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Abstract: Validation of satellite-based retrieval of ocean parameters like Sea Surface Temperature (SST)
and Sea Surface Salinity (SSS) is commonly done via statistical comparison with in situ measurements.
Because in situ observations derived from coastal/tropical moored buoys and Argo floats are only
representatives of one specific geographical point, they cannot be used to measure spatial gradients
of ocean parameters (i.e., two-dimensional vectors). In this study, we exploit the high temporal
sampling of the unmanned surface vehicle (USV) Saildrone (i.e., one measurement per minute)
and describe a methodology to compare the magnitude of SST and SSS gradients derived from
satellite-based products with those captured by Saildrone. Using two Saildrone campaigns conducted
in the California/Baja region in 2018 and in the North Atlantic Gulf Stream in 2019, we compare
the magnitude of gradients derived from six different GHRSST Level 4 SST (MUR, OSTIA, CMC,
K10, REMSS, and DMI) and two SSS (JPLSMAP, RSS40km) datasets. While results indicate strong
consistency between Saildrone- and satellite-based observations of SST and SSS, this is not the case
for derived gradients with correlations lower than 0.4 for SST and 0.1 for SSS products.
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1. Introduction

The paper aims to follow-up on the work of [1], where the authors compared sea surface
temperatures (SSTs) and sea surface salinities (SSSs) from the Saildrone deployment along the California
and Baja coasts with satellite-derived products. For SST, six GHRSST compliant Level 4 products were
used for the comparison, namely the Multi-Scale Ultra-High Resolution (MUR) SST, the Operational
Sea Surface Temperature and Sea Ice Analysis (OSTIA) SST, the Canadian Meteorological Center
(CMC) SST, the NAVOCEANO K10 SST, the Remote Sensing Systems (RSS) REMMS_MW_IR SST and
the Danish Meteorological Institute (DMI) SST. The primary conclusions of the paper showed good
agreement (i.e., correlations higher than 0.95) between Saildrone and satellite-derived SSTs.

For SSS, the authors analyzed the Jet Propulsion Laboratory Captive Active Passive (CAP) SSS
and the Remote Sensing Systems (RSS) 40- and 70 km-derived SSS products from the Soil Moisture
Active Passive (SMAP) satellite. Salinity comparisons showed significantly lower signal-to-noise
ratios than those on SST, an indication that land contamination and the lower spatial resolution were
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both contributing to the lower correlations in the SSS comparisons [2]. The Saildrone California/Baja
campaign was also used in [3] for the validation of additional parameters that include satellite-derived
sensible heat fluxes and wind vectors. On Saildrone, the SST and SSS Conductivity Temperature Depth
Profilers (CTD), are only two of the multiple instruments onboard. Other sensors include a fluorometer,
as well as an Acoustic Doppler Current Profiler (ADCP). For a complete description of the Saildrone
instrumentation and known accuracies, see [3].

In this study, we extend the previous results by comparing satellite-based SST and SSS gradients
with Saildrone measurements. The importance of also validating gradients with in situ measurements
has been confirmed for both a data quality and scientific perspective [4,5]. References [6,7] have
shown the coupling between the wind stress curl and SST gradients. Reference [6] found that the
wind stress divergence was linearly related to the downwind SST gradients in the Eastern Tropical
Pacific. The results clearly showed the air-sea coupling to be associated with the formation of thermal
surface fronts. Reference [7] examined the coupling in the Cape Frio coastal upwelling region off

Southeastern Brazil. They determined that wind stress curl was more strongly correlated with SST
gradients than SST. Thus, SST gradients were critical for the relationship between wind stress curl
and the formation of localized upwelling events. A significant conclusion of the work was how wind
stress curl could be modified through feedback mechanisms associated with coastal upwelling. In [8]
one also found strong summertime coupling between wind stress and the formation of SST fronts in
the California Current associated with coastal upwelling. The summertime coupling is associated
with the seasonal intensification of the coastal upwelling system. The coupling was determined to
exist for both wind stress divergence and wind stress curl. The results point to the importance of
SST gradients in air–sea coupling. As such, precise and accurate measurements of gradients become
critical for numerical modeling, inclusive of numerical weather prediction. In [9] it was found that
despite statistical consistency, there were differences in SST gradients based on the application of
the multi-channel sea surface temperature (MCSST) algorithm or the non-linear (NLSST) sea surface
temperature algorithm. They concluded that differences as large as 0.02 ◦C/km between SST gradient
magnitudes derived from the two algorithms were most likely due to the use of the first-guess SST
field in the NLSST formulation. Unlike the MCSST, the magnitude of SST gradients derived from
NLSST showed a clear correlation with SST values. Other studies [10] have also shown that there are
warm satellite SST biases in the Eastern Boundary Current regions. In a study comparing Terra MODIS
SST and AVHRR SST Pathfinder with in situ data, the authors found warm summertime SST biases in
four major upwelling regions, with values as high as 3 to 5 ◦C. Such biases are due to the over-flagging
of valid SST pixels associated with anomalous cold events typical in upwelling regions. More recently,
ref. [11] found large biases when comparing several Level 4 SST datasets with buoy measurements
during coastal upwelling events. In [12], these biases were also observed in Level 2 MODIS data despite
using an improved cloud-masking method [13] and can be attributed to the calibration of Level 2
SST retrieval algorithms [14,15] which is based on global in situ measurements and thus does not
account for atmospheric processes specific to coastal upwelling regions. These biases may also be due
to the fact that satellite-based SST is an estimate of the top layer of the ocean surface (∼1 micrometer),
whereas the Saildrone sensor, being placed below the surface, measures cooler or warmer temperatures
depending on the mixing processes involved in a given region or during a specific season.

Overall, warm SST biases, along with the air-sea coupling and an associated relationship to
SST gradients, make the case that the validation of both SST and SSS, along with their respective
gradients, is critical for coastal upwelling regions. In this work, we focus on two oceanic regions
usually associated with spatial-temporal variability, i.e., a coastal upwelling region and a Western
Boundary Current region. The unique ability of Saildrone to sample at high spatio-temporal resolutions
over an extended period (i.e., several months) allows for the validation of both SST, SSS, and their
corresponding gradients using data from two separate campaigns conducted in the California/Baja
region and in the North Atlantic Gulf Stream.
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2. Methodology and Data

The validation of satellite SST/SSS gradients using standard in situ measurements derived from
Argo floats and tropical/coastal moored buoys is a challenging task due to the very different nature
of acquired signals. Gradients estimated from satellite observations are bi-dimensional vectors with
a given magnitude and orientation, whereas in situ data are collected at one particular geographical
location. The high temporal frequency of Saildrone measurements along its trajectory (1 per minute)
allows one to see the acquired data as a one-dimensional signal where values vary as a function of
time. Given that the sampling frequency of Saildrone is significantly higher than the temporal scale
of ocean submesoscale processes, gradients in the spatial domain can be estimated from successive
measurements. One possible approach to compare satellite-based gradients with those obtained from
Saildrone is to rely on finite differences. In a lat/lon grid, for example, the magnitude of the SST
gradient at the location (i, j) is typically estimatedusing a finite central differences scheme as follows

∣∣∣∇SST(i, j)
∣∣∣ =


SST(i− 1, j) − SST(i + 1, j)

di+1, j
i−1, j


2

+

SST(i, j− 1) − SST(i, j + 1)

di, j+1
i, j−1


2

1
2

(1)

where di+1, j
i−1, j represents the distance in kilometers between grid points (i − 1, j) and (i + 1, j). However,

this commonly used approach significantly limits the number of grid points where satellite-based
gradients can be compared with the Saildrone data. In fact, such a method requires the Satellite/Saildrone
collocated observations to be available for all four locations (i − 1, j), (i + 1, j), (i, j− 1) and (i, j + 1),
which is seldom the case. Figure 1 shows a typical configuration of Saildrone trajectory where SST
gradients from Level 4 collocated data cannot be computed due to missing values in both vertical and
horizontal directions. While using a forward or backward finite differences scheme may alleviate this
issue (i.e., when the Saildrone trajectory allows two consecutive collocated values along vertical and
horizontal directions), an alternative method is required for the validation of SST gradients.
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Figure 1. Typical configuration of Saildrone trajectory and collocated Level 4 SST that does not allow
to estimate SST gradients using central finite differences.

In this paper, we adopt a different collocation strategy from that used for the validation of SST
and SSS in [1]. In the following, we denote ds as the spatial resolution of the Level 4 satellite SST/SSS
field. For each grid point (i, j), all Saildrone measurements acquired between latitudes i− ds and i + ds
and longitudes j − ds and j + ds are averaged. This leads to a collocated dataset of Saildrone and
satellite-based SST/SSS values in the lat/lon grid. For each location (i, j), we also compute the average
time of all Saildrone measurements, which is then sorted to derive the collocated time series of SST
(SSS), denoted hereafter as Sat_SST (Sat_SSS) and Sail_SST (Sail_SSS) for the satellite and Saildrone
observations, respectively. The temporal window used for the collocation is the temporal resolution of
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the Level 4 datasets, i.e., one day. The magnitude of SST gradients can then be approximated using
forward finite differences of successive measurements, i.e.,

∣∣∣∇SST(t)
∣∣∣ = ∣∣∣SST(t + 1) − SST(t)

∣∣∣
dt+1

t

(2) (2)

where dt+1
t represents the distance between collocated observations obtained at times t + 1 and t.

We use Equation (2) to calculate the magnitude of SST gradients from Saildrone and various Level 4
SST products. Grid points with less than 50 Saildrone measurements are discarded as the average of
in situ SST may not be representative of the SST value inside the grid point. Note that experiments
conducted with a higher number of Saildrone measurements for each grid point have little impact on
the results reported in the next section. In this study, six GHRSST compliant Level 4 SST datasets have
been used, namely

(1) the Canadian Meteorological Office CMC;
(2) the Naval Oceanographic Office NAVO K10;
(3) the Remote Sensing Systems REMSS_MW_IR;
(4) the UK Meteorological Office OSTIA;
(5) the Danish Meteorological Institute DMI; and
(6) the Jet Propulsion Laboratory MUR.

In addition, two daily SSS datasets produced from 8-day running mean were selected:

(1) the Jet propulsion Laboratory version 4.0 Soil Moisture Active Passive (SMAP) (JPLSMAP); and
(2) the Remote Sensing Systems version 4.0, 40 km (RSS40) dataset.

A detailed description of these SST datasets can be found in [1]. Both SST and SSS datasets
were downloaded from the Physical Oceanography Distributed Active Archive Center (PO.DAAC,
https://podaac.jpl.nasa.gov/) and reprojected into a 0.1◦ and 0.25◦ resolution grid, respectively, using
bilinear interpolation. Previous results [9] had already demonstrated how the high correlation between
SST values derived from various satellite products does not necessarily apply when analyzing SST
gradient magnitudes. In this paper, we used two different Saildrone campaigns for the validation of
satellite SST/SSS gradients. The first 60-day campaign, which was used to validate of SST and SSS
in [1], was conducted over the period from 11 April 2018 to 11 June 2018 in the California/Baja region
(round cruise from San Francisco Bay down to Guadalupe Island). The California/Baja Saildrone
campaign data can be download from the PO.DAAC. The second 27-day Saildrone campaign was
conducted in the North Atlantic Gulf Stream region from 30 January 2019 to 25 February 2019, and the
corresponding data can be downloaded from the European Marine Observation and Data Network
(https://www.emodnet-physics.eu/Portal/).

3. Results

The California Current Upwelling System (CCUS) and the North Atlantic Gulf Stream (NAGS)
have been selected in this study as they are representative of the large spatio-temporal variability
associated with both mesoscale and submesoscale fronts. Using the methodology described in the
previous section, we generated time series of SST/SSS gradient magnitude for the two Saildrone
campaigns. Due to the high temporal variability of SST/SSS gradients, the time series are not shown
here. Instead, NetCDF files containing latitude, longitude, time, SST/SSS values, and derived gradients
are provided in the supplemental files.

3.1. California Current Upwelling System (CCUS)

Figure 2 shows the magnitude of SST gradients derived from the Saildrone and collocated Level 4
CMC, OSTIA, and MUR along the Baja California deployment. First, we note that the Saildrone captures

https://podaac.jpl.nasa.gov/
https://www.emodnet-physics.eu/Portal/
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a more important number of high SST gradients compared to all Level 4 SST datasets. The magnitude
of SST gradients captured by Saildrone in the CCUS can reach values above 0.1 ◦C/km, whereas for
CMC, and OSTIA, maximum values are mostly lower than 0.04 ◦C/km. This can be explained by the
use of optimal interpolation and the underlying spatio-temporal smoothing, which does not preserve
small scale features. The Level 4 MUR, which is based on wavelet analysis, is able to capture higher
magnitudes of SST gradients with maximum values of the order of 0.75 ◦C/km. As expected, while
Saildrone and Satellite SST simultaneously observed several thermal fronts, the magnitude of gradients
is significantly underestimated in Level 4 SST analysis, which only provides a daily estimate of the SST
field as opposed to the synoptic observation from Saildrone. In contrast, the analysis of SSS gradients
illustrated in Figure 3 indicates that higher gradients are found in satellite products compared to
Saildrone. Significant differences of up to 0.02 PSU/km between the magnitude of SSS gradients in
JPLSMAP/ RSS40km and Saildrone are observed. The maps of Figure 3 indicate that these discrepancies
increase as the Saildrone gets closer to the coast. This can be seen in the Saildrone track portions
located between 34 and 36◦ N and between 29 and 32◦ N and is likely due to land contamination as
well as a larger spatial scale of passive microwave sensors, which affects the accuracy of satellite SSS
values and, consequently, associated gradients.
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3.2. North Atlantic Gulf Stream (NAGS)

Figure 4 shows the values of SST gradient magnitudes for Saildrone, CMC, OSTIA, and MUR along
the NAGS deployment. Similar to what is observed in the CCUS campaign, we note that gradients
in Level 4 SST are also significantly underestimated in the NAGS region. Maximum SST gradients
associated with frontal activity in the GS and measured by Saildrone exceed values of 0.2 ◦C/km.
However, for CMC, OSTIA, and MUR, most thermal fronts have magnitudes lower than 0.1 ◦C/km.
In this region dominated by intense mesoscale and submesoscale surface fronts, the average of SST
gradient magnitudes for the entire campaign period for MUR, for example, is 0.22 ◦C/km, whereas
Saildrone measured an average of 0.35 ◦C/km. Analysis of SSS gradients illustrated in Figure 5 also
indicates significant discrepancies between Saildrone and satellite observations, including in areas
distant from the coast. As an example, at the end of the campaign, i.e., in the area located between
35–38◦ N and 57–60◦ W, RSS40km and JPLSMAP measure many gradients with values higher than
0.005 PSU/km, whereas most values derived from Saildrone are lower than 0.001 PSU/km. Overall,
maps of SST and SSS gradients in the CCUS and the NAGS show that the differences between Saildrone
and satellite datasets are related not only to the magnitude but also to the location of temperature and
salinity fronts.
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To further analyze the consistency between Saildrone- and satellite-based observations, biases,
root mean square differences, and correlation coefficients were computed. Values for both SST/SSS and
derived gradients are reported in Table 1 for the CCUS and Table 2 for the NAGS regions. We note
that for both campaigns, correlation coefficients with Saildrone are higher than 0.96 for all level 4
products. We also note that, overall, SST biases in the NAGS are slighter higher than those observed in
the CCUS, where all biases are below 0.15 ◦C in absolute value, with the exception of MUR (bias of the
order of 0.285◦). The differences in SST validation statistics between the CCUS and the NAGS can be
attributed to the amount of cloud coverage in these regions as well as the higher magnitude of thermal
fronts in the NAGS, which can lead to over-masking of valid pixel values. Overall, results reported in
Tables 1 and 2 for SST indicate that all Level 4 datasets are statistically consistent with the Saildrone
data. However, this is not the case when analyzing corresponding gradients. Correlation coefficients
computed for the magnitude of SST gradients are lower than 0.4 for both campaigns, indicative of the
discrepancies observed in maps from Figures 2–5.

Table 1. Statistics of SST/SSS and SST/SSS gradients for the selected Level 4 products for the Baja
California campaign.

Data Set Parameter Bias RMSD Correlation

CMC
SST −0.074 0.417 0.975

|∇SST| −0.009 0.022 0.315

K10
SST 0.137 0.475 0.969

|∇SST| −0.007 0.022 0.293

REMSS
SST 0.075 0.401 0.977

|∇SST| −0.007 0.023 0.243

OSTIA
SST 0.022 0.365 0.980

|∇SST| −0.008 0.022 0.306

DMI
SST 0.040 0.489 0.966

|∇SST| −0.008 0.023 0.255

MUR
SST 0.285 0.500 0.975

|∇SST| −0.003 0.021 0.395

JPLSMAP SSS 0.141 0.414 0.429
|∇SSS| 0.002 0.005 0.128

RSSV4
SSS −0.170 0.336 0.464

|∇SSS| 0.002 0.004 0.072

Table 2. Statistics of SST/SSS and SST/SSS gradients for the selected Level 4 products for the North
Atlantic Gulf Stream campaign.

Data Set Parameter Bias RMSD Correlation

CMC
SST −0.350 1.310 0.962

|∇SST| −0.012 0.054 0.374

K10
SST −0.688 1.928 0.917

|∇SST| −0.009 0.062 0.072

REMSS
SST −0.085 0.962 0.977

|∇SST| −0.016 0.055 0.342

OSTIA
SST −0.209 1.185 0.968

|∇SST| −0.012 0.053 0.371

DMI
SST 0.002 1.401 0.951

|∇SST| −0.017 0.058 0.210

MUR
SST −0.051 1.057 0.975

|∇SST| −0.010 0.054 0.321

JPLSMAP SSS −0.325 0.437 0.591
|∇SSS| 0.001 0.006 0.084

RSSV4
SSS −0.151 0.457 0.932

|∇SSS| 0.001 0.007 0.140
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Correlations of SST gradients are statistically significant at the 95% confidence level with the
exception of K10 in the NAGS (p-value > 0.2). Further, all biases computed for the magnitude of SST
gradients for both campaigns are negative. This is a clear indication that Level 4 SST products tend to
underestimate the intensity of thermal fronts. Similar observations can be made for salinity where
correlation coefficients, although lower than those associated with SST, also significantly decrease
when analyzing derived gradients. In the NAGS region, for example, the correlation between salinity
derived from RSS40km and Saildrone is of the order of 0.93, but only 0.14 for salinity gradients. Further,
for JPLSMAP and RSS40km, the statistical correlations of SSS gradients for both campaigns were
not statistically significant. Although correlations of the gradients between the satellite-derived SSS
products and Saildrone were lower than 0.2, examining the cross-correlation indicated this could be
due to the temporal sampling of the SMAP orbit. Unlike SST, the 8-day files averages are averages
over the full repeat of SMAP. Maxima correlations of approximately 0.2–0.3 were found at lags of
several days, indicating that Saildrone could be sampling a front offset from the center point of the
satellite 8-day SSS average. This justifies future research examining correlations with Level 2 data,
but is beyond the scope of this work. We also note that unlike SST, biases for SSS gradients are always
positive, suggesting that the satellite-based estimates of SSS contain more spatial variability than that
observed by Saildrone. This is likely due to land contamination, which introduces noise that increases
spatial variability and thus the magnitude of salinity gradients. Further, SMAP is a passive microwave
instrument and its spatial resolution, unlike Saildrone, does not allow to resolve the submesoscale
variability associated with ocean salinity.: Results for SST reported in Table 1 for the CCUS campaign
are summarized with Taylor diagrams using Saildrone as a reference. Taylor diagrams simultaneously
show the standard deviation, the centered root mean square difference and the correlation coefficient
for each of the six GHRSST Level 4 SST products. Figures 6 and 7 illustrate how the performance
of Level 4 SST datasets decrease significantly when analyzing SST gradients instead of SST values.
Note that the Taylor diagrams are not used here to determine which product performs best with respect
to in situ data but to demonstrate how statistical validation based solely on the comparison of SST/SSS
values does not provide much insight on the accuracy of derived gradients.
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4. Conclusions

Few studies have attempted to evaluate the ability of satellite-based products to capture the
location and intensity of ocean fronts [16]. In this work, we have described a methodology that
exploits the high sampling frequency of Saildrone in order to validate sea surface temperature and
salinity gradients. Using data from two Saildrone campaigns conducted over regions known for
intense frontal activity, we show that Level 4 satellite-based estimates of SST and SSS are overall
statistically consistent with Saildrone measurements but fail to capture both locations and magnitude
of surface fronts. Animations showing the temporal evolution of SST and SSS gradient magnitude for
all satellite products used in this study for both CCUS and NAGS Saildrone campaigns are provided as
supplemental files. Figure 8 shows a typical example of the gradients derived from MUR SST and
the JPLSMAP SSS products. Clearly visible are the inherent differences in the resolvability of features
associated with the CCUS region.
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The data were acquired on April 24 2018.

While not shown here, similar experiments were conducted using high-resolution infrared
Level 2 data from Terra and Aqua MODIS, with the intent of reducing the temporal size of the
collocation window (one day when analyzing Level 4 products). However, persistent cloud coverage
or misclassification of fronts as clouds in infrared observations, and the relatively short duration of
Saildrone campaigns (1–2 months) results in a significantly low amount of collocated points to derive
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reliable statistics from. The availability of higher resolution observations, as well as improved cloud
masking at Level 2, is expected to significantly improve the accuracy of gradients, especially in coastal
regions and western boundary currents, where the mesoscale to submesoscale dynamics dominate.
When future Saildrone campaigns are conducted, the methodology presented here will offer a valuable
perspective for the validation of gradients in both Level 2 and Level 4 satellite products that include
SST, SSS and other ocean parameters. Finally, results reported here underline the need for improved
Level 4 analysis methods, able to provide not only accurate estimates of surface temperature and
salinity but also a reliable representation of ocean surface dynamics.
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