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Abstract: The Weather Research and Forecasting (WRF) model is commonly associated with
meteorological data, but its algorithms may also use geographical data. The objective of this
paper is to evaluate the impact of the high resolution CORINE Land Cover (CLC) data and the SRTM
topography on the estimation accuracy of the weather model parameters in the WRF microscale
simulations (200 × 200 m) for Warsaw. In the presented studies, the authors propose their own
method of attaching the CLC data to the WRF microscale modeling for the CLC border areas,
where first calculational domains reach beyond areas of CLC coverage. As a part of the research,
the adaptation of the proposed method was examined by the assessment of the WRF microscale
modeling simulations for Warsaw. The modified IGBP MODIS land use/land cover (LULC) and
USGS GMTED2010 terrain elevation geographical data (30 arc seconds) was applied for the WRF
simulations as default. As higher resolution geographical data (100 m), the LULC from CORINE
Land Cover (CLC) 2018 data, and the SRTM topography were adopted. In this study the forecasts
of air temperature and relative humidity at 2 m, and wind (speed and direction) at 10 m above
ground level obtained using the WRF model for particular simulations were evaluated against
measurements made at the Warsaw airports: Chopin (EPWA) and Babice (EPBC). The research has
indicated that for microscale calculation fields there are noticeable changes in the meteorological
parameter values when the CLC and the SRTM data are integrated into the WRF model, which in
most cases yielded more accurate values of temperature and relative humidity at 2 m. This has also
proved the correctness of the proposed methodology of the CLC data adoption. The improvement in
the forecasted meteorological parameters is different for the particular locations and depends on the
degree of the LULC and topography data change after higher resolution data adoption.
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1. Introduction

As Geographic Information Systems (GIS) data became open source they could be effectively used
in natural hazards analysis [1], climate research and meteorology, and especially in numerical weather
modelling. Today’s meteorology is based on Numerical Weather Prediction (NWP) models which are
one of the main tools used to forecast atmospheric processes around the world. Supercomputers and
weather models make it now possible to determine the meteorological parameters that characterize the
atmosphere at the mesoscale or even at the microscale with high probability. Nevertheless, there is still
an increasing demand for more accurate weather forecasts reported by the military [2], government
institutions interested in air quality forecasting [3,4], warnings of dangerous weather phenomena [5]
or struggling with global warming and urban heat island effect [6–8]. Private companies dealing
with road or airport service [9] and producing energy from renewable sources [10,11] also report such
needs. Increasing the accuracy of weather forecasts requires improving the resolution of the model
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computational grid, and thus provide the input data for the NWP models with higher resolution [12].
The Weather Research and Forecasting (WRF) model is a mesoscale NWP model, that could be adapted
for more precision forecasting in microscale (urban scale) by their users [12,13]. It was noticed that to
be more effective in numerical weather forecasting, mesoscale and microscale (with mesh grid below
1 km) NWP models have to use the geographic data with the same or even higher spatial resolution
than the mesh resolution of the calculation field [14–16]. The WRF model uses geographical data
about land use/land cover (LULC), terrain elevation (topography), soil types, etc. Default geographical
(geog.) data in the WRF model have resolution of 30 arc seconds (approximately 1 km) worldwide.
Since various regions of the world—continents, countries or even cities in one country—have different
types of high-resolution geographical data, the issue of supplying the model with those data lies with
the user.

The usage of current LULC data is critical in the NWP models. Each LULC class in the NWP
model describes surface roughness length, albedo, thermal inertia for summer and winter season,
soil moisture availability, surface heat capacity, emissivity, and surface flux. The distribution and
amount of individual class of LULC determines the surface physical characteristic of the model.
Changes of LULC could influence radiative and energy balance processes occurring in the planetary
boundary layer. Recent studies [17–21] have shown that change of LULC distribution by city growth
significantly increases the regional temperature. As reported by [22], changes in surface roughness
related to land cover class affect simulated wind parameters. Besides, the manipulation of surface albedo
in urban areas by increasing the number of roof gardens has shown influence on the computed values
of meteorological parameters [23,24]. The landform also affects the local meteorological conditions.
By the usage of high-resolution terrain elevation data higher roughness of terrain and more frictional
effects is adapted to the NWP model. The local terrain complexity could affect the modeled atmospheric
airflow (wind speed and direction). The impact of the increasing resolution of terrain topography
on the NWP model forecasts was investigated, among others, by [4,7,11,25]. Studies have shown the
positive influence of high-resolution topography data, on the NWP model results, especially on the
near-surface wind simulations in locally complex terrain [10]. The high-resolution terrain elevation
data allow for proper roughness parameterization, and subsequently, for increasing accuracy of wind
parameters estimation [26].

Joint research on the influence of high-resolution topography from the Shuttle Radar Topography
Mission (SRTM) and land-use information from the CORINE Land Cover (CLC) on the WRF model
was conducted for the mountain regions of the Pyrenees [25] (computational grid: 500 × 500 m),
for Lombardy [4], Berlin [6] (computational grid: 1 × 1 km), and for midland Europe [7] (computational
grid: 5 × 5 km). The SRTM topography came from the National Geospatial-Intelligence Agency Digital
Terrain Elevation Data. The data are available in two resolutions: 90 and 30 m. The LULC data
mentioned above originate from the CLC European project of the LULC database [27–30]. The latest
available data from the CLC were updated in 2018 and their spatial resolution is 100 m. In the WRF
model default geographical LULC data (USGS, MODIS) have defined the physical parameters necessary
for NWP models [12]. Therefore, in research conducted in [4,6,7,25] the reclassification of the CLC
classes to the USGS classes was performed based on [31,32]. The above-mentioned studies have proved
that adoptions of high-resolution geographical data from the CLC and the SRTM improve the results
of the received values of meteorological parameters of temperature, wind speed, and precipitation in
comparison to the ones obtained for the default geographical data. However, the resolution of the
CLC and the SRTM geographical data allows for running the WRF model in microscale up to 100 m.
Although it can be assumed that the data adoption to microscale simulations with higher resolution
than 500 m could have big advantages, no research discussing such influence on the WRF simulations
was found.

Although the CLC data range is limited for eastern Europe, they are quite often adopted as higher
resolution LULC data to the WRF model [4,6,7,25]. In all found cases of the CLC data use for this
purpose, the data were reclassified to the LULC classes from the USGS (United States Geological
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Survey). The data are quite outdated [17] when, for example, they have to be used as to supplement
missing data of the CLC range for macroscale first domains. Analyzing the possibility of implementing
the LULC from the CLC data to the WRF high-resolution model simulations the authors noticed
that the issue of their implementation to high-resolution simulations for areas which first domains
go beyond the scope of the CLC data availability had not been considered. As a result, the authors
decided to introduce a method that enables to implement the CLC data for such problematic areas
using more recent default data from the modified International Geosphere-Biosphere Programme
(IGBP) Moderate Resolution Imaging Spectroradiometer (MODIS) 21-category, 30 arc-seconds, data as
default geographical data [33]. The proposed method takes into account the actual lower resolution
geographical data used by the model.

In this study we investigate the impact of the high resolution Corine Land Cover (CLC) data
and the SRTM topography on the estimation accuracy of the weather model parameters in the WRF
microscale simulations (200 m) for Warsaw. To conduct this study the authors’ method of attaching the
CLC data to the WRF model simulations for the CLC border areas, where first mesoscale calculation
domains go beyond areas of the CLC coverage was implemented. The correctness of the proposed
method of the CLC data adoption and the impact of high resolution geographical data (CLC, SRTM) on
the WRF microscale simulations was verified based on the comparison of meteorological observations
with the results of the WRF model simulations with default geog. data (30 arc-seconds resolution,
MODIS, and GMTED2010), and with the adapted CLC 2018 with the SRTM elevation data as higher
resolution geographical data to the observations.

2. Methods and Materials

2.1. Methodology

The improvement of the geographical data used by the WRF model for a given region of the world
is up to the users. For this purpose, the authors present a method for attaching the CLC data to the
WRF model for the CLC border areas, where first mesoscale calculation domains go beyond areas of
the CLC coverage. The proposed method takes into account the actual lower resolution geographical
data used by the model. As a more accurate source of default geographical data in the WRF model,
the modified IGBP 21-category, 30 arc-seconds, MODIS LULC database was adopted.

The authors’ method of the CLC data adoption consists of a few steps: (1) choosing the most current
geographical data from the default low-resolution WRF geographical database; (2) reclassification of
the CLC data to the same number and types of classes which contain the selected default geographical
data; (3) running the WRF model for which first domain resolution is higher than or equal to 1 km with
the default geographical data or with the reclassified CLC classes supplemented with default geog.
data for the missing areas of the CLC; for higher domains whose resolution is lower than the resolution
of the default geographical data—running the model with the CLC data (Figure 1). Using the presented
method, the authors adjusted the resolution of the selected geographic fields (land use/land cover) to
adapt the WRF mesoscale model to actions in microscale (with mesh grid up to 100 × 100 m).

Case studies were carried out to analyze the validity of the proposed method of increasing
geographical data for the numerical forecasts by the CLC adoption for Warsaw and to estimate accuracy
of the weather model parameters in the WRF microscale simulations (200 × 200 m). These studies were
conducted on seven random WRF model forecast results from 2019 and January of 2020. Most of the
investigated events were synoptic situations with atmospheric fronts. Front situations are in general
more difficult to forecast by numerical weather models. For each case, two separate WRF model
forecasts were made. One series of forecast was conducted with the WRF model default geographical
data and the other with newly prepared geographical data from CLC and SRTM. The WRF outputs
were compared with each other and with meteorological observations (SYNOP, METAR) [34,35] from
the two Warsaw airports (EPWA, EPBC). A short description of the meteorological stations location of
these airports is contained in Table 1.
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Figure 1. Visualization of the authors’ method for attaching the CORINE Land Cover (CLC) data to the
WRF model for the CLC border areas, where first mesoscale calculation domains go beyond areas of
the CLC coverage.

Table 1. Location of meteorological station at the Warsaw airports.

Location of the Airports Coordinates of the Airport Meteorological Stations
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In experiments, the values of air temperature at 2 m, relative humidity at 2 m, wind speed and
direction at 10 m acquired from meteorological observations were compared with the WRF model
simulation outcomes. The results of the forecasts ( fi) were compared with the observed values (oi)
at the airport meteorological stations using quality measures of the weather forecast for continuous
elements [36].

For this purpose the following verification statistics were used: ME—mean error (1), MAE—mean
absolute error (2), RMSE—root mean square error (3), MSE—mean squared error (4), BIAS error
(5), and R—Pearson correlation coefficient (6). The magnitude of the forecast error indicates the
difference between the forecast and the observations: ME (average value) and MAE (absolute value).
The ME and MAE perfect results are 0. The second power in the MSE and RMSE statistics increases
their sensitivity to large forecast errors. Their results are from 0 to infinity, where 0 is their best
value. BIAS value describes how the average predicted magnitude compares to the average observed
magnitude, its perfect value is 1. An indicator characterizing the quality of forecast is R. Its value range
is from −1 to 1, and 1 is a perfect score [36,37].

ME =

∑n
i−1( fi − oi)

n
(1)

MAE =

∑n
i−1

∣∣∣ fi − oi
∣∣∣

n
(2)

RMSE =

√∑n
i−1( fi − oi)

2

n
(3)

MSE =

∑n
i−1 ( fi − oi)

2

n
(4)

BIAS =
1
n
∑n

i−1 fi
1
n
∑n

i−1 oi
(5)

R =

∑n
i−1

(
fi − f

)
(oi − o)√∑n

i−1

(
fi − f

)2
√∑n

i−1(oi − o)2
(6)

The verification was carried out for hourly statistics for midday, from 10:00 UTC to 15:00 UTC.
In the selected period, the daily maximum temperature occurs, and this quantity is crucial for the
forecast recipients.

2.2. Study Area

The Warsaw city area was selected for the experiment. The method of attaching the CLC data to
the WRF model for the CLC border areas was designed based on the case of the Warsaw agglomeration
for which there is the problem of missing CLC data for its first calculation domain on the eastern Polish
border. The city of Warsaw (517.24 km2; population ≈1,780,000) is situated in the central-eastern part of
Poland, in the central Mazovian Lowland. This macro-region consists of a few mesoregions, the main
ones including the Central Vistula Valley, the Warsaw Basin, and the Warsaw Plain [38]. The altitude
in the city area varies from 78 to 121 m AMSL. Warsaw is situated along the Vistula river (Figure 2).
Spatial diversity of land usage is as follows: 56.9% of the city area are built-up and urbanized areas,
23.1% represents agricultural land, 15.9%—forest land, 3.4%—lands under water, and 0.7%—other
miscellaneous land [39].

2.3. WRF Specification

The WRF model was used to conduct simulations and also to examine the correctness of the
proposed method for the CLC adoption. It is a non-hydrostatic mesoscale weather forecast model.
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The model was designed and is developed, among others, by the National Oceanic and Atmospheric
Administration (NOAA), the National Centers for Environmental Prediction (NCEP), the National
Center for Atmospheric Research (NCAR), the Air Force Weather Agency (AFWA)—in total about
150 research and university centers from around the world. The WRF has been developing constantly
since 2000. It is particularly noteworthy that the WRF model and its subsystems are available free of
charge (registration required). The model uses near 30,000 registered users in 130 countries. The WRF
model can operate on both the global scale and the mesoscale and it also allows to run simulations
with real and idealized data. Moreover, the WRF model can work both operationally and for research
purposes [12,40].
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The WRF Processing System (WPS) is essential for the operation of the WRF model and plays
a significant role in downscaling. This subsystem prepares data for prognostic calculation and data
assimilation. The WPS includes the Geogrid.exe subprogram which specifies the geospatial geographical
data used by the model. These static geographical data contain, among others, information about
the digital terrain model, vegetation indexes, soil type, albedo, terrain coverage, and land use,
etc. The volume of these data is approximately 49 GB. The data used in a particular simulation are
related to the geographical location of the mesoscale forecast selected by the user. Subsequently,
these data are interpolated to the nodes of the computational grids. Their spatial resolution depends
on the step of the computational grid and it varies in the range from 10 arc minutes to 30 arc seconds.
Default geographical data in the WPS are available for the entire globe (30 arc seconds). The WRF
model configuration [12] presented in Table 2 was adapted for the needs of the conducted research.

Table 2. The WRF model configuration used in the experiment.

Parameters Domains 1/2/3

WRF Version 4.1
Spin up time, forecast time 6 h, 24 h

Global model gridded data source GFS 0.25◦ × 0.25◦ (3 h interval) [41]
Spatial resolution 5 × 5 km/1 × 1 km/200 × 200 m

Geographical data (prepared by the authors for high
resolution simulations)

CLC + MODIS + GMTED2010/CLC +
SRTM/CLC + SRTM

Geographical data (default simulations) MODIS + GMTED2010/MODIS +
GMTED2010/MODIS + GMTED2010

Vertical levels 60/60/60
Cumulus Grell-Freitas (Grell et al. 2013)—for all domains

Microphysics WSM6 (Hong and Lim, 2006)/-/-
Longwave radiation RRTMG (Jacono et al., 2008)—for all domains
Shortwave radiation RRTMG (Jacono et al., 2008)—for all domains

Surface layer Revised MM5 Monin-Obukhov scheme (Imenez et al.,
2012)—for all domains

Planetary boundary layer Yonsei University scheme—YSU (Hong et al.
2006)/YSU/-

2.4. Land Use and Land Cover

In the conducted WRF model simulations the default geographical data about LULC were
interpolated from MODIS IGBP 21-category data [11,42]. Moreover, the WRF can use 28-category
(from WRF V3.8) LULC data provided by the USGS. These data were used as default in [4,6,7,25].
Therefore, as a part of research, a comparison between the USGS and MODIS IGBP category land
dataset for the area of Warsaw was performed, as shown in Figure 2. For better reception on each
visualization, with the spatial distribution of data and phenomena, the authors added borders of the
city of Warsaw and its administrative districts. The location of the analyzed airports was presented in
the figures with white dots. The EPBC airport is located in the northwestern and the EPWA is located
in the southwestern part of Warsaw.

It has been noted that the MODIS data better represent current contours of Warsaw urban area [43],
while the USGS data were inadequate and significantly outdated, compared to the CLC data. CLC 2018
data covers an urbanized area at least twice as large as USGS 30 arc seconds LULC. The expansion of
urbanization in Warsaw noticeable in the MODIS and CLC data is also highlighted in scientific papers
about the urbanization of the agglomeration’s agricultural areas [44–47].

To make the LULC information in the WRF model more up-to-date and detailed [48] we assimilated
the CLC data, for the area of the experiment, to this NWP model. CLC 2018 data from the Copernicus
servers with terrain resolution of 100× 100 m were implemented to the WPS geographical data. To make
this possible, it was necessary to reclassify 44 CLC classes into 21 MODIS IGBP classes, based on
the authors’ scheme (Table 3) elaborated on the physical MODIS and the CLC classes concatenation
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confirmed by high-resolution satellite imagery information and data from topographic maps. The WRF
model requires the same number of the geographical LULC classes for each domain, therefore the
use of 28 USGS classes for the CLC reclassification would result in the necessity of using the USGS
data for areas not covered by the CLC data. The nearest neighbor method was used to interpolate the
CLC categorical data of LULC classes to the model grids. For the MODIS data interpolation the same
method was used.

Table 3. Scheme of the reclassification for the LULC categories from the CLC to modified IGBP
MODIS classes.

Number of
CLC Class Description of CLC Class Number of MODIS

LULC Class Name of MODIS LULC Class

111–140, 142 Urban/Artificial Surfaces 13 Urban and Built-Up
141 Green Urban Areas 4 Deciduous Broadleaf Forest
211 Non-irrigated Arable Land 12 Croplands
212 Permanently Irrigated Land 12 Croplands
213 Rice Fields 12 Croplands
221 Vineyards 14 Cropland/Nat. Vegetat. Mosaic
222 Fruit Trees or Berry Plantations 14 Cropland/Nat. Vegetat. Mosaic
223 Olive Groves 14 Cropland/Nat. Vegetat. Mosaic
231 Pastures 10 Grassland
241 Annual and Permanent Crops 14 Cropland/Nat. Vegetat. Mosaic
242 Complex Cultivation Patterns 14 Cropland/Nat. Vegetat. Mosaic

243 Mixed Agriculture and Natural
Vegetation 14 Cropland/Natural Vegetation Mosaic

244 Agro-Forestry Areas 14 Cropland/Nat. Vegetat. Mosaic
311 Broad-Leaved Forest 4 Deciduous Broadleaf Forest
312 Coniferous Forest 1 Evergreen Needleleaf Forest
313 Mixed Forest 5 Mixed Forests
321 Natural Grasslands 10 Grasslands
322 Moors and Heathland 7 Open Shrublands
323 Sclerophyllous Vegetation 7 Open Shrublands
324 Transitional Woodland/Shrub 7 Open Shrublands
331 Beaches, Dunes, Sands 16 Barren or Sparsely Vegetated
332 Bare Rocks 16 Barren or Sparsely Vegetated
333 Sparsely Vegetated Areas 16 Barren or Sparsely Vegetated
334 Burnt Areas 16 Barren or Sparsely Vegetated
335 Glaciers Perpetual Snow 15 Snow or Ice

411–423 Inland Mashes, Peat Bogs, Salt
Marshes, Salines, Intertidal Flats 11 Permanent Wetlands

511–522 Inland Waters, Lagoons, Estuaries 21 Lakes
523 Sea and Ocean 17 Water

The reclassification process of the LULC data from the CLC to MODIS IGBP 21 classes, based on
the scheme from Table 3, was conducted using the ArcGIS software. The CLC raster projection was
changed from the original ETRS89 to the WGS84 which is compatible with the WRF model projection.
The obtained result is shown in Figure 2c.

Although CLC consists of 11 classes for the anthropogenic areas, all of them were assigned to one
urban class. It is possible to divide the urban area into more classes, as shown in Table 4, nevertheless,
this operation is pointless in this study as the Urban Canopy Parameters (UCP) are not specified for
the area of experiment yet. The urban classes High-Intensity Residential, Low-Intensity Residential,
and Commercial, without defined UCP, have the same values of the physical parameters as Urban and
Built-Up LULC class.
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Table 4. Scheme of reclassification for the urban area LULC categories, from CLC to MODIS classes.

Number
of CLC Class Names of CLC Urban Classes Number of

MODIS Class
Name of MODIS

LULC Class

111 Continuous Urban Fabric 32 High-Intensity Residential
112 Discontinuous Urban Fabric 31 Low-Intensity Residential
121 Industrial or Commercial Units 33 Industrial or Commercial
122 Road and Rail Networks or Associated Land 33 Industrial or Commercial
123 Port Areas 33 Industrial or Commercial
124 Airports 33 Industrial or Commercial
131 Mineral Extraction Sites 33 Industrial or Commercial
132 Dump Sites 33 Industrial or Commercial
133 Construction Sites 33 Industrial or Commercial
141 Green Urban Areas 4 Delicious Broadleaf Forest
142 Sport and Leisure Facilities 33 Industrial or Commercial

The usage of CLC as a LULC source in the WRF model improved the details in the representation
of the Vistula river (Figure 3).
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Figure 3. The water mask used in the WRF model for Warsaw from (a) MODIS data (default);
(b) CLC data.

In NWP models water reservoirs cause variations in surface temperature and roughness which
can influence changes in heat flux and local air circulation. Synoptic cases when the Vistula river
modified the characteristics of the motion path of storm cells were observed.

2.5. Terrain Elevation Data

The terrain can significantly modify the direction of airflow and the amount of insolation in
the lower atmosphere. Therefore, proper representation of landform is crucial for NWP models.
The USGS Global Multi-resolution Terrain Elevation Data (GMTED2010) with horizontal resolution of
30 arc-seconds are default topography data in the WRF model. These elevation data are default for
the WRF model as they are available for the entire globe [12,49]. For the area of interest, the authors
implemented topography with higher, 3 arc seconds resolution from the National Geospatial-Intelligence
Agency SRTM Digital Terrain Elevation Data. The SRTM data cover the land surface between 60◦N
and 56◦S [49–53]. For the interpolation of continuous datasets of topography from the SRTM data
and the GMTED2010 data to the simulation domain the following interpolation methods were used:
the model grid-cell average (4.0), the four-point bilinear interpolation and the simple four-point average
interpolation method [12]. If one interpolation method from the above mentioned in the given order
could not be used, for example when the topography file had areas of missing values the four-point
bilinear interpolation method could not be used, then the next method was used. The model grid-cell
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average (4.0) interpolating method can be used for interpolating higher resolution geographical data
to lower resolution model grid. This method averages the values of pixels which are included at the
model grid (all or most of it). The option 4.0 in this method means the minimum ratio of the source
geographical data to the model grid resolution for which the data will be applied. In the conducted
simulations, this method could be used only for the first (5 × 5 km) and the second (1 × 1 km) domains.
For the third domain (200 × 200 m) the other two of these methods were used. The four-point bilinear
interpolation method is simply a connection of two linear interpolations for searching the x and y
coordinates of the model grid nodes from their nearest four coordinates. The simple four-point average
interpolation method works as a four-point bilinear interpolation method, but it does not need four
valid points to process interpolation. This method averages the value of the point from the available
points and requires at least one valid source data point to process the interpolation. The methods used
for the data interpolation in the WRF are described in the WRF Fortran source code [12].

As a result of the SRTM elevation dataset adaptation, the terrain representation in the computational
domain has improved markedly. The comparison of these two topographies is summarized in Figure 4.
On the outline from the SRTM data, more variable riverbed and more details in terrain denivelation
are highlighted. Additionally, it is visible how the increase of the model resolution highlights the
landform, for example in the picture obtained using the SRTM topography, the remnants of a closed
landfill are clearly distinguishable on the west side of the EPBC airfield (yellow-colored blob).
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2.6. WRF Binary Format—Methods of Generation

The WRF model geographic data are written in the binary format [12,14] which is read by the
WPS. The new geographic data in GeoTIFF format from CLC and SRTM was processed to the format
interpreted by the WRF model. During this study, three independent methods (tools) of producing the
WRF binary format were examined: QGIS-GIS4WRF, ENVI, and CONVERT_GEOTIFF.

The binary products obtained by means of the above-mentioned programs are generated using
various techniques, therefore it is advisable to visually check the results of the processing. Wrong results
could also be obtained by incorrect creation of index files which are an integral part of the binary
format batches. GIS4WRF is a new QGIS plugin [54] which provides users with a fast and automatic
way of generating WPS binary format files. It is worth mentioning that the tiles of the binary files
produced by GIS4WRF do not overlap. This plugin generates the index file automatically, like the
CONVERT_GEOTIF open source program. However, a different reading pattern was noted for row
order in the files for CONVERT_GEOTIFF than in other analyzed programs. Only ENVI, which is a
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driver for GDALL, requires self-creation of the index files. The final results of the conversion carried
out by means of these three tools were identical.

3. Results

The obtained forecasts i.e., the values of the analyzed meteorological parameters from the WRF
model simulations with default geographical data (MODIS, GMTED2010) and adapted geographical
data of higher resolution (terrain (SRTM) and LULC (CLC 2018)) were evaluated by comparing them
with observations. For this purpose, the Python programming language was used. This language allows
reading data in the NetCDF format which is the output format of the WRF model [55]. The bilinear
interpolation method was used to extract the exact values of meteorological parameters from the model
results mesh. Separate charts were made to compare the WRF model output with default geographical
data, and with results of the WRF model simulation with CLC and SRTM geographical data, and also
with meteorological observations from the Warsaw airports (Figures 5 and 6). Linear interpolation of
the hourly measurements and the model forecasts was used to show the distribution of the analyzed
meteorological parameters. The comparison of the results was presented for the second (1 × 1 km) and
third (200 × 200 m) domains. The first domain was omitted in the results comparison because of its
low resolution (5 × 5 km), no differences for the two different geographical datasets at this domain
were obtained.

Based on the results presented in Figure 6, it was found that the temperature obtained with the
CLC and SRTM geographical data is slightly higher during the day, which yields better forecasting of
the maximum temperature value. Contrary, the forecast value of the maximum temperature by the
default WRF model is generally underestimated. In some situations (Figure 6c,d) the improvement of
the obtained values of the analyzed parameters was achieved during the spin-up time (the first 6 h of a
model run) for which the forecast is commonly rejected because of the instability of the model during
its first hours of run. Although default geographical data (MODIS, GMTED2010) were generally
consistent with the higher resolution (CLC, SRTM) geographical data, in the case of results for the third
domain there was a noticeable positive impact of the higher resolution geographical data adoption
on the produced forecasts. For the second domain calculations, the impact was in most cases low
or unnoticeable.
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Figure 6. Examples of the obtained values of air temperature and relative humidity at 2 m (AGL) in
various synoptic situations: (a,b) high-pressure systems; (c–f) atmospheric fronts.

As a result of the default geographical data change to CLC and SRTM, the higher detail and
different values of horizontal distribution of meteorological parameters were noticed. The changes
also result in changes of the speed of movement of atmospheric fronts (Figure 7). The comparison
with meteorological radar data [33] shows that in this case faster movement of the atmospheric front,
visible in Figure 7b, better corresponds to observational data.
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Figure 7. Example of the obtained values of meteorological parameters during frontal synoptic situation
on 08.06.2019 at 15:00 UTC. Horizontal distribution of temperature at 2 m (◦C) obtained with (a) default
geographical data; (b) CLC and SRTM geographical data. Horizontal distribution of relative humidity
(%) obtained with (c) default geographical data; (d) CLC and SRTM geographical data.

The distribution of the obtained meteorological fields in other point in Warsaw was also analyzed
(Figure 5). In the case of the EPBC location, the geographical data modification did not change the
obtained results significantly. This was probably because the implementation of CLC data did not
cause significant changes in LULC for the area of the EPBC. The Babice airport is located in the vicinity
of the Kampinoski National Park at the border of the Urban and Built-Up area. Implementation of
CLC caused very small changes in LULC of the neighborhood of the EPBC airport. By increasing
the resolution of geographical data of LULC, the EPWA airport was surrounded by more Urban and
Built-Up area, also few ponds, Croplands and Grassland appeared on the west side of the airport.
As demonstrated in Figure 5, the change of the grid computing from domain 2 (grid: 500 × 500 m) to
domain 3 (grid: 200 × 200 m) allowed capture of the results improvement.

The wind speed and direction fields obtained from the WRF model using default and higher
resolution geographical data are shown in Figure 8.
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Figure 8. Example of wind speed (m/s) and direction distribution (wind barbs) on 26.08.2019, 16:00 UTC
obtained with (a) default geographical data; (b) CLC and SRTM geographical data. Example of wind
speed (m/s) and direction distribution (wind barbs) on 18.05.2019, 16:00 UTC obtained with (c) default
geographical data; (d) CLC and SRTM geographical data.

Comparing wind speed and direction distribution during the high-pressure system over Poland,
Figure 8a,b, the air corridors appeared on areas that are free from Urban and Built-Up class. The air
corridors were depicted more properly on the field calculated using higher resolution geographical
data. Changes in wind speed and direction were also noticeable (Figure 9) for the geographical data
from various sources used in the WRF simulations. The verification of wind fields is a significant
challenge due to the fast-changing nature of this parameter and its dependence on the roughness of the
ground, i.e., distribution of density and height of terrain obstacles causing a decrease in wind speed.
Wind fields obtained using higher resolution geographical data (CLC and SRTM) are characterized by
not only greater diversity of the wind field but also by changes in the obtained values of wind speed
and direction. The obtained values of wind speed for the analyzed places were, in general, lower than
those obtained with the default geographical data, and they better agreed with the observations from
the EPBC airport. For the EPWA airport the values were underestimated.
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Verifiability of Meteorological Parameters

The results verification included a comparison of the meteorological parameters forecast from the
WRF simulations with the default geog. data (MODIS and GMTED2010) and the higher resolution
geog. data (CLC and SRTM) with the observations. The verification statistics of the results based on
seven random synoptic situations are summarized in Tables 5 and 6, where their average values are
presented separately for the individual analyzed locations (EPWA and EPBC).

Table 5. Average statistical evaluation of the simulations for EPWA: ME, MAE, RMSE, MSE, BIAS,
and R statistics.

Parameters at EPWA
(Time 10:00–15:00 UTC) ME MAE RMSE MSE BIAS R

Temperature (◦C) default geog. −0.20 1.56 1.87 3.94 0.94 0.70
CLC + SRTM 0.32 1.41 1.68 3.54 0.98 0.67

Relative humidity (%) default geog. 1.43 8.11 9.36 92.60 1.04 0.73
CLC + SRTM −3.85 7.54 8.44 96.01 0.94 0.77

Wind speed (m/s2)
default geog. −0.69 1.26 1.51 2.40 0.88 −0.08
CLC + SRTM −1.06 1.48 1.78 3.28 0.79 −0.02

Wind direction (◦)
default geog. 10.58 27.13 31.58 1485.27 1.11 0.11
CLC + SRTM 4.26 29.31 34.54 2021.31 1.08 0.28

Table 6. Average statistical evaluation of the simulations for EPBC: ME, MAE, RMSE, MSE, BIAS,
and R statistics.

Parameters at EPBC
(Time 10:00–15:00 UTC) ME MAE RMSE MSE BIAS R

Temperature (◦C) default geog. −0.09 1.13 1.44 2.59 0.97 0.54
CLC + SRTM 0.03 1.21 1.47 2.59 0.97 0.53

Relative humidity (%) default geog. 0.20 6.19 7.29 66.63 1.01 0.51
CLC + SRTM 0.10 6.19 7.25 65.52 1.00 0.53

Wind speed (m/s2)
default geog. −0.24 1.19 1.58 2.96 1.01 −0.41
CLC + SRTM −0.45 1.27 1.54 2.67 0.93 −0.21

Wind direction (◦)
default geog. 1.50 32.33 39.61 2712.30 1.05 0.03
CLC + SRTM 11.41 32.18 37.31 2280.44 1.12 0.28

Based on the results of the ME value it can be seen that using the CLC and the SRTM data in
the model results in higher values of the forecast temperature which, especially in the case of EPBC,
were very similar to the observations. Increasing the value of the forecasted temperature resulted in
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reducing the value of the predicted relative humidity, which was also closer to measurements at the
EPBC station. The use of the CLC and the SRTM geography contributed to the reduction of wind
speed compared to the results obtained by using default geog. data and the substantial upgrade
of the forecast of the wind direction value for the EPWA airport. The value of MAE indicates an
improvement in temperature and relative humidity at the EPWA after the CLC and the SRTM data
adoption. The MSE and RMSE values indicate large error values of wind direction. Due to the high
variability of this parameter in time and space (especially during atmospheric fronts passages), it is
difficult to forecast the parameter. The R value indicates the positive influence of the CLC and SRTM
data on the wind speed and relative humidity forecast for both locations, compared to results obtained
from the model running on default geographical data.

Analyzing the RMSE error detailed distributions for each analyzed case, presented in Tables 7
and 8, it was noticed that for EPWA in two out of the seven analyzed situations the RMSE value of
the forecast temperature on higher resolution geog. data was greater than the one obtained for the
temperature forecast on default geog. data. In the case of EPBC three out of the seven forecasts of
temperature on higher resolution geog. data revealed greater RMSE than the forecast obtained on the
default data. Analyzing the RMSE error for relative humidity in both cases (EPWA and EPBC) for
three out of the seven analyzed situations the RMSE value of relative humidity forecast was higher for
the model simulations obtained on high-resolution geog. data than the one obtained on simulations
with the default geog. data.

Table 7. RMSE for temperature (T), relative humidity (RH), wind speed (WS), and wind direction (WD)
for the analyzed synoptic situations at EPWA, the period from 10:00 UTC to 15:00 UTC.

EPWA RMSE

DATE
T

Default
Geog.

T
CLC +
SRTM

RH
Default
Geog.

RH
CLC +
SRTM

WS
Default
Geog.

WS
CLC +
SRTM

WD
Default
Geog.

WD
CLC +
SRTM

26.08.2019 1.93 1.00 7.82 1.65 1.12 2.10 27.87 24.87
27.07.2019 1.98 1.34 9.89 3.38 2.19 2.36 43.31 36.85
08.06.2019 2.93 2.72 12.42 14.44 1.67 1.89 76.91 94.49
20.05.2019 2.51 2.97 11.30 13.57 1.72 1.65 20.63 16.19
18.05.2019 1.73 2.06 8.60 13.36 1.21 1.68 35.35 53.33
20.01.2020 1.22 1.05 10.32 8.05 1.47 1.37 6.15 5.79
21.01.2020 0.78 0.64 5.19 4.66 1.17 1.39 10.81 10.26
MEAN 1.87 1.68 9.36 8.44 1.51 1.78 31.58 34.54

Table 8. RMSE for temperature (T), relative humidity (RH), wind speed (WS), and wind direction (WD)
for the analyzed synoptic situations at EPBC, the period from 10:00 UTC to 15:00 UTC.

EPBC RMSE

DATE
T

Default
Geog.

T
CLC +
SRTM

RH
Default
Geog.

RH
CLC +
SRTM

WS
Default
Geog.

WS
CLC +
SRTM

WD
Default
Geog.

WD
CLC +
SRTM

26.08.2019 1.61 1.40 4.24 3.30 1.17 1.13 27.43 20.27
27.07.2019 0.36 0.54 2.53 3.38 2.14 2.23 18.36 24.26
08.06.2019 1.77 2.27 11.32 12.53 2.81 2.22 112.79 90.61
20.05.2019 2.74 2.41 12.39 10.88 1.08 1.60 29.15 22.88
18.05.2019 1.68 1.75 6.78 7.02 2.00 1.86 62.64 76.35
20.01.2020 1.12 1.09 10.05 9.87 0.94 0.83 17.82 18.00
21.01.2020 0.82 0.81 3.70 3.74 0.91 0.91 9.11 8.82
MEAN 1.44 1.47 7.29 7.25 1.58 1.54 39.61 37.31

The detailed distribution of the RMSE value for particular analyzed situations indicates the
significant reduction of the wind speed on the EPWA airport in comparison to the observations after
higher resolution geog. data implementation. The increase of urban area on CLC data around EPWA
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airport in comparison to MODIS data resulted in increased roughness at this airport localization.
Lowering the value of RMSE of wind speed after higher resolution geog. data adoption indicates an
improvement of their representation for EPWA localization. The observed better representation of
the arrangement of the urban class areas around EPWA airport on higher resolution geog. data is the
possible reason for this improvement. Generally, lower values of the RMSE were noticed for EPBC
airport, which indicates a better representation of wind speed and direction at this location after higher
resolution geog. data adoption.

4. Discussion

In this paper, we evaluated the impact of the high resolution CLC and the SRTM topography
on the estimation accuracy of the weather model parameters at the WRF microscale simulations
(200 × 200 m) for Warsaw. In presented studies, the novel method of implementation of the CLC
data to the WRF simulations in which the first calculational domains cover areas out of the CLC data
coverage was proposed. The obtained statistical values for grid lower than 1 km indicate that this
method successfully enabled the authors to implement the CLC data to the WRF model simulations
for such problematic areas. The obtained results of the increased maximum temperature value after
adoption of the CLC data to the simulations are consistent with those obtained by [4,6,7,25]. Unlike the
existing studies of the CLC data adoption to the WRF model, the results of the simulations with use of
the CLC data conducted by the authors were compared to the outputs of simulations with the MODIS
default data, which are more up to date then the USGS data, and could automatically influence the
improvement of the obtained results for the WRF default simulations. In previous, even very recent
studies, the default simulations made to compare the CLC data adoption to the WRF were conducted
with the USGS data used as default [4,6,7,25].

The obtained results of the conducted WRF simulations indicate that the influence of changing
the default geographical data (MODIS and GMTED2010) to higher resolution geographical data (CLC
and SRTM), in most cases yielded more accurate values of temperature and relative humidity at
2 m. The analysis demonstrates that in the case of EPWA the results of simulation using higher
resolution geographical data showed no improvement of the wind speed values. The values were
mostly underestimated. For this location only slight improvement of wind direction was noticed
after the adoption of higher resolution geog. data. However, the model results of wind speed and
direction changes on CLC and SRTM geographical data better represent changes of these parameters
occurring in the natural environment of the EPBC meteorological station—in most cases, the obtained
wind parameters values were closer to the observations. A possible reason of decreasing wind speed
distribution by the WRF model after CLC and SRTM geographical data adoption could be due to too
high surface roughness in the model [4,10,11,30] in the place of the EPWA airfield where the synoptic
observations were made. The EPWA airport is a larger area than the aeroclub airport EPBC located in
the city border zone, in the vicinity of forests. Adjustment of classes from CLC to possible MODIS
meant that EPWA airport is situated in the Urban and Built-Up area, what reduced the wind strength
received for EPWA from the model. The EPWA airport is surrounded by compact buildings but the
airport area itself is a large open area. It is worth noting that the synoptic situations observed in
the analyzed period had an important influence on the obtained verification statistics. The authors
obtained much better verification statistic results for high-pressure systems than for frontal synoptic
situations, during which temporary changes in the meteorological parameters are significant.

Furthermore, the obtained results of the estimation accuracy of the weather model parameters
indicate some limitations of the CLC data and the SRTM topography adoption on the microscale
WRF simulations for Warsaw which were especially visible in the wind field parameters simulations
accuracy. The level of limitation was different for specific examined locations, and depended on how
the basic description of the physical parameters of the Urban and Built-Up class was consistent with
the real conditions at the given location. In order to overcome these limitations, our future research
will focus on improving the high-resolution geographical data adoption (CLC, SRTM) by taking into
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account high-resolution urban data sets (e.g., height, shape, and density of buildings, and spatial
structure of streets—direction and width) for describing the particular grid of the CLC Urban and
Built-Up class. To activate module called the Urban Canopy Model (UCM) in the WRF model it is
necessary to develop proper fields to describe the morphology of the city for better representation
of its aerodynamic properties. LIDAR scans of the object heights, the Topographic Object Database
(BDOT10k) corresponding to the detail of the map at the scale of 1:10,000, and 3D CityGML Database
could be valuable information sources for creating the fields for the Warsaw agglomeration. The fields
which enable to describe the urban morphology in detail will be developed by the authors for the
Warsaw agglomeration and their implementation results will be presented in future research reports.
This approach is essential for further improvement of the accuracy of the meteorological parameters
microscale simulations, especially for wind field parameters whose results will be verified based on the
meteorological observations and the precinct ventilation zones [56] in the city, which take into account
urban form compactness, height of buildings, and structure of streets. The results of the WRF with the
UCM module may also provide initial and boundary conditions for fine scale urban transport and
diffusion models for studying local ventilation performance and urban planning.

5. Conclusions

In this study we evaluated the impact of the high resolution CLC and the SRTM topography on the
estimation accuracy of the weather model parameters in the WRF microscale simulations (200 × 200 m)
for Warsaw. Moreover, new, higher resolution geographical data to the WRF model for Warsaw were
implemented by means of the method of adoption of the CLC data for the border areas proposed by the
authors. For this purpose, the authors’ reclassification algorithm for the CLC data to MODIS classes
was implemented. Based on the conducted experiments and their verification, the correctness of the
proposed method was proven. In places where the changes of LULC were greater, the changes of the
estimated parameters were also more significant. It was necessary to increase the model resolution
to observe the changes. The results of the comparison of the weather forecasts produced with high
resolution geographical data (CLC, SRTM) and default geographical data (MODIS, GMTED2010) with
the surface observations demonstrate that it is possible to increase the accuracy of the forecast results
by using higher resolution geographical data (CLC, SRTM) and by simultaneously increasing the
model domain resolution in the WRF mode. It was also demonstrated that the obtained values of the
RMSE were generally higher for the microscale simulations with default geographical data (MODIS,
GMTED2010), especially for temperature and relative humidity at 2 m, than those obtained from the
calculation on high-resolution geographical data (CLC, SRTM). The results obtained for the wind field
did not give the same improvement for both analyzed places. Further implementation of the data
about the urban morphology to the particular grid of the Urban and Built-Up class in the WRF model
could potentially contribute to obtaining more accurate results, especially for wind speed simulations
in which the obtained results were not satisfying.

Based on the conducted studies, the authors proved that for the microscale simulations it is
advisable to use CLC data rather than MODIS data, even for places that first calculation domains include
areas out of the CLC coverage. As a result of this study the authors also improved the WRF model for
Warsaw by increasing the resolution of the model calculation domain and by implementing higher
resolution basic geographical data about LULC and terrain height to the WRF model. More research
will be conducted to further improve the accuracy of the computed meteorological parameters by
adopting more detailed descriptions of the city by the urban morphology fields implementation to the
WRF model.
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