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Abstract: Joint intrinsic and extrinsic calibration from a single snapshot is a common requirement
in coastal monitoring practice. This work analyzes the influence of different aspects, such as the
distribution of Ground Control Points (GCPs) or the image obliquity, on the quality of the calibration
for two different mathematical models (one being a simplification of the other). The performance
of the two models is assessed using extensive laboratory data (i.e., snapshots of a grid). While both
models are able to properly adjust the GCPs, the simpler model gives a better overall performance
when the GCPs are not well distributed over the image. Furthermore, the simpler model allows for
better recovery of the camera position and orientation.
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1. Introduction

Coastal monitoring systems using digital video cameras have become a widely used tool to
study near-shore processes since the advent of the ARGUS system over 20 years ago [1,2]. At present,
besides the original ARGUS developments, there exists a wide variety of packages to manage image
acquisition and processing ([3–6], among others). Video monitoring systems have been shown to be
useful, to cite just a few examples, in obtaining intertidal and subaquatic bathymetries [7–9], to detect
and analyze shoreline dynamics [10,11], or to study the morphodynamics of beach systems [12,13].
Camera calibration is critical in coastal video monitoring systems, as it allows us to relate pixels in the
images to real-world co-ordinates and vice versa.

Camera calibration in coastal video monitoring follows close-range photogrammetric procedures [1,14].
Even though the distance to the objects monitored (i.e., beaches) are up to ∼1000 m, the hypotheses
of close-range calibration apply (e.g., no atmospheric refraction or non-negligible lens distortion).
Actually, in ARGUS-like fixed stations, it is common practice to obtain the parameters related
to lens distortion (intrinsic calibration parameters) prior to final deployment through classic
close-range methods, using chessboard or similar patterns [1,6]. The camera position and orientation
(extrinsic calibration parameters) are then obtained through Ground Control Points (GCPs); that is,
pixels whose real-world co-ordinates are known. The literature on full (intrinsic and extrinsic
parameters) close-range camera calibration photogrammetry is extensive, and includes studies on
the governing equations [15–17], the calibration procedures [17–21], and applications including
structure-from-motion and multi-camera approaches [22–24]. However, there have been few works
dealing with the full calibration from a single image using a few GCPs.

In most coastal ARGUS-like monitoring systems, the intrinsic parameters are obtained prior
to the final deployment of the camera, as mentioned above, and the extrinsic parameters are then
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obtained through GCPs. In many practical situations, however, intrinsic calibration of the camera
is not available. This is the case, for example, when using available surfcams around the globe to
obtain morphodynamic information [25] or in the CoastSnap project [14]—a citizen science project
in which citizens provide smartphone images for some given beaches. In general, taking advantage
of the huge amount of freely available coastal images for morphodynamic studies and coastal
management is a challenge for the research community. In such situations, all of calibration parameters
(i.e., both intrinsic and extrinsic) must be obtained from the GCPs [25]. In a calibration campaign,
a large amount of targets (GCPs) can be spread over the entire image and high quality calibrations
can be obtained. In the practical situation we want to address, it is only possible to use fixed
features and, as large portions of the images are sand, water, or sky, the GCPs are restricted to a
relatively small part of the image. For illustrative purposes, Figure 1 includes two snapshots from
Castelldefels and Barcelona beaches (Spain, see coo.icm.csic.es): in Figure 1A, the GCPs are usually in
the lower half of the image; while in Figure 1B, they mainly lie in the right and lower parts. In addition,
the number of points used is usually small; for example, [14] used only seven GCPs for georectification
of community-contributed images. Such a low number of GCPs also raises the question of which
is—while remaining in the domain of close-range photogrammetry—the most suitable calibration
model. Please note that this is very different to what is usually found in close-range photogrammetry,
where the calibration is done using a large number of points. In summary, new demands on coastal
monitoring systems require further understanding of image calibration when a reduced number of
GCPs must be chosen within only a small region of the image.

Figure 1. Images from Castelldefels (A, at 41◦15′54.9′′ N, 1◦59′29.1′′ E) and Barcelona (B, at 41◦23′16.5′′

N, 2◦11′50.9′′ E) video monitoring stations (coo.icm.csic.es).

The main objective of this contribution is to determine the most suitable GCP distributions and
calibration model to georectify images on coastal monitoring systems. To do this, we assume that there
is only a single snapshot available to obtain a full camera calibration (intrinsic and extrinsic parameters)
with a reduced number of GCPs. In addition, the premises of close-range photogrammetry and the
non-use of wide angle lenses are considered. Two mathematical models are considered, one being
a simplification of the other. The influence of the obliquity of the snapshot or the GCP distribution
throughout the image on the calibration quality is analyzed. The ability to accurately recover some
useful calibration parameters (e.g., camera position) is also discussed.

2. Materials and Methods

2.1. Camera Mathematical Models

The pinhole model [26], together with the Brown–Conrady [27] model for decentered lens
distortion, are the governing equations typically used for cameras in coastal video monitoring systems;
see Figure 2. Given the real-world co-ordinates of a point, x = (x, y, z) , its pixel position, in terms of
column c and row r, is given by:

coo.icm.csic.es
coo.icm.csic.es


Remote Sens. 2020, 12, 1840 3 of 14

c =
xU? (1 + k1?d2
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where k1?, k2?, p1?, p2?, sc?, sr?, oc, and or are free parameters; higher order distortion terms are avoided
for we do not consider wide angle lenses. Furthermore, d2

U? = x2
U? + y2

U? and xU? and yU? are given by

xU? = −
(x− xc) ·eu

(x− xc) ·ef
+ (kc − oc) sc?, (2a)

yU? = +
(x− xc) ·ev

(x− xc) ·ef
+ (kr − or) sr?, (2b)

where xc = (xc, yc, zc) is the optical center (camera position); eu, ev, and ef are orthogonal unit vectors
given by the Eulerian angles of the camera (azimuth φ, roll σ, and tilt τ); and kc and kr stand for the
pixel co-ordinates of the center of the image (known). The inversion of the above Equations (1) and (2)
allows us to obtain the real-world co-ordinates of a pixel if an extra condition is given (typically,
the point being in a horizontal plane z = z0); this inversion requires the use of iterative procedures to
solve the implicit equations.

X

Y

Z

τ

σ

φ

R

C (xc, yc, zc)

(x, y, z)

(c, r)

Figure 2. Real-world to pixel transformation: camera position (xc, yc, zc) and Eulerian angles (φ, σ and τ).

Overall, 14 parameters need to be established to calibrate the above (mathematical) camera model.
The intrinsic parameters are as follows:

• radial and tangential distortions: k1?, k2?, p1?, and p2? (dimensionless);
• pixel size: sc? and sr? (dimensionless); and
• decentering: oc and or (in pixels),

and the extrinsic parameters are:

• real world co-ordinates of the center of vision: xc, yc, and zc (in units of length); and
• Eulerian angles: φ, σ, and τ (in radians).

The above equations (including the set of 14 parameters) are referred to as the “complete” model,
or M1. For most present-day cameras, it is reasonable to assume that the radial distortion is parabolic
(i.e., k2? = 0), the tangential distortion is negligible (p1? = p2? = 0), the pixels are squared (sc? = sr?),
and that the decentering is also negligible (oc = kc and or = kr). The above hypotheses lead to
a “reduced” model, herein called M2, with only 8 free parameters (xc, yc, zc, φ, σ, τ, k1?, and sc?).
Interestingly, the inversion of the model equations becomes explicit when model M2 is considered (i.e.,
it becomes a cubic equation).
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2.2. Error Definition and Calibration Procedure

A Ground Control Point (GCP) is a 5-tuple including the real-world co-ordinates of a point and
the corresponding pixel co-ordinates (column c and row r) in an image (i.e., (x, y, z, c, r) ). For a set of n
GCPs (xi, yi, zi, ci, ri) and a camera model with given intrinsic and extrinsic parameters, following [6],
the calibration error is defined as

ε∗ =

√
1
n

n

∑
i=1

[
(ci − c∗i )

2 + (ri − r∗i )
2
]
, (3)

where c∗i and r∗i are the pixel co-ordinates obtained from the corresponding real-world co-ordinates (i.e.,
(xi, yi, zi) ) through the camera model for the given parameters. For a certain set of GCPs, an image
is here calibrated by finding the parameters (intrinsic and extrinsic) which minimize the above error.
The optimization method considered is Broyden–Fletcher–Goldfarb–Shanno (BFGS, [28]) combined
with a Monte-Carlo-like seeding method. Usually, the calibration takes only a few CPU seconds.

In real practice, the pixel co-ordinates of GCPs are manually digitized by an expert user, with an
unavoidable error that is usually on the order of a few pixels. Understanding the influence of different
factors (e.g., the obliquity, the amount and distribution of the GCPs, or the mathematical model) on
the propagation of this error to the calibration quality is a key issue. For this reason, J “perturbed”
calibrations are performed for each of the analyzed cases in the following section. For each j of these J
calibrations, each of the n pixel co-ordinates of the GCPs, originally digitized at (ci, ri) , was randomly
perturbed with a noise of ±2 pixels (px); that is, (ci + ξij, ri + ψij) , where ξij and ψij are realizations
of a uniformly distributed random variable in the range [−2,+2] . The calibration errors for each of
these perturbations are referred to as εP (j) ; that is,

εP(j) =

√
1
n

n

∑
i=1

[
(ci + ξij − c∗ij)

2 + (ri + ψij − r∗ij)
2
]
, (4)

where c∗ij and r∗ij are the pixel co-ordinates obtained from the corresponding real-world co-ordinates,

(xi, yi, zi) , for the calibration parameters of the jth perturbation. The errors in the real-world GCP
co-ordinates are usually negligible in coastal studies (as it is orders of magnitude smaller than the size
that the pixel represents in the real world). The errors ε∗ and εP give a measure of the ability of the
camera model to fit the GCPs, either original or perturbed. A different error is introduced below.

Consider J perturbed calibrations and a set of GCPs (here not necessarily those used for the
calibration): for each GCP i, (xi, yi, zi, ci, ri) , the error ε̃ (i) is defined as

ε̃ (i) =

√√√√1
J

J

∑
j=1

[
(ci − c̃ij)

2 + (ri − r̃ij)
2
]
, (5)

where (c̃ij, r̃ij) is the pixel co-ordinate obtained from (xi, yi, zi) using the camera mathematical model
and the jth perturbed calibration parameters. The above error is defined for each pixel of the set of
GCPs. The Root Mean Square (RMS) over the set of GCPs is

εQ =

√
1
n

n

∑
i=1

ε̃2 (i) , (6)

with i running over all the pixels of the GCPs. The error εQ gives a measure of the quality of the
calibration for a given set of GCPs. If the GCPs are the same set used to obtain the perturbed
calibrations, the error will be referred to as εG. When there are no pixel perturbations, ξij = ψij = 0
for all j (and i) and Equation (4) reduces to Equation (3) (i.e., εP (j) = ε∗ for all j). Furthermore,
in the unperturbed case, as the perturbed calibrations become the original unperturbed ones, c̃ij = c∗i
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(for all j), such that, from Equation (5), it is ε̃2 (i) = |ci − c∗i |2 + |ri − r∗i |2 and, from Equation (6),
εG = ε∗ (= εP) .

2.3. Experimental Setup

To gain a better understanding of the influence of different aspects on the quality of the
calibration and the accuracy of the calibration parameters, a wide range of scenarios was analyzed.
Two smartphone cameras were employed: a Samsung Galaxy Grand Prime (2048× 1152 pixels) and
a Xiaomi Redmi 10 (2016× 1512 pixels). As both cameras gave equivalent results, only one of them
(the Samsung) is introduced below, for the sake of clarity. Three different snapshots were taken of the
same grid (see Figure 3), in order to consider a range of obliquities (tilt τ): τ ∼ 55◦ (angle A1), τ ∼ 40◦

(A2), and τ ∼ 15◦ (A3, which is almost zenithal). The GCPs were easily obtained in these images as
the intersections of the grid lines. The pixel co-ordinates of the GCPs were manually digitized with an
error estimated as ∼2 px. The unit length in the real-world, “u”, was the side of the squares of the grid
(around 5 cm).

Figure 3. Angles A1 (τ ∼ 55◦), A2 (τ ∼ 40◦), and A3 (τ ∼ 15◦) to analyze the influence of obliquity.

For each of the three angles, eight different subsets (S0 to S7) of the whole set of grid intersections
(∼80) were considered to be the GCPs for calibration. Figure 4 shows the eight subsets for the angle A1;
similar displays were considered for the other images in Figure 3 (although, necessarily, with some
differences between the images). While S0 considers all the available intersections of the grid as GCPs,
the rest of the sets include eight GCPs distributed in different ways. Leaving aside the especial case S0,
some sets correspond to (and are motivated by) real case conditions. For instance, the set S3 resembles
Figure 1A and set S6 resembles Figure 1B. The other sets were designed to analyze the results from
a more theoretical point of view (e.g., see S1 and S2). The set S1 would correspond to Figure 1B if
the horizon line was included (the horizon line is not analyzed in this work). While eight GCPs is a
reasonable number of GCPs in usual practice [3,14], and was considered for the reference case, similar
displays with 6 and 12 GCPs were also considered for sets S1 to S7.

For each angle and subset of GCPs, and for each of the two models (M1 and M2), J = 60 perturbed
calibrations were performed for analysis.

Figure 4. Cont.
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Figure 4. Subsets S0 to S7, for angle A1, considered to analyze the influence of the GCPs distribution.

3. Results

The results for the two cameras, three angles, three series of number of GCPs,
the eight GCP distributions, and for the two methods, are given in the Supplementary Materials.
The main results are presented in this section.

3.1. Error Analysis

Figure 5 shows the distribution of the perturbed calibration errors εP for all the subsets of GCPs,
for both models and for angle A1 (the results for A2 and A3 were similar in this regard; not shown).
Each boxplot contains information of the J = 60 perturbations. The calibration errors εP were smaller
for M1 than for M2 for all subsets; this is a natural consequence of the model M2 (with eight parameters)
being a particular case of model M1 (with 14 free parameters). However, it is noteworthy that model
M2, with around half of the parameters than M1, still had small calibration errors, with εP . 3 px.
Also, from Figure 5, we can see that: (1) for M1, the errors were larger for S0 (i.e., using all the available
points as GCPs); and (2) for M2, the error was minimum for S2 and S4. Furthermore, there were no
outliers; that is, all the calibrations can be considered to be satisfactory.

Figure 5. Errors εP for angle A1 and models M1 (A) and M2 (B) as a function of the GCP calibration
subset (S0 to S7).

As argued above, the error ε̃ defined in Equation (5) gives us a better idea about the usability of the
calibrations along the image. Figures 6 and 7 show the errors ε̃ for all the available points for models
M1 and M2, respectively, using the perturbed calibrations of the different subsets Sk (the GCPs of the
subsets Sk are highlighted with small white circles, for ease of viewing). The results in Figures 6 and 7
are for the angle A1 (the angles A2 and A3 showed the same trends, although with higher errors,
as shown below through εQ). As depicted in the figures, the errors remained small at the GCPs of each
subset Sk. The behaviour outside the region Sk was better for model M2 than for M1, especially for the
cases S2 and S4–S7; it can be seen that the color was saturated at ε̃ = 20 px, but the errors increased up
to ∼103 px for S2 and S4 in model M1.
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Figure 6. Errors ε̃ for M1 and angle A1 at all the available points for the different sets Sk. The GCPs for
each set are here highlighted with white circles in the center and correspond to the points in Figure 4.

Figure 7. Errors ε̃ for M2 and angle A1 at all the available points for the different sets Sk. The GCPs for
each set are here highlighted with white circles in the center and correspond to the points in Figure 4.
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Recalling Equation (6), Figure 8 shows the RMS of the errors ε̃ in Figures 6 and 7 for angle A1

and for all subsets Sk. The error εQ considers all the pixels in the image (S0), while the error εG only
considers the pixels used for the calibration (i.e., those highlighted in Figures 6 and 7) for the RMS.
Naturally, both errors coincided for S0. As already suggested from Figures 6 and 7, the errors εG were
small in all cases; these errors were related to the errors εP in Figure 5. With regard to the error εQ,
which evaluates the quality of calibration in the whole image, model M2 yielded significantly smaller
errors than M1, except for the very particular set S0. For model M2 (Figure 8B), all sets yielded overall
errors εQ below 10, except for S2 (pixels near the center of the image) and S4 (centered in the lower
half of the image). The sets S2 and S4 were those with smaller errors εP and εG. The sets with smaller
overall errors εQ were S1 (ideal uniform distribution all over the image) and S3 (lower half of the
image), while sets S5–S7 gave similar results.

Figure 8. Errors εQ and εG for angle A1 and models M1 (A) and M2 (B) as a function of the GCP
calibration subset (S0 to S7).

3.2. Influence of the Obliquity of the Number of Gcps

The influence of the obliquity of the image on the errors εQ (as well as on εG) is shown in Figure 9.
This figure, an extension of Figure 8, includes the results for all three angles. The trends for angles
A2 and A3 were, with respect to the model and the set Sk, similar to those described above for A1.
In particular, the errors εQ were, in general, too large for M1 (despite the errors εG being very small).
For model M2, the errors εQ slightly increased for A2 and A3, subsets S2 and S4 giving the highest
overall errors εQ.

Similarly, the influence of the number of GCPs (for sets S1 to S7) on the errors εQ and εG is shown
in Figure 10 for A1. Figure 10 is an extension of Figure 8 and includes the results also for 6 and 12 GCPs.
From Figure 10, it can be seen that the model M2 keeps the overall errors εQ small, even with only
6 GCPs; except for S2 and S4. With regard to model M1, while the errors εQ decreased for 12 GCPs
(relative to 8 GCPs), they were still larger than for M2. In the following section, we restrict again to
8 GCPs for S1 to S7.
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Figure 9. Errors εQ and εG for angle A1 with τ ∼ 55◦ (A,B); A2 with τ ∼ 40◦ (C,D); and A3 with
τ ∼ 15◦ (E,F); and for models M1 (A,C,E) and M2 (B,D,F) as a function of the GCP calibration
set (S0 to S7).

Figure 10. Errors εQ and εG for angle A1 for different numbers of GCPs (for sets S1 to S7): 6 GCPs
(A,B); 8 GCPs (C,D); and 12 GCPs (E,F) and for models M1 (A,C,E) and M2 (B,D,F).
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3.3. Calibration Parameters

From a practical point of view, the above errors εQ are the most interesting results in the camera
calibration problem. However, the recovery of the calibration parameters is also an issue of practical
interest (e.g., recovering the camera position or the intrinsic parameters from a single snapshot).
Figure 11 shows the results (using always all the J perturbations) for the radial distortion k1? and
sc? for both models and for angle A1. Please note that the intrinsic parameters (k1? and ss? for M2,
and many other in the complete model M1) must be independent of the angle considered– extrinsic
parameters, on the contrary, depend on the image (angle)–. The information in this figure contains
the results for A1, the results fro A2 and A3 being similar (not shown). From Figure 11, the results for
M1 show a large variability when compared to those for model M2. Model M2, except for sets S2 and
S4 –and in particular for the radial distortion k1?–, shows small standard deviations in the boxplots.
Having small standard deviations means that all perturbed calibrations give similar values of the
parameters, so that the results are trustable. The rest of intrinsic parameters in model M1 (k2?, p1?, . . . )
have a similar behaviour than that of k1? and sc? (i.e., with large standard deviations, not shown).

Figure 11. Radial distortion k1? (A,B) and pixel size sc? (C,D) for models M1 (A,C) and M2 (B,D) for
angle A1.

Given that the model M2 performed similar to M1 in terms of εG, while giving smaller overall
errors εQ (Figure 8) and, further, provides more trustable results for the intrinsic parameters, we will
focus on M2 for the extrinsic parameters (model M1 provides noisy results for the extrinsic parameters,
as it does for the intrinsic ones; not shown).

The extrinsic parameters (xc, yc, zc, φ, σ, and τ) depend on the image (angle) considered,
as already mentioned. Figure 12 shows the results for the camera position (xc, yc, and zc) for angles
A1–A3 using the reduced model M2. For each angle, given that the results for S0 (with ∼80 GCPs) had
the smallest standard deviation (i.e., were the most trustable), the mean value for S0 was subtracted
in all cases (xc,S0 , yc,S0 , zc,S0). In this way, the variability of the parameter is shown for each angle Ai
independently of the actual values of the parameters, which are of minor interest here (and different
for all three cases). From Figure 12, angle A1 (with the larger obliquity) produced good estimates of
the camera position, except (again) when using sets S2 and S4. The results worsened for angles A2

and, especially, A3 (∼zenithal). The results for the Eulerian angles φ, σ, and τ are shown in Figure 13.
The results followed the same trends as for the camera position; that is, case A1 gave more robust
results than A2 and much more than A3, and S2 and S4 performed especially bad. It is worth noting
that τS0 = 0.95 rad ≈ 54◦ for A1, τS0 = 0.76 rad ≈ 44◦ for A2, and τS0 = 0.37 rad ≈ 21◦ for A3.
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Figure 12. Demeaned camera position co-ordinates xc, yc, and zc for angles A1 (A,D,G), A2 (B,E,H),
and A3 (C,F,I) for model M2. The unit length “u” corresponds to the side of the squares of the grid.

Figure 13. Demeaned camera Eulerian angles φ, σ, and τ for angles A1 (A,D,G), A2 (B,E,H), and A3

(C,F,I) for model M2.

4. Discussion

The above results—on full calibration of a camera from one single snapshot—show that there is
no correlation of the overall quality of the calibration (which can be measured in terms of εQ) with
the error obtained in the optimization process to obtain the calibration parameters. However, in real
calibrations, the error εQ cannot be known, while only ε∗ (similar to εP and εG) can be obtained.



Remote Sens. 2020, 12, 1840 12 of 14

The latter errors being small only ensures, in general, good performance of the calibration around the
calibration GCPs (Figures 6 and 7 are clear, in this regard).

The results show that the choice of GCPs is crucial to obtain an effective real calibration (i.e.,
minimal εQ values). Ideally, the overall calibration errors εQ should be minimized by using a large
number of GCPs covering the entire image. However, in real situations, the calibration GCPs are
limited to a small region of the image, while other parts of the image can be of interest to the research.
For example, in Figure 1B, the GCPs would usually be located in the promenade (where there are lots
of observable features), while the focus is on the shoreline or the water area. Furthermore, the amount
of GCPs is limited for functional requirements. Our findings show that good quality calibrations can
be obtained with a limited number of GCPs when at least some of them are placed at the edges of the
image. In these cases, even without having the smallest εG, the εQ errors are small. On the other hand,
when all the GCPs are centered in the image, the calibration quality may be poor (large εQ), even if εG
are small. The justification for this and other behaviours is presented below.

The selection of an appropriate calibration model is essential. Ideally, when a large number of
GCPs are available and cover the whole image, the complete model (M1) is the best, both with regard
to εG and εQ (Figure 8 for S0). This can typically be done under laboratory conditions but is not the case
in coastal studies; particularly when taking advantage of freely available coastal images. For a realistic
set of GCPs, the reduced model M2 provided, in all studied cases, the highest quality calibrations.
Again, we found the (kind of) paradoxical result that the best εQ were obtained with the model M2,
although the calibration errors were always smaller in model M1 and, therefore, could seem to be
more robust. From the above results (Figure 10), the advantage of the model M2 compared to M1 is
evident for a reduced number of GCPs (6), remaining even when it is incremented to more reasonable
values (12).

The model M2 behaving better than M1 is related to the noise in the recovery of the calibration
parameters for model M1 (illustrated in Figure 11 for k1? and sc?), as explained below. Having just
one snapshot to perform the calibration may lead, especially if the GCP distribution is not favourable
(as in S2 or S4), to many different combinations of parameters providing small calibration errors
(ε∗ ∼ εG) but large overall errors εQ. In the complete model, M1, this compensation of different
calibration variables to give similar calibration errors ε∗ is much more pronounced, as it contains more
parameters: this explains the large deviations of the parameters k1? and sc? in Figure 11 (and also in
the rest of the calibration parameters; not shown) and the larger errors εQ, except for in S0 (Figures 9
and 10). Model M1 was overparametrized for 6 GCPs and, for 8 and 12 GCPs, still showed symptoms
of overparametization behaviours. Focusing on the simple model, M2, the above compensation
mechanism shows up in the worse case S2 (and in S4). In the model M2, the role of the physical
distance from the camera position to the GCPs (i.e., the co-ordinates of xc), the size sc? and the
distortion k1? can be compensated if the GCPs fall near the center of the image, when the role of
the distortion cannot be clearly distinguished. This the reason the set S2 showed large deviations in
the camera position (see Figure 12) and k1? (Figure 11 for M2). For this model, these mechanisms
were enhanced for small τ (angle A3, Figures 12 and 13), giving slightly larger errors εQ in Figure 9.
The angle A1 gave more robust results (in the calibration parameters) due to the fact that, by increasing
the relative distances between the different GCPs, the calibration parameters were more accurately
captured. Zenithal images with the GCPs concentrated in the center of the image led to the worst
quality calibration errors εQ, despite achieving an excellent calibration error εG (Figure 9, set S2).

For calibration purposes, we recommend the use of model M2 and the selection of the GCPs such
that some of them fall near the edges of the image. Whenever the recovery of the camera position and
orientation is of interest, using zenithal views should be avoided. The use of the simple model M2 to
properly georeference images obtained by different devices using just a few GCPs opens up a range of
possibilities for the analysis of images from webcams or beach users and the quantification of different
parameters of interest (e.g., position and shape of the coastline, . . . ). Furthermore, in fixed video
monitoring systems, even if the camera has been intrinsically calibrated prior to its final deployment,
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the intrinsic calibration (as well as the extrinsic one) can change in time, due to changing external
conditions, and continuous re-calibration of the parameters may be required.

5. Conclusions

In this work, we analyzed the influence that the distribution of GCPs and image obliquity has
on the overall quality of full (intrinsic and extrinsic) camera calibration using only a single snapshot.
This was done by analyzing the performance of two calibration mathematical models. We conclude that,
for the calibration of coastal images—especially when only one image is available—the reduced model
should be used. This reduced model provided robust camera calibration parameters (camera position,
Eulerian angles, pixel size, and radial distortion) in our tests, allowing for an explicit transformation
from pixel to real-world co-ordinates and, most importantly, yielded smaller overall calibration errors.
With respect to the distribution of the GCPs over the image, using calibration points only near the
centre of the image must be avoided, and we recommend using the maximum number of points
distributed along the edges of the image. Finally, zenithal views complicate the recovery of the
calibration parameters, although the obliquity does not have a significant influence on the overall
performance of the calibration.
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