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Abstract: Crown volume is a tree attribute relevant in a number of contexts, including photosynthesis and
matter production, storm resistance, shadowing of lower layers, habitat for various taxa. While commonly
the total crown volume is being determined, for example by wrapping a convex hull around the crown,
we present here a methodological approach towards assessing the tree green crown volume (TGCVol),
the crown volume with a high density of foliage, which we derive by terrestrial laser scanning in a case
study of solitary urban trees. Using the RGB information, we removed the hits on stem and branches
within the tree crown and used the remaining leaf hits to determine TGCVol from k-means clustering and
convex hulls for the resulting green 3D clusters. We derived a tree green crown volume index (TGCVI)
relating the green crown volume to the total crown volume. This TGCVI is a measure of how much a
crown is “filled with green” and scale-dependent (a function of specifications of the k-means clustering).
Our study is a step towards a standardized assessment of tree green crown volume. We do also address
a number of remaining methodological challenges.
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1. Introduction

Crowns are important tree components, as they produce oxygen, offer habitats for many taxa,
filter out dust and other pollutants, generate shadow and do largely determine the scenic beauty of
trees and forests. However, tree crowns and the variables characterizing them are difficult to define
and measure; that holds for any crown variable, be it wood volume, leaf area, crown volume, crown
projection area, etc. Additionally, all these crown variables are among those forest mensurational
variables for which “true values” are virtually impossible to determine (at the standing tree and
non-destructively). The crown, therefore, while being the most important part of the tree (engine),
poses fundamental challenges for forest and tree mensuration. Among crown variables, the crown
projection area is a straightforward measure that can relatively easily be defined and determined,
thus there is a long tradition using it to describe tree crowns: it is used as a competition metric [1,2],
to establish models to predict, for example, biodiversity [3] or when dealing with trees outside the
forest (TOF); in addition, fragmentation metrics of such crown polygons are used to characterize the
pattern of tree spatial distribution [4]. In forest definitions, canopy cover derived from individual trees’
crown cover is frequently used as a core criterion [5].

One may ask the question whether the crown projection area alone is always a sufficiently
exhaustive measure to characterize tree crowns, as, for example, for one and the same crown projection
area, tree crowns may have very different 3D crown shapes, volumes and densities. Assessment and
modeling of crown variables in the third dimension pose additional challenges: in the first and very
basic place, this refers to challenges of definitions [6] and measurement protocols.
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An interesting approach regarding both definition and measurement is what the artists Christo
and Jeanne-Claude did when they wrapped tree crowns with large sheets of woven polyester fabric in
the years 1997-1998 in Basel, Switzerland [7]. What these envelopes wrap is the total crown volume
of the entire crown including all permanent woody crown components, leaves and empty spaces.
By using such envelopes, the artists used an implicit definition of total crown volume.

Although difficult to define, there are a number of applications in which 3D crown variables may
be of interest. When modeling, for example, the tree crown as a habitat for taxa like insects, birds and
bats, it is likely that the habitat quality of a tree crown will also be a function of the volume “filled by
leaves” and its distribution within the crown. So far, to avoid the additional challenges, most of the
studies using instead the leaf area index (LAI) [8] for modeling as a common measure to quantify leaf
density, but it is again a 2D “summary” of foliage with the advantage that there is a straightforward
definition (leaf area per unit horizontal surface area). LAI is commonly not done by measuring leaf
areas, but through optical devices or cameras devices that determine measure variables like crown
density or crown transmissibility which is then used as a proxy and translated into values of LAI

With terrestrial laser scanning (TLS), there is a technology that has the potential to receive the 3D
structure of a tree crown. Several studies made use of these dense 3D point clouds to retrieve foliage
attributes. The most common one is the leaf area density (LAD) which is as the LAI straightforward
defined as the one-sided area of leaves per unit volume. To estimate LAD, voxelization approaches are
used with the weakness that the size of a voxel is quite sensitive [9].

In this study, we introduce TLS-based k-means clustering as a proxy for a new 3D crown variable
named tree green crown volume (TGCVol). TGCVol is certainly one of those crown variables that are
difficult to define and difficult to assess; and research needs to resort to proxies to make empirical
studies feasible and to the best knowledge of the authors, TGCVo! has so far not been introduced
nor assessment approaches presented. The goal of this study is to develop and evaluate a TLS-based
approach to assess the TGCVol, to describe its scale dependency and discuss challenges regarding
definitions, measurements and analyses. Our technical objectives are: (a) to identify the crown leaf hits
from merged multiple scans of solitary trees during the vegetation period; (b) to derive TGCVo! from
extracted leaf hits from a k-means clustering approach; (c) to illustrate the scale dependency of TGCVol
by varying the k in k-means clustering.

2. Materials and Methods

2.1. Study Area

Data were collected within the city of Gottingen, Germany. Twenty-six sample trees were selected
(Figure 1) such that they cover a wide range of tree species, crown shapes and were well visible from
all sides for a straightforward observation by terrestrial laser scanning. The sample trees were located
on roadsides, in botanical gardens and in parks. Photographs of a subset of sample trees are given in
Figure 2 for illustration.

2.2. Workflow Outline

The workflow for determining TGCVol is shown in Figure 3. It has one main processing line of
point cloud analyses. In a final step (see Section 2.7), an easy-to-use index was derived to predict
TGCVol. The processing and analysis workflow was implemented on a high-performance computer.

2.3. Definition

While the basic idea behind TGCVol is easily described as “the sum of spaces in the crown filled
with leaves”, it turns out to be difficult to come up with an unambiguous definition that may form the
basis for a likewise unambiguous measurement protocol. This is not uncommon in forest mensuration
and forest inventory where there are many variables that pose alike issues. In particular, other crown
variables bring the same challenge with respect to measurement protocols, including the variables
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leaf area density (LAD) and leaf area index (LAI). For both variables, a theoretical definition can be
formulated (LAD = sum of one-sided green leaf area per unit volumes; LAI = sum of one-side green
leaf area per horizontal unit area) but it is hardly possible to measure them directly: their observation
is, therefore, based on the assessment of meaningful proxies. For LAD, when proxied by TLS scans,
it is commonly so that the 3D points are first converted into a 3D voxel array of an arbitrary size,
an approach highly sensitive to voxel size [9,10]. With the voxel information provided, different
methods exist to assess LAD, e.g., [9,11]. Following the basic idea, TGCVol is proxied in this study
by k-means convex hull clustering, applied, for example, also in the field of object recognition [12]:
we use the green TLS hits identified by the RGB information to recognize “leaf clusters”. TGCVol is
then defined as the sum of all the volumes of envelopes of “leaf clusters”.
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Figure 1. Study area and the locations of the selected trees (map source: © OpenStreetMap contributors).

Treel3 Treel8 Tree2l

Figure 2. Illustration of the variation of crown sizes, shapes and densities among the sample trees.
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Figure 3. Schematic workflow.

2.4. Field Measurements

Table 1 lists the terms and their definitions used in the field inventory.

Table 1. Terms used in this study.

Notation Here

Terms Elements of the Definition
The vertical distance from ground to the lowest leaf layer of
Crown base height the tree crown meaning the first foliage advancing upwards CBH
from the ground.
Crown length The vertical distance between crown base and crown (tree) top. CL
The width of horizontal tree crown projections in one
Crown width direction. Here, we used two fixed directions and averaged CW
the measurements.
Tree height The vertical distance from the ground level to the level of the H
crown (tree) top.
The diameter of the stem at the height of 1.3m above ground DBH

Diameter at breast height

measured perpendicularly to the stem axis.

Per tree, field measurements and scanning were done on the same day. For each sample tree,
the following variables were measured: DBH by diameter tape; total tree height H and crown base
height CBH by a Vertex® IV hypsometer (Haglof, Sweden). Crown width CW was determined by tape
in two fixed directions (South-North and East-West), following the definitions as of Table 1.

Table 2 lists the descriptive statistics of the major dendrometric variables of the sample trees.
Crown width CW is the average of two measurements. The set of sample trees embraced a total
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of 10 tree species with a DBH and an averaged CW ranging from about 20 cm to 90 cm and 6 m to
18 m, respectively.

Table 2. The sample trees and their major crown-relevant characteristics.

DBH H CBH Averaged CW

Tree Id Species Location (cm) (m) (m) (m)
Treel Acer platanoides Botanical Garden 35.8 12.5 1.0 7.4
Tree2 Acer platanoides Botanical Garden 34.0 10.5 1.5 6.2
Tree3 Acer pseudoplatanus Roadside 58.0 17.1 0.7 11.6
Tree4 Acer pseudoplatanus Roadside 61.2 14.8 0.9 11.85
Tree5 Acer pseudoplatanus Roadside 46.6 12.8 0.8 12.45
Tree6 Acer pseudoplatanus Roadside 35.6 10.9 1.0 12.0
Tree7 Acer pseudoplatanus Roadside 43.8 174 1.6 13.7
Tree8 Acer pseudoplatanus Roadside 88.2 22 1.0 13.9
Tree9 Acer pseudoplatanus Roadside 49.5 10.7 1.0 13.65

Treel0 Acer pseudoplatanus Roadside 43.0 10.5 2.0 11.25

Treell Acer pseudoplatanus Roadside 16.9 14 1.8 6.5

Treel2 Acer pseudoplatanus Roadside 204 13.6 24 7.75
Treel3 Acer pseudoplatanus Roadside 55.8 15.3 2.6 14.25
Treel4 Acer pseudoplatanus Roadside 36.2 11.6 21 10.85
Treel5 Aesculus hippocastanum Roadside 72.8 18.2 2.2 14.3
Treel6 Aesculus X carnea Botanical Garden 20.0 6.3 1.0 6.35
Treel7 Carpinus betulus Roadside 53.6 14.6 0.5 11.5
Treel8 Fagus sylvatica Roadside 42.7 12.5 15 8.3
Treel9 Liriodendron tulipifera Roadside 39.5 16.8 0.0 10.35
Tree20 Prunus avium Botanical Garden 42.6 8.7 1.5 8.0
Tree21 Quercus robur Roadside 435 124 24 10.6
Tree22 Quercus robur Roadside 64.1 154 1.4 15.8
Tree23 Quercus robur Roadside 59.1 12.8 1.0 17.35
Tree24 Quercus robur Roadside 294 124 3.0 12.2
Tree25 Tilia cordata Roadside 43.5 15.0 2.0 11.15
Tree26 Tilia cordata Roadside 59.9 16.1 14 11.6

2.5. Terrestrial Laser Scanning

A Trimble® TX5 laser scanner (Trimble Navigation, Ltd., USA) was used, with a scan resolution
of 177Mpts per full scan, resulting in a scan duration of 3’35” and a point spacing of approximately
3mm at a distance of 10m. Additionally, RGB information was recorded per hit using the color image
capture option which extended the scanning duration up to an average of 6’35”. Scans were acquired
during July and August 2019 in the midst of the vegetation period. The moderate and strong wind
(wind speed higher than 14 km/h) was avoided as far as possible during the scanning process.

We used a multi-single-scan method where each sample tree was scanned from 6 positions
(Figure 4) to guarantee a detailed 3D representation of the outer and inner parts of the crowns. Three of
the positions were chosen in distances from the tree, that allow obtaining the returns from the crown
surface to the extent of possible, ranging between 5m and 20m. The remaining 3 scanning positions
were located close to the stem, ranging between 0.5m and 1m, beneath the tree crown to guarantee
that most hits came from the inner part of the crown. The 6 single scans per tree were merged with
a maximum registration error of less than 6mm by automatically cloud-to-cloud matching using
Autodesk® ReCap V5.0.4.17, this procedure repeated until all the corresponding scans were merged.
The laser returns of the single trees were manually extracted in CloudCompare v2.10.2. We used the
CloudCompare’s “statistic outlier remover” SOR (PCL, 2011) [13] to remove the noise and exported
each single tree as a “.las” file for further processing in R (R Core Team, 2019).
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Sample tree

. Scanning position
(a) (b)

Figure 4. (a) Location of the laser scanner (view from above) relative to the stem position, blue circles
represent the scanning positions far from the tree, yellow circlets represent the scanning positions close
to the stem; and (b) extracted point cloud (view from the front). Sample Tree 21.

2.6. Determining of Tree Green Crown Volume

Our approach to observe TGCVol included a number of processing steps (Figure 3). To remove the
woody elements from the point cloud (stem and branches), we used the CANUPO classification
algorithm [14] implemented in CloudCompare. The CANUPO classification is a multiscale
dimensionality analysis to characterize features according to their geometry and RGB information [14]:
the classifier is trained by small samples and then applied to a point cloud to separate it into two
categories, here: “woody parts” and “rest”. Training data were sampled to cover various cases that
can be encountered for each category, for example, over- or underexposure. In a visual validation,
the outcome of this classification turned out to be incomplete: various woody hits still remained.
Manual point cloud editing needed therefore to be applied and hits on woody elements were visually
identified from their RGB information and then manually removed from the point cloud (Figure 5).

(b)

Figure 5. Point clouds of sample Tree 21 (view from below): (a) original point cloud; (b) remaining
points after removing trunk and branches by automatic plus manual removal.
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The k-means clustering approach [15] was then applied to cluster groups of nearby leaf hits using R
package Morpho [16]. k-means clustering is a technique that comes from signal processing and received
a variety of applications: market segmentation, document clustering, and image segmentation, etc.
It involves iteratively exploring the centroid of a cluster of points and then regrouping the neighboring
points into this cluster where k is the initial parameter that represents the total number of clusters to
be produced. The distance between leaf hits in each cluster is indirectly defined k-means clustering
approach: a smaller value of k produces lesser but larger clusters allowing a longer distance between
leaf hits to be included into the same cluster, while a large value of k generate many smaller clusters
and demand a shorter maximum distance for leaf hits to be clustered. We started always with k = 1.
The convex hull of this one cluster is wrapping the total crown volume CVol.ypex i (see Figure 6a).
With each further iteration, we increased k so that more and smaller clusters were generated separating
more and more the green and empty spaces within the crown (Figure 6). Around each cluster of hits,
a convex hull was wrapped by using R package rLiDAR [17]. The TGCVol is calculated by summing up
all the volumes of all these convex hulls. We increased k stepwise up to the value of k = 1400. For each
value of k, the sum of the wrapped clusters constitutes the TGCVol at this particular spatial resolution.
We then plotted the resulting TGCVol over k for interpretation of the scale dependency. A suitable or
even optimal value of k will depend on the specific subject matter objective of a study and is not a
focus of this research.

Tree 21

k=1 k=200 k =1000

Tree 18

(a) (b) (c)

Figure 6. Illustration of the k-means clustering approach to generate hulls of green volume within the
crown (sample Tree 21 and Tree 18): convex hulls were wrapped around: (a) k = 1 cluster (wrapping
total crown volume); (b) k = 200 clusters; and (c) k = 1000. “Leaf clusters” can be seen more evenly
distributed in the crown of Tree 18 than of Tree 21.

2.7. The Tree Green Crown Volume Index

To make the values comparable between trees of different sizes, and as a simple measure of the
degree to which the crown contains green volume, we developed the tree green crown volume index
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(TGCVI) which is the percentage of tree green crown volume (TGCVol) within the total crown volume

CVolcopvex nun (k = 1):

TGCVol
TGCVI = ———— 1)
CVOlconvex hull

TGCVI tends towards a value of 1 when leaves occur uniformly all over the crown at a minimum density.

3. Results

When refining the separation of green and empty spaces by increasing the number of clusters k,
the green crown volume decreases. This describes the scale dependency of determining TGCVol.
For our sample trees, TGCVol decreased rapidly and then leveled out for values of k beyond 200-300.
Here, the trends for Tree 18 was slower compared to Tree 21 (see also Figure 7).

Table 3 records the crown volume and tree green crown volume index (TGCVI) for the sample
trees. The tree green crown volume index decreased with the increasing number of convex hulls k.
The mean TGCVI was 0.58, 0.35 and 0.27 with standard deviations of 0.083, 0.082 and 0.075, respectively
in the cases when k = 100, 500 and 1000. The small size of the study does not allow further analyses
of differences between species, but we see in our results that for Quercus robur (sample trees 21 to
24) the values of TGCVI were relatively close together (0.54 to 0.45, 0.28 to 0.23 and 0.20 to 0.18),
and consistently lower than the other species with similar dimensions.

030

Tree green crown volume index TGCVI
o
a
o

Tree 21

0 200 400 600 800 1000 1200 1400

Number of Clusters k

Figure 7. Tree green crown volume index (TGCVI) over number of clusters k. As to be expected:
the more clusters are formed, the finer is the separation of green and empty spaces within the crown
which leads to decreasing values of TGCVI. The y-axis is the normalized TGCVI. Tree 21 and Tree 18 are
highlighted by the bold line with markers.
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Table 3. The sample trees and their tree green crown volume index.

Tree Id Species CVol convex hutt (M%) 100TGCV15\87;1en k 1000
Treel Acer platanoides 289 0.63 0.41 0.32
Tree2 Acer platanoides 196 0.63 0.37 0.29
Tree3 Acer pseudoplatanus 1217 0.66 0.41 0.33
Tree4 Acer pseudoplatanus 990 0.62 0.40 0.30
Treeb5 Acer pseudoplatanus 1026 0.66 0.44 0.36
Tree6 Acer pseudoplatanus 700 0.58 0.38 0.30
Tree7 Acer pseudoplatanus 1576 0.64 0.40 0.32
Tree8 Acer pseudoplatanus 1736 0.66 0.43 0.35
Tree9 Acer pseudoplatanus 812 0.52 0.26 0.18

Treel0 Acer pseudoplatanus 473 0.38 0.20 0.14

Treell Acer pseudoplatanus 163 0.47 0.28 0.22

Treel2 Acer pseudoplatanus 270 0.41 0.23 0.17

Treel3 Acer pseudoplatanus 1234 0.56 0.39 0.31

Treel4 Acer pseudoplatanus 681 0.65 0.40 0.31

Treel5 Aesculus hippocastanum 1814 0.69 0.48 0.39

Treel6 Aesculus X carnea 111 0.58 0.32 0.22

Treel7 Carpinus betulus 817 0.55 0.37 0.28

Treel8 Fagus sylvatica 380 0.64 0.43 0.34

Treel9 Liriodendron tulipifera 1049 0.57 0.38 0.30

Tree20 Prunus avium 347 0.55 0.29 0.21

Tree21 Quercus robur 620 0.45 0.23 0.18

Tree22 Quercus robur 2092 0.54 0.28 0.20

Tree23 Quercus robur 1729 0.54 0.28 0.20

Tree24 Quercus robur 730 0.49 0.28 0.19

Tree25 Tilia cordata 904 0.61 0.36 0.28

Tree26 Tilia cordata 1003 0.68 0.51 0.42

4. Discussion

Our study is to be seen as a pilot study to further develop measurement and analysis approaches
towards a better description of tree green crown volume. The limited number of 26 sample trees of
10 species in one single environment (urban trees) and without considering many different crown
shapes does not allow further inferences about factors that determine amount and pattern of TGCVol;
rather, our study was to introduce the concept of TGCV0I to better describe the foliage distribution in
tree crowns and present a first case study for its assessment, identifying remaining methodological
challenges. We chose to do this first study on solitary trees in order to reduce the number of confounding
features. We are aware, of course, that applications to trees in closed-canopy forests will pose a series
of additional challenges. We have started with a simple condition but we will continue seeking better
alternatives to enhance the applicability of our approach in our future work.

The scanning positions are an important element for the measurements as they need to be determined
such that the whole crown can duly be scanned. Multiple scanning positions were necessary to avoid
scan shadows and to capture the foliage information; this was challenging under the given conditions
in an urban environment, mainly because of buildings and car traffic. Within a closed stand, though,
the challenges will even be greater than with the solitary trees in our study because the visibility of the
scanner may be blocked by neighboring trees. Further difficulties exist in the extraction of individual
crowns. The scanning positions close to the tree will produce denser point clouds and allow identifying
more details, but they come along with larger differences in hit density for closer and more distant crown
parts. While this challenge can be overcome for the lower crown parts by multiple scan positions around
the crown, it will remain for the upper crown parts (as partly seen in Figure 6¢): there, the overall hit
density is always lower which may affect the clustering analysis and lead to an overestimation of tree
green crown volume.
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When separating leaf and branch hits within the crown, the CANUPO classification that we applied
here made it to segment most of the branches but there were still smaller branches that had to be removed
manually. This was time-consuming and does certainly leave room for optimization. The branches that we
needed to remove manually from the crown point cloud were all characterized by under- or overexposure
of their RGB values, which is likely the reason that the automatic segmentation approach failed. This is
a well-recognized and common problem in terrestrial laser scanning and not solved yet [18]. The RGB
data is core to our approach to identifying leaf hits in the crown: the distinction between the leaf and
branch hits will hardly be possible without these RGB data. Besides CANUPO which is easy-to-use and
already implemented in CloudCompare, there are also alternatives for wood-leaf classification such as
machine learning techniques [19], and we might improve the classification efficiency by seeking such an
automated separation procedure [20].

TGCVol is usually not evenly distributed within the crown but comes in a clustered pattern.
Then, it is obvious that determining TGCVol is scale-dependent. This is clearly illustrated in Figure 7
when plotting TGCVol over the number of clusters: the finer the separation between green and empty
spaces, the smaller the overall TGCVol. The scale is here derived from the number of clusters, which
implicitly defines how fine the clustering is. As with other scale-dependent features (like “forest
structure”, for example [21] or “forest edge length”, for example [22]), the definition of a scale must be
part of the definition of the features to make it unambiguous. The definition of a suitable scale for
a particular purpose needs to come from subject matter considerations and cannot be generalized.
Of course, the computational capacity must also be considered: the more detailed the clustering,
the more computer power and processing time is required.

Figure 7 illustrates not only the scale dependency but also the differences between the sample
trees. The decreasing trends of TGCVol point to differences in 3D distributions of green volume within
the tree crowns. The lower curves (e.g., Tree 21) indicate crowns with a sparser distribution of smaller
leaf clusters while the upper curves (e.g., Tree 18) point to more evenly arranged green volume or and
large green clusters. A more comprehensive comparison also of more extreme crown architectures
(very dense and very sparse crowns, pillar-shaped crowns and umbrella-shaped crowns, for example)
will likely reveal more possibilities for the interpretation of the curves as of Figure 7.

5. Conclusions

This study presented a TLS-based approach to assess tree green crown volume (TGCVol). We see
many useful applications of TGCVo! in particular in the context of trees outside the forest, for example
in the modeling of urban trees for habitat suitability and heat mitigation, as a lower green crown
volume will probably result in heat mitigation and influence the nesting site selection of taxa; but we
also acknowledge (and addressed it in this paper) that there are numerous methodological challenges
that wait to be resolved.
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