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Abstract: Accurate visualization of air temperature distribution can be useful for various thermal
analyses in fields such as human health and heat transfer of local area. This paper presents a
novel approach to measuring air temperature from midwave hyperspectral Fourier transform
infrared (FTIR) imaging in the carbon dioxide absorption band (between 4.25–4.35 µm). In this
study, the proposed visual air temperature (VisualAT) measurement is based on the observation
that the carbon dioxide band shows zero transmissivity at short distances. Based on analysis of
the radiative transfer equation in this band, only the path radiance by air temperature survives.
Brightness temperature of the received radiance can provide the raw air temperature and spectral
average, followed by a spatial median-mean filter that can produce final air temperature images.
Experiment results tested on a database obtained by a midwave extended FTIR system (Telops,
Quebec City, QC, Canada) from February to July 2018 show a mean absolute error of 1.25 ◦K for
temperature range of 2.6−26.4 ◦C.
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1. Introduction

How accurately can we measure and visualize air temperature remotely using thermal sensing?
Air temperature is an important meteorological factor, which has a wide range of applications in fields
like human health [1], virus propagation [2], growth and reproduction of plants [3], climate change [4],
and hydrology [5].

Air temperature can be measured in numerous ways, including contact sensors and remote sensors.
Contact sensor-based methods include thermistors, thermocouples, and mercury thermometers [6].
Thermistors are metallic devices that undergo predictable changes in resistance in response to changes
in temperature. This resistance is measured and converted to a temperature reading in Celsius,
Fahrenheit, or Kelvin. A thermocouple consists of two dissimilar electrical conductors forming an
electrical junction, which produces a temperature-dependent voltage, and this voltage can be converted
to a temperature [7]. A mercury thermometer consists of liquid in a glass rod with a very thin tube in
it. Mercury or red-colored alcohol inside the tube expands when the temperature rises. These sensors
should be located in the shade to measure air temperature. If the sun shines on the thermometer
directly, it heats the liquid and produces an incorrect, higher temperature than the true air temperature.
In addition, it needs enough time (at least several minutes for the liquid to expand) to measure outdoor
air temperature. Furthermore, it requires hundreds of thousands contact sensors to measure spatial
distribution of air temperature.

The thermal remote sensing approaches will use the relationships between land surface
temperature (LST) and near surface air temperature. Land surface radiance is measured by
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thermal infrared sensors mounted on a satellite or an airborne platform, and LST is retrieved via
temperature-emissivity separation (TES) [8,9]. Surface air temperature can be estimated by the
temperature-vegetation index (TVX), thermodynamics, and the regression method. The TVX is
based on the assumption that a thick vegetation canopy can approximate air temperature [10,11].
It can be useful only if there is high vegetation cover. The thermodynamics-based method uses the
energy balance between LST and the surface environment, such as air and water [12,13]. This method
provides good air temperature measurement, but it requires many parameters as input. The last type
is data-based regression between air temperature and LST. There is a linear regression model [14]
and a nonlinear model, especially as a deep learning method [15]. Such machine learning models
have reported successful air temperature estimation. One recent deep learning-based method,
a five-layer deep belief network (DBN), showed promising air temperature estimation by establishing
the relationship between ground station air temperature and multi-source data (remote sensing
radiance, socioeconomic data, and assimilation data) [15]. Although the deep learning method showed
quite accurate air temperature estimation, it requires huge amounts of data to train the multi-layered
deep neural architecture.

The above mentioned approaches are not suitable for instantaneously measuring and visualizing
air temperature of a viewing area. Using contact sensors requires several minutes and a huge
number of sensors to measure spatial air temperature [16]. Non-contact (remote) sensors, such as
thermal infrared (TIR) imagers, require LST and regression with huge amounts of training data.
Despite being trained correctly, the regression-based approach is sensitive to many spatio-temporal
conditions [17]. In addition, this approach is only suitable for aerial-based sensing in satellites or
airborne platforms [18].

In this paper, our research focuses on how to measure spatial air temperature of the viewing
area and visualize it instantaneously for environment monitoring of the surveillance area. The key
idea is to use up-welling information in the carbon dioxide absorption band (4.25−4.35 µm) with a
midwave Fourier transform infrared (FTIR) imager. Most temperature estimation research in TES
and LST generates up-welling information by using the moderate-resolution atmospheric radiance
and transmittance model (MODTRAN) for atmospheric correction (compensation) purposes [19–21].
Harig proposed a passive sensing of pollutant clouds by longwave FTIR to find optimal SNR [22].
His work focused on detecting cloud target in ground background not air temperature. In this paper,
it is possible to measure and visualize air temperature accurately through careful analysis of upwelling
(path) spectral radiance in the proposed visual air temperature (VisualAT).

The contributions from this paper can be summarized as follows. First, VisualAT can measure
spatial air temperature accurately (mean absolute error [MAE]: 1.25 K). Second, VisualAT can visualize
the distribution of air temperature with a high spatial resolution. Third, it can measure and visualize
air temperature instantaneously. Finally, the proposed VisualAT can be used for various outdoor air
temperature measurement applications, such as health monitoring, weather monitoring, and thermal
surveillance of local area.

The remainder of this paper is organized as follows. Section 2 introduces the marials for FTIR
analysis and Section 3 explains the proposed VisualAT method, including the radiative transfer
equation. Section 4 analyzes VisualAT for temperature measurement applications, considering a range
of environmental changes. The paper concludes in Section 5.

2. Materials for FTIR Analysis

2.1. Outdoor Hyperspectral Data Acquisition System

Figure 1 presents a measurement scenario in an outdoor environment consisting of a scene and a
sensor system. A painted target in front of a sky-and-sea background is 78 m away from the observation
laboratory. MWIR hyperspectral images were acquired with the Telops Hyper-Cam MWE model [23].
It can provide calibrated spectral radiance images with a high spatial and spectral resolution from
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a Michelson interferometer in the short-wave to midwave band (1.5–5.6 µm). The spatial image
resolution is 320× 240, and the spectral resolution is up to 0.25 cm−1. The noise equivalent spectral
radiance (NESR) is 7 [nW/(cm2·sr· cm−1)], and the radiometric accuracy is approximately 2 K. The field
of view is 6.5× 5.1 deg.

78m

Observation 
Laboratory

sky

sea

target

AWS 

Figure 1. Measurement scenario in an outdoor environment: FTIR is located in an air conditioned
room and AWS is installed on the roof. The background scene is 78 m away from the camera.

The objective of this research is to estimate air temperature spatially and to visualize
the temperature distribution. A cropped hypercube image provides 128 × 200 × 374
(width × height × bands) data. A hyperspectral spectral imager (HSI) database was recorded daily
from February to July 2018. Recording was done three times a day (10:30, 13:30, and 15:30 h) and
four times an hour for a total of 12 times per day. In addition, an automatic weather station (AWS)
recorded environmental information, such as the date, time, air temperature, humidity, air pressure,
and visibility. The measured air temperatures were used to evaluate the temperature estimation
accuracy by the proposed VisuaAT method.

2.2. FTIR Data Acquisition Interface

The selection of the CO2 absorption band is critical in the proposed VisualAT method. An initial
baseline band range was selected by the developed GUI shown in Figure 2. The midwave FTIR spectral
image software platform was developed for hypercube image display and spectral profile analysis
by varying the wavelength parameter and units. The top left image in Figure 2 represents a spectral
image in a specific band, and the lower graph shows a spectral profile at a selected point (indicated by
+). The top right image in Figure 2 is a broad-band image with a selected spectral range.

2.3. Radiometric Calibration of FTIR Imaging

The wavenumber and radiometric calibration of midwave hyperspectral data should be done
accurately to measure air temperature. The technical details are described in [24] and one full set
of data including the raw IR spectrum, internal calibration, and temperature extraction is described
in the following paragraphs. A Michelson interferometer produces interferomgrams by moving a
mirror. Figure 3a presents an interferogram image at optical path difference (OPD) ID 500 (total 1186).
Figure 3b gives an example of the whole interferogram at pixel (60, 60). Figure 3c shows the results
of spectrum extraction by applying the fast Fourier transform (FFT) to the interferogram (Figure 3b).
The unit of the y-axis in Figure 3c is just spectral intensity in arbitrary units. The wavelength calibration
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is performed using the HeNe laser (wavelength λ = 632.8 nm). Figure 3d shows the wavenumber
calibrated spectrum.

Spectral View @ ( | )

Spectral Profile @ (+)

Figure 2. Midwave FTIR image analysis software platform. A spectral image at a selected wavelength
can be visualized interactively.

(a) (b)

(c) (d)

Figure 3. Spectral calibration process: (a) interferogram image at optical path difference (OPD) ID = 500
(ZPD); (b) interferogram at a pixel ((row, col) = (60, 60)); (c) fast Fourier transform (FFT) results;
(d) wavenumber calibration results.
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The next step is to calibrate radiometrically using two blackbodies. The HYPER-CAM MWE can
provide the spectral radiance data using two built-in BBs (hot, cold) [25]. Figure 4 shows the measured
interferogram image, spectra (arbitrary units), and calculated spectral radiances for the hot (95 ◦C) and
cold (25 ◦C) blackbodies. Figures 5a,b show the estimated gain and offset magnitude at pixel (60, 60),
respectively. Figure 5c,d presents the calculated spectral radiance with the unit of wavenumber and
wavelength, respectively.

The amount of spectral radiance energy can be converted into equivalent brightness
temperatures [26]. By inverting Equation (7), the temperature T (K) can be obtained as

T =
(hc/k)ν̃

ln[2hc2ν̃3/LS(ν̃) + 1]
. (1)

2.4. MODTRAN Simulator

The moderate-resolution atmospheric radiance and transmittance model (MODTRAN,
http://modtran.spectral.com/) is used in this paper to simulate atmospheric transmittance and
path thermal calculation. Figure 6 shows a GUI interface to simulate spectral path radiance by setting
geometric and atmospheric parameters.

(a) (b) (c)

(d) (e) (f)

Hot BB (95 )

Cold BB (25 )

Measured spectrum (hot)

Measured spectrum (cold)

(hot)

(cold)

Figure 4. Blackbody spectrum and spectral radiance extraction for a radiometric calibration:
(a) interferogram image of a hot blackbody (95 ◦C); (b) measured spectrum of a hot blackbody;
(c) calculated spectral radiance at hot temperature; (d) interferogram image of a cold blackbody (25 ◦C);
(e) mesured spectrum of a cold blackbody; (f) calculated spectral radiance at cold temperature.

http://modtran.spectral.com/
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(a) (b)

(c) (d)

Figure 5. Radiometric calibration and spectral radiance extraction: (a) estimated gain magnitude;
(b) estimated offset magnitude; (c) spectral radiance vs. wavenumber; (d) spectral radiance
vs. wavelength.

Figure 6. MODTRAN simulation environment for path thermal calculation.



Remote Sens. 2020, 12, 1860 7 of 23

3. Proposed Visual Air Temperature Measurement Method

3.1. Derivation of Radiative Ttransfer Equation

Figure 7 shows the air temperature measurement scenario. Air temperature from VisualAT
measurement can be derived from radiative transfer Equation (2). We adopt the radiative transfer
equation used in MODTRAN [27]. In general, at-sensor received radiance in the midwave infrared
(MWIR) region consists of opaque object-emitted radiance, reflected downwelling radiance, and total
atmospheric path radiance (thermal+solar components).

Lobs(λ) = τ(λ)
[
ε(λ)Lobj(λ, Tobj) + (1− ε(λ))(L↓s (λ) + L↓t (λ))

]
+ L↑s (λ) + L↑t (λ) (2)

Atmosphere

( )TL

( )TL

( )SL

( )SL

( )
( )objL

( )

Figure 7. Operational concept of visual air temperature (VisualAT) measurement using the passive
open path Fourier transform infrared (FTIR) imaging system.

Lobs(λ) is the at-sensor radiance; λ is wavelenth; ε(λ) is spectral object surface emissivity;
Lobj(λ, Tobj) is the spectral radiance of the object, assuming a blackbody in the Planck function with

object surface temperature (Tobj). L↓s (λ) and L↓t (λ) represent spectral downwelling solar radiance and

thermal irradiance, respectively; τ(λ) is the spectral atmospheric transmittance, and L↑s (λ) and L↑t (λ)
are the spectral upwelling solar and thermal path radiance, respectively, reaching the sensor.

According to the MODTRAN simulation in the MWIR band, the spectral transmittance of the
carbon dioxide (CO2) band (4.25–4.35 µm) decreases abruptly with distance, as shown in Figure 8.
The average transmittance in the CO2 band is 0.5, 0.13, 0.03, 0.005, 0.0001, and 0 at 1 m, 5 m, 10 m, 20 m,
50 m, and 100 m, respectively. If we consider only the CO2 band (λCO2) with a minimum 20 m object
distance, the transmittance (τ(λCO2)) can be regarded as 0, which leads to Equation (3). An MWIR
FTIR camera receives only the upwelling of path solar and thermal radiances in the λCO2 band where
the range is normally 4.25–4.35 µm.

Lobs(λCO2) = L↑s (λCO2) + L↑t (λCO2) (3)

According to the MWIR radiometric characteristics [28], the contribution of solar radiance
(L↑s (λCO2)) from air scattering is very small, even for very dry conditions (less than 2% at 5 µm) [28].
Ignoring the first term, we can simplify Equation (3) into Equation(4):

Lobs(λCO2) = L↑t (λCO2) (4)

The definition of thermal upwelling is defined with Equation (5):
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L↑t (λCO2) = (1− τ(λCO2))B(λCO2 , Tair) (5)

Figure 8. Spectral transmittance according to object-camera distance in the MWIR band. Note the
abrupt absorption at 4.25–4.35 µm.

Since the spectral transmittance in the CO2 band is 0 (τ(λCO2) = 0), the final form is approximated
in Equation (6):

Lobs(λCO2) ' B(λCO2 , Tair) (6)

where B(λCO2 , Tair) denotes the spectral radiance ([W/(m2·sr·µm)]) of a blackbody (Planck’s law [29]),
and Tair is the air temperature in degrees Kelvin [K] of the atmosphere between the object and the
camera sensor. The spectral radiation of atmosphere is modeled as blackbody [30–32]. Atmospheric
path radiance can be described in difference methods, but the simplest way is to model the particles as
blackbodies [32]. B(λCO2 , Tair) is defined with Equation (7):
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B(λCO2 , Tair) =
2hc2

λ5(ehc/λCO2 kTair − 1)
(7)

where h denotes Planck’s constant, c is the speed of light, and k is the Boltzmann constant.
The amount of spectral radiance energy can be converted into equivalent brightness

temperatures ([33]). By inverting Equation (7), temperature Tair [K] can be obtained as follows:

Tair(λCO2) =
hc

λCO2 k ln
(

2hc2/λ5
CO2

B(λCO2 , Tair) + 1
) . (8)

3.2. VisualAT: Proposed Visual Air Temperature Measurement

Figure 9 summarizes the overall processing flow of the proposed VisualAT method. The first
row represents the three steps in spectral brightness air temperature extraction using Equation (8),
described as follows.

(1) Given is an MWIR hyperspectral image cube (374 bands, spatial resolution: 200× 128).
(2) CO2 band images (4.29, 4.31, 4.34 µm) are selected. The band region between 4.25–4.35 µm is

selected based on the MODTRAN-based transmissivity analysis (τ(λ) = 0) and visual inspection.
A wavelength can be in the CO2 absorption band if there is no object signature and it looks like a
noisy image.

(3) The selected spectral radiance images are converted to spectral brightness images using
Equation (8).
The second row of Figure 9 represents the image processing for visual air temperature image
generation, explained in the following steps.

(4) A raw temperature image is extracted via pixel-wise temperature mean filter along the spectral
axis. It still shows a noise-like image consisting of salt-and-pepper noise and thermal noise.
This can be removed by consecutive spatial 2D median filtering and Gaussian filtering [34].
The Gaussian filtering is adopted to reduce spatial thermal noise. The empirically tuned kernel
size of the median filter is 10× 15, and sigma of the Gaussian filter is set to 2.

(1) MWIR HSI 
(spectral radiance)

(2) CO2 Band Selector
2

4.25 4.35
CO

m m

(3) Spectral 
Brightness Temperature

3.0 m

5.6 m

(4) Spectral Temperature 
Mean Filter

(5) Spatial Median 
Filter

(6) Spatial Gaussian 
Filter

Proposed Visual Air Temperature Method (VisualAT)

Figure 9. Overall processing flow of visual air temperature (VisualAT) measurement method.
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Figure 10a shows the spectral brightness temperature by applying Equation (1) to the calibrated
spectral radiance at pixel (60, 60). Figure 10b shows the enlarged brightness temperature around CO2

band (4.29–4.34 µm). Figure 10c represents the spatial raw temperature distribution of the CO2 band
image. Final visual air temperature image (Figure 10e) is acquired through the median and Gaussian
filtering processes.

CO2 band

(a) (b)

(c) (d) (e)

Figure 10. Brightness temperature extraction and VisualAT results: (a) brightness temperature;
(b) enlarged brightness temperature with CO2 band region; (c) CO2 band image; (d) median filtered
image; (e) Gaussian filtered temperature image.

3.3. Analysis of Air Temperature Measurement

The proof of radiometric air temperature measurement and visualization is possible by
mathematical derivations as Equations (2)–(8). However, it is a challenging problem to validate
the air temperature measurement and visualization experimentally because we need a huge dark
room with controllable air temperature. In this subsection, we analyze the properties of the VisualAT
method by demonstrating extreme air temperature measurement and by thermal air flow visualization.
Figure 11 demonstrates the air temperature measurement and visualization using the hot summer
and cold winter data set. Upper row images represent visual temperature extraction process and
camera’s internal temperature information for hot summer data. The ground truth of air temperature
is 26.4 ◦C and the estimated temperature is 25.6 ◦C. Likewise, lower row images represent the same
process for cold winter data. Note that the ground truth of air temperature is 2.6 ◦C and the estimated
temperature is 2.52 ◦C. The internal camera temperatures of IR lens, front wall, beam splitter, and etc
are approximately 29 ◦C and they do not affect to the air temperature estimation because hot/cold
blackbody-based radiometric calibration can remove the effect of stray light before each measurement.
The proposed VisualAT can visualize thermal air flow using consecutive FTIR hyper-cubes acquired in
very short period (1 s). Figure 12 shows the air flow directions indicated by the curves and arrows.
Because the sea wind is so strong, the thermal air flow changes dynamically in very short time.
Therefore, this result can be another indirect proof of imaging variations in air temperature.
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Estimated: 25.6 C
Ground truth: 26.4 C

Estimated: 2.52 C
Ground truth: 2.6 C

FPATemperatureMeasured:   76.61
FTSTemperatureMeasured: 29.482

IRLensTemperatureMeasured: 29.528
FrontWallTemperature: 28.894

BeamsplitterTemperature: 29.372
FTSAmbientTemperature: 29.446

IRLens1Temperature: 29.493
CoolerColdFingerTemperature: 30.392

CoolerCompressorTemperature: 30.130
IRLensTubeTemperature: 29.535

EnclosureAmbientTemperature: 29.766
AmbientTemperature: 27.782

BasePlateTemperature: 29.502

FPATemperatureMeasured: 76.68
FTSTemperatureMeasured: 31.959

IRLensTemperatureMeasured: 31.985
FrontWallTemperature: 31.033

BeamsplitterTemperature: 31.903
FTSAmbientTemperature: 31.918

IRLens1Temperature: 31.931
CoolerColdFingerTemperature: 32.223

CoolerCompressorTemperature: 32.462
IRLensTubeTemperature: 32.014

EnclosureAmbientTemperature: 32.197
AmbientTemperature: 30.119

BasePlateTemperature: 31.343

Camera internal temp.

Camera internal temp.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11. Indirect proof of air temperature measurement by extreme weather conditions: Hot
summer-(a) broad-band image, (b) CO2 band image, (c) median filtered image, (d) Gaussian
filtered image, (e) camera internal temperature information; Cold winder-(f) broad-band image,
(g) CO2 band image, (h) median filtered image, (i) Gaussian filtered image, (j) camera internal
temperature information.

20180531_110156 20180531_110157

After 
1 sec

Figure 12. Indirect proof of air temperature measurement by air flow visualization. The arrows indicate
the directions of air flow.

3.4. Signal Analysis of Air Temperature Monitoring

It is important to analyze how the IR radiation from different parts of the probed air contributes
to the received thermal signal. Figure 13 represents the geometric relationship between atmosphere
plane and a pixel. If an atmospheric plane at distance R is considered, the probing area (A) is a′ × b′

using the instantaneous field of view (IFOV). The received thermal flux (Φλ) at the pixel detector
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is Φλ = (1− τ(λCO2)) · Lλ(Tair) · A ·Ω · τo where Ω is solid angle and τo is lens transmittance [35].
Because air particles are regarded as blackbodies [32], the emissivity is regarded as 1. If we use basic
geometrical relationships, the final form is changed to Φλ = (1− τ(λCO2)) · Lλ(Tair) · AIFOV ·ΩIFOV ·
τo where AIFOV denotes the pixel area and ΩIFOV represents the solid angle of IFOV. The received
thermal flux is strongly related to (1− τ(λCO2)). The simulation of atmospheric transmittance is
conducted by MODTRAN 4.0 and Figure 14a represents the result. As the distance increases up
to 20 m, the thermal contribution of air particles increases. This analysis is confirmed through the
MODTRAN-based path thermal simulation as shown in Figure 14b and Figure 6. Therefore, we can
conclude that the received air flux is contributed dominantly by the air temperature at 20 m distance.

Focal Plane
Front Optics

Atmosphere 
Plane

IFOVA

IFOV 21 (( ) )) ( aCO ir oL T A 2' ' 'A a b a
2 /52 1( ) 1air

air hc kT

hc
L T

e 2024DR2 2022 202 ' ',   since  44 IFOV IFOV

a D a a
A

R R f

a D
A

f 2( ( )1 )( ) air IFOV F VC I oO OL T A

Figure 13. Geometrical model of received thermal flux in a pixel.
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Figure 14. (a) (1-atmospheric transmittance) vs. distance (MODTRAN-based simulation at CO2

absorption band (4.29 µm)), (b) path thermal radiance vs. distance (MODTRAN-based simulation).

3.5. Performance Metric

The mean absolute error (MAE) metric was used to compute the performance of the VisualAT
method in predicting air temperature. The MAE metric is defined in Equation (9):
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MAE =
1
N

N

∑
k=1

∣∣∣Tk
air − Tk

GT

∣∣∣ (9)

where Tk
air denotes the k − th predicted air temperature by the VisualAT method, and Tk

GT is the
corresponding air temperature measured by the AWS, as shown in Figure 15.

Figure 15. AWS information: date and time; wind speed, maximum wind speed, average wind
direction, and maximum wind direction; air temperature, humidity, and pressure; and visibility.

Figure 16 shows the experimental environment. Figure 16a is the outdoor environment acquired
via visible band camera, and Figure 16b shows a recorded broad-band image from summing all the
spectral band images (1.5–5.6 µm). Figure 16c represents MODTRAN-based spectral transmittance at
the object distance of 78 m, and where the average transmittance of the CO2 band is 0.0001.(a) (c)(b) 2average ( ) 0.0001

CO

Figure 16. An example of experiment environment: (a) outdoor environment acquired by a visible
band camera, (b) broad-band infrared image, and (c) spectral transmittance in MWIR band.
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3.6. Parameter Analysis

A midwave hyperspectral image database was prepared for various evaluations. Hypercube
images from 49 days were valid during the acquisition period (February to July 2018). In the first
evaluation, the effect of the CO2 band range was important in order to estimate air temperature
accurately. As summarized in Figure 17, baseline bands were selected from a visual inspection using
the GUI shown in Figure 2. Top row images in Figure 17 show the spectral images corresponding
to specific wavelengths. The visual selection criterion was whether the spectral image looks like it
has noise in the whole image area. If atmospheric transmittance is 0, the received radiance consists
of thermal path (air) radiance. Therefore, the initially selected bands were 4.22, 4.27, 4.29, 4.31,
and 4.34 µm. The MAE of the baseline band showed 1.32 K. If a lower band decreased to 4.20 µm,
the MAE decreased to 1.29 K. If the lower band increased to 4.27, 4.29, and 4.31 µm individually, the
corresponding MAEs were 1.26, 1.25, and 1.27 K, respectively. From these experiments, the lower band
limit can be set at 4.29µm. On the other hand, if we increase the upper band limit to 4.36 µm with
the selected lower band limit at 4.29 µm, the MAE increased to 1.29 K. Therefore, we can conclude
that the optimal CO2 absorption bands are 4.29, 4.31, and 4.34 µm. These bands were used in the
following experiments.

Wavelength [ m ] 4.20 4.22 4.27 4.29 4.31 4.34 4.36 MAE [K]

Baseline
(visual inspection) 1.32

Decrease 
lower band 1.29

Increase 
lower band 1 1.26

Increase 
lower band 2 1.25

Increase 
lower band 3 1.27

Increase
upper band 1.29

Figure 17. CO2 band range selection results: Baseline band is selected by visual inspection and the
optimal band range is selected by maximizing mean absolute error (MAE) metric.

SNR can be improved additionally through the 2D median filter and 2D Gaussian filter. The 2D
median filter is necessary to remove dead pixels as shown in the top-left of Figure 18 where the effects
of median filter sizes from [1 1] to [15 15] were visualized. Even [3 3] median filter can remove the
salt and pepper noise effectively and larger filter size can extract larger structure of air temperature
distribution. The histogram distribution after the 2D median filter is Gaussian distribution, which is
consensus to thermal noise distribution. True temperature signal with Gaussian noise can be estimated
by Gaussian smoothing filter (unbiased, consistent linear estimator) [36]. The effects of sigma (σ) were
displayed in Figure 19 where [3 3] median filter was used initially. Note that larger σ can extract
larger structure of air temperature distribution. The selection of median filter size and Gaussian filter
parameter depends on application images. If salt and pepper noise is strong, larger median filter size
with smaller Gaussian smoothing is suitable. If the salt and pepper noise is weak, smaller median
filter size with stronger Gaussian smoothing is recommended. In this paper, we used a kernel size of
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10× 15 for the median filter and σ = 2 for the Gaussian filter because salt and pepper noise is spread
horizontally and thermal noise is high.

The VisualAT method depends on the spectral radiance of atmosphere. The sensitivity analysis
and error propagation can be useful to understand the properties of VisualAT. The simulation is
conducted by adding spectral radiance noise to Equation (7) and estimating air temperature from
Equation (8). Figure 20 shows the sensitivity analysis results. The ground truth air temperature is
20 ◦C and it increases linearly according to the spectral noise level. In the case of FTIR camera noise
(NESR, 7× 10−5 [W/m2,sr,cm−1]), the estimated temperature is 21.08 ◦C.

[1 1]

[3 3]

[5 5]

[7 7]

[9 9]

[11 11]

[13 13]

[15 15]

Dead 
pixel

Figure 18. Spatial effects of 2D median filter size and histogram distribution.
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=0.2

=1.2

=2.2

=3.2

=4.2

=5.2

=6.2

=7.2
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Figure 20. Spectral noise and estimated air temperature analysis.
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4. Experiment Results

Radiometric accuracy should be evaluated to validate the usefulness of the proposed VisualAT
method. Although VisualAT can present measured temperature spatially, a global mean temperature
per image was extracted to compare with the ground truth air temperature recorded by the AWS.
Figure 21 shows a quantitative evaluation graph between the air temperature estimated by the
proposed VisualAT method and the ground truth air temperature for the 49-day dataset (acquired
time: 15:30 h). The MAE was 1.25 K, which is accurate considering the remote sensing method and
dynamic weather changes. The correlation coefficient between the VisualAT-based air temperature and
ground truth air temperature was 0.97. Figure 22 shows representative visual air temperature images
measured using the VisualAT method. To the best of our knowledge, there is no method by which
to compare these results to others, and this is the first trial of instantaneous ground air temperature
measurement and visualization in a ground-based approach.
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Figure 21. Quantitative evaluation graph of the proposed VisualAT method for the whole database
acquired from February to July 2018.

Figure 22. Examples of air temperature images measured by the proposed VisualAT method for
different months (from February 2018–July2018).
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The dependency of temperature estimation accuracy from the proposed VisualAT is important in
order to check robustness to various environmental changes. Figure 23 summarizes the relationships
between the estimation error [◦C] and other factors, such as (a) air temperature [◦C], (b) humidity [%],
(c) air pressure [hPa], (d) visibility [m], and (e) long-wave thermal radiation [W/m2]. The correlation
coefficient (R) is annotated on the results. According to the results, the estimation error is negative
relationship with air temperature, air pressure, and visibility. In addition, the error has positive
relationships with humidity. This means that a more accurate temperature can be estimated if the
humidity is lower. On the other hand, the long-wave thermal radiation had no specific relationship.
The dependency analysis is for reference only because the data points are very scattered.

The best advantage of the proposed VisualAT method is that it can measure visual air temperature
instantly. It takes approximately one second to scan a hypercube. Figure 24 shows consecutive air
temperature images acquired at 20-min intervals on 6 March 2018. The color axis was set by the caxis
([7.83 9.83]) function in MATLAB for a fair temperature reading. We can see the flow of the heat flux
over one hour.
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Figure 23. Examples of air temperature images measured by the proposed VisualAT method for
different months: (a) estimation error vs. air temperature; (b) estimation error vs. humidity;
(c) estimation error vs. pressure; (d) estimation error vs. visibility; (e) estimation error vs. long
wave thermal radiation.
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Figure 24. VisualAT-based dynamic temperature images measured at different times (20-min. intervals):
Temporal variation of air temperature distribution can be found.

Figure 25 shows the visual air temperature images measured at night (21:29 h) and the next early
morning (09:23 h). There was strong sea fog, and VisualAT can still produce air temperature images.

Night time: 2018/02/22 21:29

Broad band VisualAT

Early morning: 2018/02/23 09:23

[ )] [ )]

Broad band VisualAT

Figure 25. Example of visual air temperature images at night and in the morning: (left) night time air
temperature image at 21:29; (right) early morning temperature image at 09:23.

Figure 26 shows VisualAT-based remote air temperature measurement and visualization in a sea
environment. Top left shows a broad-band image integrating a 1.5–5.6 µm hypercube; Top right is the
corresponding visible band image. The bottom image is the measured air temperature distribution
from the VisualAT method. The average temperature was 16.73 ◦C, and relatively hot and cold regions
can be found. Figure 27 presents various air temperature visualization results in maritime environment.
Different air temperature distributions can be found.

Through various analysis and evaluation, the proposed VisualAT can be a novel method to
measure spatial air temperature and visualize its distribution instantly. The CO2 concentration affects
to the atmospheric transmittance [37], which is related with measurement air volume. It can be a useful
approach if CO2 band image is available but there are limitations such as expensive sensor system
and relatively small measurement air volume (20 m distance times FOV). If there is an object in the
measurement volume, the accuracy of air temperature measurement can be degraded. Partial artifact
can appear when the assumption of zero atmospheric transmittance is broken. If radiometric calibration
is not perfect, then internal camera device temperature can distort air temperature distribution.
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Broad band Visible band

VisualAT

2018/10/25 09:58

[ )]

Figure 26. Remote air temperature image visualization example from an outdoor sea environment: (top
left) broad band image; (top right) visible band image, (bottom) VisualAT-based air temperature image.

(a)

(b)

Figure 27. Various remote air temperature image visualization example in maritime environment:
(a) broadband images; (b) corresponding VisualAT images.

5. Discussions and Conclusions

It is very challenging to measure air temperature contactlessly and instantly. This paper proposed
a novel air temperature measurement and visualization method called VisualAT, which uses a midwave
FTIR in the carbon dioxide absorption band. We found that spatial air temperature can be measured
radiometrically by deriving the radiative transfer equation (RTE). The first physical atmospheric
property is that atmospheric transmittance in the CO2 band (4.25–4.35 µm) is 0.005 (at 20 m away),
which can remove the effect of object and downwelling radiation. The second physical atmospheric
property is that the portion of solar upwelling is very small in the CO2 band. These two properties
lead to a simpler received radiance at the sensor; it is just blackbody radiance of the air temperature.
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The rest of the image processing, such as spectral temperature averaging, spatial median filtering, and
Gaussian smoothing, produce the final visual temperature image. The proposed VisualAT method is
the first to measure and visualize air temperature remotely and instantly. There is no contact sensor,
no measurement delay, and no learning for regression. Based on a long-term outdoor experimentss
(from February to July 2018, a valid 49 days), the proposed VisualAT method showed an MAE
of 1.25 K for temperature range of 2.6–26.4 ◦C. It is relatively accurate, considering all weather
conditions. The measurement error has positive correlations with humidity (R = 5.6%). On the
other hand, it has a negative correlation with air temperature (−9.3%), air pressure (R = −13.1%) and
visibility (R = −5.6%). There is no relationship with long wave radiance (R = −0.5%). The long-range
outdoor test validated the feasibility of visual air temperature measurement and visualization.
According to various experiments, the VisualAT can measure air temperature correctly if there
is no hot object within 20 m and proper CO2 absorption band is used. Furthermore, the precise
radiometric calibration should be activated before each air temperature measurement to remove stray
lights. If these conditions are satisfied, the proposed VisualAT method can be applied to spatial air
temperature monitoring applications in fields such as human health, virus propagation, plant growth,
climate change, hydrology, etc. In the future, we will use the air temperature information in detecting
remote thermal objects.
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