line charts indicate the annual variation in the spatially averaged
values; (c) changing trend of NPP, (d) changing trend of NDVI, the white pixels represent the NOC
areas; (e) qualitative classification of NPP trend, (f) qualitative classification of NDVI trend.

3.2. Partition of Driving Factors for NPP and NDVI

We firstly removed the NOC areas in all the pixels and then analyzed the partial correlations
between NPP (NDVI) and precipitation (P) and temperature (T) in the remaining pixels to determine
their contributions across different locations (Figure 3c–f). During 2000–2015, areas that experienced a
significant negative partial correlation between NPP and P mainly occurred in the southeastern regions
(p < 0.05), accounting for 20.94% of the entire Lhasa River Basin. Concurrently, approximately 3.85% of
the total cells experienced a significant positive partial correlation between NPP and P (p < 0.05), mainly
distributed in the northwestern regions and slightly distributed in river valleys. Most of the river basin
areas experienced insignificant negative or positive partial correlations. Approximately 52.34% of the
river basin showed a negative partial correlation between NDVI and P, especially in the southeastern
regions (p < 0.05), accounting for 12.80% of the total area (Figure 3e). Meanwhile, strong positive partial
correlations were observed in the northwest, in accordance with the results in NPP. Figure 3d,f present
the results for spatial distribution of the partial correlation coefficient. Only 7.40% of pixels exhibited
positive partial correlations between NPP and T were significant at p < 0.05. Furthermore, almost no
significant positive or negative partial correlation between NDVI and T was found in the whole river
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basin. To further determine the spatial relationship between NPP (NDVI) and P and T, the pixel-based
multiple correlation coefficients were calculated from 2000–2015 (Figure 3g–h). Approximately 23.35%
of the total pixels showed a strong correlation between NPP and P and T (p < 0.05), indicating that
the vegetation dynamics were mainly driven by climatic variables. Meanwhile, 13.20% of the areas
showed a strong correlation between NDVI and climatic factors(p < 0.05). The areas driven by P and T
variables occurred mainly in the southeastern and northwestern part of the watershed.

Figure 3a,b presents the results for driving factors of annual vegetation dynamics based on the
zoning criteria. During 2000–2015, the areas experiencing NPP dynamics driven by P accounted
for 15.87% of the river basin, distributed in the southeast and northwest of high-altitude regions.
Only 8.61% of the river basin showed the variation in NPP driven by T (4.15%) or PT (4.46%), dispersedly
occurring in the northwestern regions. The changes in NPP in the remaining areas were mainly driven
by NC, occupying 68.20% of the whole basin. The spatial distribution of the driving factors of NDVI
were nearly consistent with the results in NPP. The variations in NDVI driven by climatic factors only
occupied 16.19% of the river basin. The proportions of areas with NDVI changes driven by T (2.24%) or
PT (2.78%) were small across the river basin. The P had a more significant impact in the northwestern
and southeastern parts, while the responses of vegetation growth to T and PT were scattered in some
pixels. In about70% of areas, vegetation growth was not controlled by climatic factors, indicating the
more pronounced impacts of human disturbance. The vegetation dynamics induced by NC factors
were located in the alpine meadow of the upper basin and the lower river valleys.
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3.3. Relationships between Vegetation Dynamics and Human Activities in the Valleys

According to the previous analysis, the vegetation dynamic on both sides of the lower river valley
was mainly driven by NC, that is, the human disturbance was a primary factor. Due to the special
topography, human activities such as urbanization, reservoir construction, and farmland practices were
distributed along the river bank (Figure 1a,b). To identify the impacts of human activities on vegetation
dynamics, we divided the Lhasa River (main stream and its tributaries) into five parts named R1, R2,
. . . , R5, and extracted the vegetation change trend at intervals of 1 km within the range of 10 km along
each river (Figure 1a). Every Rx unit represented a specific human activity. Among them, vegetation
dynamics along R1 indicated the influence of reservoirs, since the cascade reservoirs were built on
it. The impacts of urbanization on vegetation could be concluded based on analysis of R2 and R3,
because these rivers run through the cities and towns. R4 and R5 represent the vegetation dynamics
induced by farmland practices, as the farmland was distributed on both sides of these two rivers.
These pixels were all selected from the NC areas in the neighborhood of specific human activity to
indicate a single role for human activity. The vegetation change trends at different distances from the
rivers were compared. We believe that if the trend value is the same at different distances from the
river, it indicates that vegetation is hardly affected by human disturb; if the values increase with the
distance, it means that human activities have a negative effect; otherwise, it is a positive effect.

Figure 4 presents the pixel-averaged change trend of NPP for every 1 km interval distance from
the riverway. The vegetation growth along R1, the cascade reservoirs, and the parts between the
reservoir groups showed the impacts of reservoir construction. In mountainous regions, reservoir
construction often brings about large-scale physical disturbance, including cut and fill operations that
destroy grasslands and croplands, and the construction of the cascade reservoir would also widen
the river bank between two reservoirs and inundate the surrounding vegetation. Results showed the
influence range of reservoir construction was within 6 km of the riverway. Due to the unique mountain
and valley topography, the most intense reservoirs disturbance to vegetation growth was concentrated
within a range of 1 km, leading to a trend towards vegetation degradation. The results of the NPP
trend along R2 and R3 presented the vegetation responses to urbanization. The NPP trend along R2
increased from 0.40 to 2.1 gC m−2 yr−1 with no values less than zero. However, the change trend of
NPP along R3 was from −0.80 to 0.50 gC m−2 yr−1. At distances of no more than 3 km, the vegetation
was destroyed. Especially within the range of a 1 km distance, urbanization had a strong negative effect
on vegetation growth, with a value of −0.8 gC m−2 yr−1. The gradient distribution of NPP along the R4
and R5 riversides showed the influence of the irrigated district construction on vegetation. The change
trend in NPP along R4 decreased first and then increased with increasing distance from the riverway.
The NPP decreased significantly from 1.20 gC m−2 yr−1 at a distance of 1 km to 0.07 gC m−2 yr−1

at a distance of 5 km, and subsequently, the change trend of NPP began to increase beyond a 5 km
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distance. Similarly, the change trend of NPP away from the R5 bank was consistent with that from
the R4 bank. The NPP trend decreased significantly from 1.20 gC m−2 yr−1 at a distance of 1 km to
0.25 gC m−2 yr−1 at a distance of 2 km. As the distance increased to 10 km, the change trend then
increased to 1.20 gC m−2 yr−1. The comparison of the change trend of NPP at different distances from
the riverside showed two types of impacts. First, farming activities made a positive contribution to
the growth of vegetation in a linear direction along the river. The irrigated districts were distributed
along the main stream of the Lhasa River and Pengbo River due to restrictions of topography and
water resources. Within a distance of 1 km, fertilization and pesticide behaviors were conducive to the
dry matter accumulation of crops and greatly promoted vegetation growth. Beyond a 1 km distance,
the positive effect of human disturbance was gradually weakened, while the opposite negative effects
began to emerge.
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The change trend in NDVI was compared for every 1 km interval from the river bank to explore
the gradient distribution (Figure 5). In general, the pixel-average change trend of NDVI was consistent
with that of NPP at different distances from the riverway, except along R4. In the R1 section between
the reservoir groups, the influence range of cascade reservoirs was within a 6 km distance from the
riverway, corresponding to the results of NPP. At a distance of 1 km, cascade reservoirs had a damaging
effect on vegetation, with a change trend of −0.0022 yr−1. The change trend in NDVI increased from
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0.0012 yr−1 at a distance of 2 km to 0.0030 yr−1 at a distance of 6 km, and subsequently, there was no
significant difference beyond a 6 km distance. Urbanization at the expense of farmland destruction had
a severe damaging effect on vegetation (R2) and was concentrated at a distance of 6 km. The change
trend in NDVI was less than zero due to human interference within 4 km. The change trend (R3)
was concentrated at a distance of 4 km. The negative effect was greater within the range of 3 km.
The variation trend in NDVI along R4 at a distance of 1–5 km from the river was quite different from
that of NPP. The change trend in NDVI presented a trend of continuous increase from −0.0020 to
0.0015, while the change trend in NPP decreased at a distance of 1–5 km from the river. The main
stream of the Lhasa River flowed through the center of Lhasa city, and there was also much nearby
urbanization, some of which overlapped with the urbanization around R3. Land use conversion from
cropland/grassland into urbanization was responsible for the decrease in NDVI, while agricultural
activities could increase the carbon sequestration of crops in the irrigated districts, thus leading to an
increase in NPP but a decrease in NDVI. However, the change trend in NDVI at a 1–10 km distance
from the R5 bank corresponded to that of the results in NPP. The change trend in NDVI decreased from
0.0018 yr−1 at a distance of 1 km to 0.0016 yr−1 at a distance of 2 km and then increased to 0.0024 yr−1 as
the distance increased to 5 km. The land use pattern near R5 was relatively singular, mainly farmlands
in irrigated districts. Thus, the positive effect of agricultural activities was shown in the area within
1 km of the river.
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3.4. Relationships between Vegetation Dynamics and Human Activities at Different Altitude Levels

Previous literature has confirmed that altitude plays a key role in vegetation growth because high
altitudes are exposed to lower temperatures and unique physical conditions [43–45]. In the Lhasa
River basin, however, the unique topography also determined the living habits of local people. High
altitude also limited the scope of human activities and thus affected the distribution of population
density. Zhao et al. (2017) pointed out that 99% of the population in Tibet was below 4500 m when
exploring the relationship between population and terrain [46]. Combined with the results of Figure 6,
the population density below 4500 m in this basin was primarily concentrated in the lower river
valley, where vegetation dynamics were mainly driven by NC. Therefore, we further explored the
vegetation response along the riverside to altitude with a dividing line of 4500 m. Notably, those
differences were mainly caused by various degrees of human activities across the altitude gradient.
Figure 7 presented the differences in the change trend in vegetation growth at distances of 1 km, 4 km,
7 km, and 10 km from the riverway under an altitude gradient. The variation trend in NPP below
4500 m and above 4500 m along the river both increased with increasing distance from the riverway.
The change trend in NPP above 4500 m increased from 1.05 gC m−2 yr−1 at a distance of 1 km to
1.22 gC m−2 yr−1 at a distance of 10 km, while the change trend in NPP below 4500 m increased from
0.51 gC m−2 yr−1 to 1.19 gC m−2 yr−1. The differences between the change trend below and above
4500 m decreased significantly from 0.54 gC m−2 yr−1 to 0.03 gC m−2 yr−1. Especially within the
range of 1–4 km along the river, the change trend above 4500 m was 0.50 gC m−2 yr−1 higher than
that below 4500 m. No significant difference in the change trend in NDVI above 4500 m at a distance
from 1 km to10 km alongside the river was detected, with a value of approximately 0.0030 yr−1, while
the change trend in NDVI below 4500 m increased from −0.0012 yr−1 to 0.0025 yr−1. The differences
caused by the altitudes decreased from 0.0041 yr−1 to 0.0007 yr−1, especially within the range of 1–4 km,
decreased sharply from 0.0041 yr−1 to 0.0013 yr−1, and then, the differences remained at approximately
0.0010 yr−1 beyond a 4 km distance. This suggested that human activities hindered vegetation growth
in areas within 4 km of the riverside below 4500 m.
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3.5. Relationships between Vegetation Dynamics and Animal Husbandry

As mentioned above, in the NC areas below 4500 m where is densely populated, the urbanization,
reservoir, and farmland construction have extensive and profound impacts on vegetation growth.
while human-induced grazing is a significant factor that cannot be ignored in the NC region over
4500 m such as in the northeastern basin. Grazing is a means of survival for herdsmen in the plateau.
Different from captive breeding, the free-range livestock in the plateau depends primarily on natural
pasture resources in the alpine meadows. In the NC areas above 4500m, the main land use type here is
grassland (Figure 1b). Although there is almost no human footprint in these areas, the foraging behavior
of livestock poses a great threat to the grassland vegetation. In order to determine the effect of grazing
on vegetation growth, we collected the livestock number at the county-level in the whole basin for
16 years and further analyzed the correlation between the livestock number and vegetation dynamics
in NC areas over 4500 m. Figure 8 shows the correlation relationship between NPP or NDVI and
sheep units at the county level in the whole basin during the period of 2000–2015. Results confirmed
that vegetation growth was significantly negatively correlated with the livestock amounts, whereas
vegetation growth decreased significantly with an increase in livestock number. The correlation
coefficient between NPP and sheep units was −0.637, with a significant negative correlation at the 0.001
significance level, and the coefficient between NDVI and sheep units was −0.286 (p < 0.01). Both the
NPP and NDVI appeared to linearly decrease when the sheep numbers increasing, with determination
coefficients of −43.37 and 151.94 and of −0.034 and 0.480, respectively. The R2 values were 0.405 at the
0.001 significance level and 0.082 at the 0.01 significance level. In contrast, animal husbandry had a
more significant impact on the variation of NPP than those of NDVI. According to the above analysis,
we can safely state that the livestock number posed a threat to vegetation growth, and human-induced
grazing is suggested to the dominant factor of vegetation degradation in alpine meadows over 4500 m.
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4. Discussion

Our findings showed the spatiotemporal dynamics of vegetation since the 21st century and its
characteristics driven by climatic factors in the Lhasa River Basin. The spatial distribution of vegetation
growth, as represented by NPP and NDVI, both showed obvious altitude heterogeneity, with higher
values located in the lower altitude areas, which is similar to previous research [47]. Wang et al. (2017)
also confirmed the negative relationship between vegetation productivity and the altitude gradient
above 3500 m in the TP [43]. The overall trend in vegetation growth exhibited a significant advancing
trend (p < 0.05) in recent decades despite grassland degradation in the northwest and human activity
in the river valley, which has the consistency with previous studies [35,48].

Zhang et al. (2014) found climate conditions have driven long-term vegetation dynamics due to the
low population density in the entire plateau [49]. In contrast, climate change did not bring significant
changes in ecosystem structure in the Lhasa River Basin. In the whole Lhasa River Basin, only 24.48%
and 16.19% of vegetation NPP and NDVI changes were driven by climatic factors in alpine vegetation,
and the influence of P was much greater than that of T on vegetation growth. Although a warming
climate is expected to help Northern Hemisphere green [50], some studies also showed that warming
may not be the main driver of plateau grasslands [21,51,52]. Our analysis confirmed the findings from
the study across the Lhasa River Basin by Han et al. (2018) [47]. In fact, the effects of climate conditions
on the vegetation dynamics may be more complicated than we observed. Although the increased
temperature can advance the phenological period of vegetation and increase the vegetation greenness,
the acceleration of the transpiration of plants and soil water losses associated with rising temperatures
may reduce the positive effects of temperature and exacerbate the demand for water. Thus, vegetation
growth may be suppressed due to drought. There are other climatic driving factors affecting vegetation
dynamics, such as radiation and wind, which can be taken into account in future studies.

Urbanization in the lower valley was proceeding rapidly to satisfy the needs of the whole society.
Since the implementation of the national western development strategy, the urbanization rate of Lhasa
reached more than 60% in 2015 [53]. The urbanization can alter the natural energy and material cycles
of the ecosystem. is considered as one of the most disturbing processes from the view of ecology. [54].
Vegetation around the Duilong River (R3) was most seriously affected by urbanization since urban
construction was mainly concentrated on both sides of the river downstream of this tributary. With a
range of 1 km near the river, the vegetation showed a degradation trend, and the two vegetation indices
NPP and NDVI were both less than zero. The massive land conversion from cropland to urbanization
was responsible for such losses. Elmore et al. (2008) determined that land conversions have a greater
effect on vegetation dynamics than climate conditions in China [55]. Similarly, Yu et al. (2009) also
determined that urbanization in Shenzhen city has caused serious damage to regional vegetation
dynamics, with an average annual carbon reduction of 45.93 Gg [56]. The urbanization in the Lhasa
River basin was weaker than that in other regions with rapid economic development, and its impact
on vegetation was not at the same level of significance. However, a nonnegligible effect was seen on
the plateau ecosystem, especially in the 3 km range along the river.

Infrastructure construction that accompanies regional policies such as reservoir group construction
projects has a key role in existing natural ecosystems. Damming and other water reservoir construction
activities may destroy the riparian vegetation zone. Wang et al. (2008) found that the impoundment of
the Three Gorges Project inundated a large amount of vegetation coverage, and the area covered by
vegetation in the upper reaches decreased by 3.31 km2 [57]. The construction of water conservancy
projects led to drastic changes in natural vegetation in the reservoir area [58]. In the Lhasa River Basin,
Zhikong-Pangduo reservoir group construction resulted in severe disturbance to the vegetation in the
middle section of the reservoir groups. The impact range of reservoir construction on vegetation in the
middle section was within 6 km of the river, and the damage to vegetation was the greatest within
1 km. The two water reservoir construction projects at the cost of occupying the grassland were the
main cause of vegetation degradation. Although the increased water collection areas may increase
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the moisture content in the air, which was conducive to surrounding vegetation growth, this land
conversion from grassland into waters brought more direct damage to vegetation.

Intensive agricultural practices such as management measures and planting methods are an
indispensable part of anthropogenic activities that influence vegetation productivity. In fact, fertilization
and irrigation infrastructures are good indicators of soil quality and productivity due to their favorable
effects on physical and chemical properties, thus making positive differences in vegetation growth.
In the Lhasa River Basin, agricultural development that accompanied national policies (One River and
Two Tributaries region) has impacted existing cropland ecosystems. Croplands in the Lhasa River Basin
were distributed along both sides of the river, the main stream, (R4) and Pengbo River (R5). Figure 4
presents the change trend in vegetation NPP along R4 and R5, which both showed a decreasing trend
within the 1–5 km range and 1–2 km range, respectively. The upward trend in NPP was greater when
the vegetation was closer to the river bank. More importantly, the vegetation NPP had the same growth
trend with a value of 1.2 gC m−2 yr−1 within a 1 km distance of the two rivers. Intensive fertilization
and guaranteed irrigation had significant positive effects on the accumulation of plant organic matter,
although the effect on vegetation greenness was not obvious. Figure 9 depicts the change in irrigation
area and the amount of fertilizer and pesticides used during 2000–2014 in Lhasa city (lack of data in
2015). The cultivated area in Lhasa city decreased from 3.80 × 104 ha in 2000 to 3.48 × 104 ha in 2014,
while the irrigation area increased from 3.02 × 104 ha to 3.19 × 104 ha. The proportion of effective
irrigated area had a steady upward trend from the initial 79.5% to the recent 91.7%. The quantity of
fertilizer used could be divided into two phases. During the first stage, the consumption of fertilizers
increased from 6 to 10 thousand tons, and then, in 2009, the consumption reached an inflection point
with the growth rate increasing to 1.89 thousand tons per year. The amount of fertilizers used nearly
doubled in only five years. The consumption of pesticides also showed a significant upward trend and
fluctuated greatly. Thus, these intensive agricultural management practices contributed extraordinarily
to the accumulation of organic matter. Similarly, Li and Zhao (2013) found that the positive effect of
anthropogenic activities on cropland was quite clear and that improvements in management measures
increased cropland NPP [59]. Maria et al. (2016) also confirmed that fertilization loads correlate linearly
with the actual NPP [60]. Thus, agricultural management measures in the Lhasa River Basin were
beneficial to vegetation growth. Our perception of the effects of agricultural practices on vegetation
dynamics was limited to the annual scale. It is necessary for us to further study cropland vegetation
dynamics on a monthly scale, especially during the crop growth period.
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For thousands of years, the alpine meadow has been the most important pasture for Tibetan
communities [61]. Grazing disturbance is generally recognized as the primary impetus for grassland
degradation in the TP [62]. The inhabitants of the plateau region relied on grazing for livelihood and
income. Due to the low education level of herdsmen, they may lack effective grazing methods and
management measures [63]. Thus, vegetation degradation aggravated by overgrazing may be the most



Remote Sens. 2020, 12, 1883 16 of 20

important reason [64]. In the NC areas over 4500 m, grazing brings pressure on the grassland ecosystem.
Our analysis confirmed a strong linear correlation between the livestock amounts and vegetation
growth trend. The NPP and NDVI indices both showed a significant negative correlation with the
number of livestock, especially the NPP at the 0.001 confidence level. The results had similarities
with the findings by Feng et al. (2017) on the TP [27]. To address a series of pasture degradation
problems, the national government has successively implemented ecological restoration projects such
as the Grain for Green Program in 1999 and the Grazing Withdrawal Program in 2003. Xu et al. (2016)
indicated that the relevant policy produced remarkable achievements on the restoration of alpine
grasslands by controlling livestock numbers and decreasing grazing intensity [65]. In the ecologically
fragile plateau region, balancing economic needs and ecological requirements remains an urgent issue.

Satellite-based techniques have become a common means to monitor vegetation dynamics.
However, due to the spatiotemporal and ecological complexities in vegetation biochemical processes,
some uncertainties in results still exist. In this paper, uncertainties related to datasets may be
the main reason for the uncertainties in the results. The MOD17A3 NPP datasets widely used in
monitoring natural ecological conditions still have uncertain factors due to meteorological inputs
and cloud-contaminated FPAR/LAI [37]. There may be systematic errors and the filling of unreliable
FPAR/LAI parameters in meteorological data, which are derived from assimilated datasets, and
despite the improvement in the parameter accuracy, these values are still artificial and thus result
in uncertainties [66]. Here, only one indicator was unable to scientifically determine the vegetation
dynamics, and thus, integrated datasets and indicators were selected for better accuracy. The lack of
historical ground-based observations also limited our ability to judge the accuracy of satellite-based
products. In addition, the NPP and NDVI datasets are both deprived from MODIS products, while the
spatial distribution maps of precipitation and temperature are from the products released by RESDC.
Despite the same projection and resolution of data, perfect consistency is difficult to guarantee [67].
This problem is also inevitable in a combination of data with multiple data sources.

5. Conclusions

In this study, the spatiotemporal variations in vegetation NPP and NDVI were investigated in
the Lhasa River Basin from 2000 to 2015, and further, the driving partition affecting the vegetation
dynamics was defined. During the past 16 years, the variable spatial patterns of NPP and NDVI were
consistent, with a gradual increase from upstream to downstream. The interannual series of NPP and
NDVI both had a continuously increasing trend from 102 to 128 gC m−2 yr−1 and from 0.417 to 0.489
(p < 0.05), with averages of 122 gC m−2 yr−1 and 0.452, respectively. The strongest advanced trends
(>2 gC m−2 yr−1 or >0.005 yr−1) were detected in mainly the southeastern and northeastern regions.
There were no vegetation dynamics in about 10% of the basin. The vegetation dynamics driven by
the climatic conditions accounted for only 20% of the whole area, distributed in the southeast and
northwest, where precipitation was a more controlling climatic factor than temperature in terms of
determining vegetation growth.

Accordingly, anthropogenic activities had a dominant role in vegetation dynamics.
The construction of urbanization and reservoir led to vegetation degradation, but the farmland
practices contributed the vegetation growth. The reservoir groups posed a threat to vegetation
within a range of 6 km, and the range of vegetation degradation is within 1 km. Urbanization at
the expense of croplands had an adverse impact on the vegetation within a 6 km distance from
the surrounding river, and especially within a 3 km range, the vegetation degradation was serious.
Intensive agricultural practices were beneficial for the cropland ecosystem within 5 km due to the
increase in chemical fertilizers and pesticides, as well as the improvement in irrigation infrastructure,
creating a positive effect on the accumulation of crop organic matter with an NPP trend value of
1.2 gC m−2 yr−1. The highly intensive grazing activity exerted ecological environmental pressures, and
there was a significant linear negative correlation between livestock numbers and vegetation coverage,
which directly resulted in the decrease in grassland biomass and vegetation degradation. Our study
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quantitatively distinguished the extent to which climate factors and specific human activities affect
vegetation growth at the watershed scale, although there is some uncertainty about the source of the
datasets. The findings make an important contribution to the field of regional ecological environment
management and sustainable development.
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