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Abstract: Forests play major roles in climate regulation, ecosystem services, carbon storage,
biodiversity, terrain stabilization, and water retention, as well as in the economy of numerous
countries. Nevertheless, deforestation and forest degradation are rampant in many parts of the
world. In particular, the Amazonian rainforest faces the constant threats posed by logging, mining,
and burning for agricultural expansion. In Brazil, the “Sete de Setembro Indigenous Land”, a protected
area located in a lowland tropical forest region at the border between the Mato Grosso and Rondônia
states, is subject to illegal deforestation and therefore necessitates effective vegetation monitoring
tools. Optical satellite imagery, while extensively used for landcover assessment and monitoring,
is vulnerable to high cloud cover percentages, as these can preclude analysis and strongly limit the
temporal resolution. We propose a cloud computing-based coupled detection strategy using (i) cloud
and cloud shadow/vegetation detection systems with Sentinel-2 data analyzed on the Google Earth
Engine with deep neural network classification models, with (ii) a classification error correction and
vegetation loss and gain analysis tool that dynamically compares and updates the classification in a
time series. The initial results demonstrate that such a detection system can constitute a powerful
monitoring tool to assist in the prevention, early warning, and assessment of deforestation and
forest degradation in cloudy tropical regions. Owing to the integrated cloud detection system,
the temporal resolution is significantly improved. The limitations of the model in its present state
include classification issues during the forest fire period, and a lack of distinction between natural
vegetation loss and anthropogenic deforestation. Two possible solutions to the latter problem are
proposed, namely, the mapping of known agricultural and bare areas and its subsequent removal from
the analyzed data, or the inclusion of radar data, which would allow a large amount of finetuning of
the detection processes.

Keywords: Sentinel-2; Google Earth Engine; landcover; cloud cover; cloud shadow; vegetation;
analysis-ready data; deep learning; rainforest; deforestation

1. Introduction

Forests are an essential element of Earth’s dynamic equilibrium. They store an estimated 60% of all
the terrestrial carbon [1] and contribute up to 70% of the global evapotranspiration [2], which is a major
element of rain cycles on which a large part of human activity is dependent. Forest loss represents
not only a decrease of the carbon sink but also a net carbon emission source through the burning
and decomposing of plant and soil material; its relative contribution to the global anthropogenic
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CO2 emissions is estimated at about 12% [3]. Moreover, it largely contributes to the global loss of
biodiversity [4].

The Amazon rainforest covers most of the Amazon basin, which is primarily located in Brazil,
and represents half of all remaining tropical rainforests [5]. Since the 1970s, anthropogenic deforestation
economically driven by the demand for timber, livestock grazing lands, and by mining activities
has caused the disappearance of a large portion of the forest’s surface, which, in combination with
rising temperatures, contributes to an increase in drought and forest fire severity. Although the rate
of deforestation in Brazil has substantially decreased between 2004 and 2012 [6], a trend reversal has
been observed in recent years as a result of the loosening of conservation policy and forest protection
measures’ enforcement by the Brazilian government [7]. The states of Rondônia and Mato Grosso
are especially sensitive areas, as they are subjected to high levels of deforestation pressure [8] while
encompassing some of the last large intact forest areas and indigenous lands, which play a major role
in deterring deforestation and forest degradation [9]. The Sete de Setembro Indigenous Land (SSIL),
Terra Indígena Sete de Setembro, is located on the border between Rondônia and Mato Grosso, in the
so-called “arc of deforestation” of the Amazon, and is inhabited by the Suruí, one of the 300 indigenous
people of Brazil. Protection and demarcation efforts have been undertaken since the 1980s, with varying
degrees of success due to shifting public policy and support. Since 2009, the Suruí have been largely
involved in forest conservation efforts and carbon storage projects, with the support of a number of
Non-Governmental Organizations NGOs [10]. As the scarcely populated SSIL covers a vast territory
of 250 km2, the timely detection of vegetation loss represents an important challenge that could be
overcome by taking advantage of the development and accessibility of cloud-computing technologies
to implement automated classification of optical remote sensing data.

Cloud computing refers to the on-demand availability of computing and data storage resources.
This technology has rapidly developed over the past decade, raising the efficiency of computing power
use and freeing the user from the need to invest in costly hardware [11]. As the use of remote sensing
datasets is typically very computing- and storage intensive, cloud computing is increasingly used to
improve the speed and efficiency of processing [12–15]. Cloud computing represents a particularly
relevant solution for environmental monitoring needs in regions where computing resources and data
accessibility may otherwise be a limiting factor, as the integrality of the computation processes can be
executed from any common web browser without the necessity to download large datasets [15].

The imagery produced by the Copernicus Sentinel-2 mission, a twin optical remote sensing satellite
constellation characterized by high spatial, temporal, and spectral resolutions, has been increasingly
employed for landcover monitoring applications since its launch by the European Space Agency
(ESA) in 2015, e.g., [16,17], as it offers a higher temporal and spatial resolution relative to Landsat
missions. One common challenge in the use of optical satellite imagery in lowland tropical regions is
the ubiquity of high cloud cover percentages, which cause an important signal perturbation and can
prevent spectral analysis entirely [18,19]. Moreover, as high (>30%) to complete (100%) cloud cover
follows a seasonal distribution (October to May), it can completely preclude monitoring during large
fractions of the year. The Sentinel-2 data are provided with a cloud mask; however, its identification
of cloudy pixels is insufficiently reliable and cloud shadow pixels are not identified at all [20–22].
Because cloud and cloud shadow detection is an essential step in the analysis of optical remote sensing
data, many detection schemes have been developed in the past. Multiple algorithms are currently
implemented to detected cloud and cloud shadow pixels, using either single acquisition data or time
series. Three commonly used algorithms are MAJA [21], Fmask [23], and Sen2Cor [18]. All three
algorithms use either static or dynamic threshold values for different spectral bands dedicated to the
separate detection of clouds, cirrus (or thin clouds), and cloud shadows. This type of detection strategy
shows good results for thick clouds but is less efficient for cirrus detection and for the detection of cloud
edges [21]. The MAJA algorithm uses a multi-temporal method to detect cloudy pixels by assuming
that landcover changes slowly and therefore a sudden increase in reflectance indicates the presence
of clouds. As it is a recurrent method, it is less reliable in regions where cloud cover is persistent,
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such as in lowland tropical regions, as the most recent cloud-free pixel may be too old to be used to
detect clouds [21]. The Fmask algorithm was originally developed for masking cloud, cloud shadow,
and snow pixels for Landsat 4–7 and was extended to Landsat 8 [23,24]. A variant was later developed
for Sentinel-2 data, even though the original algorithm uses the thermal infra-red channels (TIR),
which are not present in Sentinel-2 [21,23]. Fmask performs similarly to MAJA overall [21] but better
in tropical regions [22]. Sen2Cor is the algorithm currently used by ESA to provide a cloud mask for
the Sentinel-2 imagery. While its overall accuracy has been estimated to be 84% [21], its performance
over Amazonian rainforest has been shown to be poor, with local occurrences of omission errors of
>70% [18]. Commonly used algorithms can show good performances; however, their application to
tropical regions remains a challenge due not only to the high frequency of important cloud cover but
also to cloud formation processes specific to tropical forest regions [22,25].

The use of artificial intelligence algorithms (e.g., machine and deep learning) for the classification
of satellite imagery has been reported extensively in the literature, e.g., [26–28]. In recent years,
its frequency has been growing owing to the availability of abundant quality data and to the increase
of readily available computing power. As the surface of the planet is extremely heterogeneous,
regional and global models have to overcome significant interference problems, such as the similarity
between the spectral signal of highly reflective surfaces (e.g., clouds and snow) or vegetation types,
the spectral signal of which shows not only high seasonal variability [29] but also important geographic
heterogeneity. Nevertheless, machine learning has been successfully applied both to forest monitoring
and to cloud detection [21,30–32]. A recent example is the s2cloudless algorithm developed by the
Sentinel Hub, which shows high performance globally [33] but at the moment is less performant than
more traditional cloud detection methods in Amazonian regions [22].

The objective of this paper was to propose a vegetation loss and gain monitoring strategy using
cloud computing on Sentinel-2 data in a lowland tropical region strongly affected by the presence
of high cloud percentage covers. It was hypothesized that the challenges posed by cloud and cloud
shadow detection in the Amazon may be more effectively overcome with a region-specific model
instead of an algorithm aiming to perform well globally. Therefore, the proposed strategy consists in
(i) the identification and removal of cloud and cloud shadow pixels in order to increase the temporal
density of analyzable images by using an artificial neural network classifier tailored to the region
of interest, (ii) the identification of the green vegetation and bare soil/dry vegetation areas in the
remaining clear pixels, and (iii) the implementation of an instrument to track vegetation loss and gain
throughout the year while self-correcting for classification errors. This strategy is proposed as an initial
step towards the development of an ecoregion-specific monitoring system that takes advantage of
the possibilities offered by the development and spreading of cloud-computing technology and large
remote sensing datasets.

2. Methods and Implementation

2.1. Study Site

The Sete de Setembro Indigenous Land (Figure 1), 250 km2 of protected land at the border
between Mato Grosso and Rondônia, is inhabited by the Suruí indigenous people of Brazil. It is
surrounded almost integrally by cattle pastures and croplands and is especially vulnerable to illegal
deforestation and forest degradation, as is generally observed for forest-covered land surrounded
by cleared areas [10]. The Suruí people were among the first in the region to seek and implement a
Reducing Emissions from Deforestation and Degradation program [10,34] and a large tree plantation
program in formerly degraded areas. Nevertheless, illegal deforestation is still experienced on its
territory [10]. The protection effort is complicated by the geographic extent of the area and by the
inherent challenge posed by the detection of small-scale deforestation (e.g., artisanal-scale gold mining
in river placers deposits, selective logging for timber production, and illegal extension of cattle pasture
surfaces). In order to achieve better control over illegal intrusion, the Suruí villages are strategically
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located at the edges of the SSIL territory. Many villages are surrounded by legal plantations (e.g., coffee,
cocoa, bananas) and cattle pastures exploited by the Suruí people. With the exception of these areas,
the SSIL is covered by dense forest and crossed by the Rio Branco and several of its tributaries.
The topography is mostly flat, with the exception of an 11-km-long vegetation-free protruding rock
formation that appears distinctly on satellite images. The region is characterized by a tropical climate,
with about 2000 mm of annual rainfall. A short dry season with less than 40 mm of monthly rainfall
occurs from June to August and coincides with the occurrence of clear cloud-free satellite images.
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Figure 1. The Sete de Setembro Indigenous Land in true colors (Bands 2-3-4) on Sentinel-2 satellite
images. Insert: the SSIL contextualized in its eco-region (from FAO 2010).

2.2. Data

Optical remote sensing imagery from the Copernicus Sentinel-2 mission [35,36] was used in this
study. The Sentinel-2 mission has a short revisit time of five days at the equator owing to its twin
polar-orbiting satellites phased at 180◦ to each other. The Multi-Spectral Instrument (MSI) equipping
the Sentinel-2 satellites passively collects 12-bit data on the sunlight reflection from the Earth within
13 spectral bands in the visible, near infrared (NIR), and short-wave infrared (SWIR) electromagnetic
spectra with a high spatial resolution of 10 to 60 m, depending on the band [35,37]. The Sentinel-2 data
product is available to users in two levels of processing: Level-1C (Top-Of-Atmosphere, TOA) and
Level-2A (Bottom-Of-Atmosphere, BOA) in 100 km × 100 km granules. The Level-1C was chosen due
to its systematic availability in the Google Earth Engine catalogue.

The SSIL is covered by four Sentinel-2 granules (T20LPN, T20LPP, T20LQN, and T20LQP)
that overlap on a central point located at 10◦53′24.0” S, 61◦07′48.0” W. The study site (Figure 1)
was constrained to a polygon defined by the following coordinates: 10◦44′47.0” S, 61◦26′30.1” W;
10◦43′11.3” S, 60◦54′35.3” W; 11◦15′18.4” S, 60◦53′50.3” W; 11◦15′30.2” S, 61◦26′17.9” W.
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One year of data (05.09.2018 to 20.09.2019) was processed. During this time interval, out of
72 available scenes, 37 have a mean cloud cover of 50% or less and only 10 are completely cloud free
(Figure 2). Such a yearly cloud cover percentage is representative for lowland tropical regions [19].Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 21 
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Figure 2. Evolution of the cloud cover percentage over the SSIL between 05.09.18 and 20.09.19 according
to the metadata of the Sentinel-2 product.

The Sentinel-2 data products are accompanied by a cloud-cover mask layer (band QA60, bitmask,
Bit 10: opaque clouds, Bit 11: cirrus clouds) complemented by a mean cloud cover percentage given in
the metadata of the granule [38]. However, as can be seen in Figure 3, the cloud mask fails to reliably
identify the extent of the clouds and neglects their shadows entirely [21,22,39].
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In addition to the Sentinel-2 bands, four spectral indices were computed for all images.
The normalized difference vegetation index (NDVI):
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NDVI = (NIR − RED)/(NIR + RED), (1)

is used extensively to assess the general vegetation health and to distinguish vegetation types [40].
The normalized difference water index (NDWI):

NDWI = (GREEN − NIR)/(GREEN + NIR), (2)

which was originally proposed for the delineation of open water features [41], was used to help
distinguish water and cloud shadow areas. The enhanced vegetation index (EVI):

EVI = 2.5 · ((NIR − RED)/((NIR + 6 · RED − 7.5 · BLUE) + 1)), (3)

shows improved sensitivity compared to the NDVI in areas with high biomass and dense canopies [42].
Additionally, a cloud index (CI):

CI = (NIR + 2 · SWIR1)/(BLUE + GREEN + RED), (4)

as proposed by Zhai et al. [43], was used to help identify cloudy pixels, as these tend to be confused
with bare soil areas.

2.3. Methodology

The selection of an image from the Sentinel-2 collection, its pre-processing, and part of the
computing was performed with the Google Earth Engine (GEE), a cloud computing platform [15].
GEE allows relatively easy user-friendly access to high-performance computing resources for the
processing of large geospatial datasets. The analyses are performed with an Application Programming
Interface (API) available in JavaScript and Python languages. Freely available analysis-ready remote
sensing data produced daily by the United States Geological Survey (USGS), the National Aeronautics
and Space Administration (NASA), ESA, and other large public-funded agencies and data providers
are included in the GEE catalogue. User-generated or uploaded data can be stored in Assets, a private
data catalogue bound to the user’s account. The import and export of data can be performed through
Google Drive (GD) or Google Cloud Storage (GCS) in a variety of formats. GEE-specific data types
include Images (objects representing raster data, e.g., one scene from the Sentinel-2 dataset, composed
of one or several bands), Image collections (stacks of individual images, e.g., a time series), Geometries
(geographically defined vector data, such as points or polygons), Features (a geometry, e.g., points or
polygons, and the associated properties), or Feature collections (stacks of features).

An automated classification strategy consisting in a two-step detection with a machine learning
algorithm was developed and tested on a one-year set of Sentinel-2 images (Figure 4). The first step
consisted in the identification of clouds and cloud shadows in order to isolate clear (i.e., cloud- and
cloud shadow-free) pixels. This permitted the use of images with high cloud cover percentages,
and, therefore, the extraction of maximum information from the time series. The second step consisted
in a separate identification of two landcover categories (vegetation, bare soil/dry vegetation). To this
end, two Artificial Neural Network (ANN) classifiers were trained in Google Colab notebooks using
TensorFlow, a machine learning library developed by Google Brain with a focus on training and
inference on deep artificial neural networks [44], and Keras, an open-source Python library aiming to
facilitate the model construction and training process. The choice of the ANN approach was motivated
by its reported high performance in remote sensing image classification, e.g., [27,45]. A detailed
assessment of the use of ANNs in remote sensing was proposed by Mas and Flores [28]. After the
initial classification, a false positive correction and vegetation evolution analysis were achieved with
an automated comparison of the classified time series.
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2.4. Training of the Classifiers

The GEE offers a Classifier package that handles supervised classification by several machine
learning algorithms. Because it does not support large datasets or time series, it was not sufficient for
the objectives of this study; however, it could be used to interactively identify the main classification
challenges. After an initial assessment, it was determined that high reflectance surfaces, such as dirt
roads, dry vegetation, and bare soil, were the landcover type most misclassified as clouds. Increasing the
number of categories and labelled training points for these landcover types improved the identification
of the cloud pixels; however, it also increased the classification errors between all other landcover
types (roads, dry vegetation, green vegetation, bare soil). Because it was not possible to find a set
of classification categories that allowed reliable identification of both the clouds and the vegetation,
it was decided to train two classifiers.

The aim of the first classifier was to reliably identify clouds and cloud shadows. A multi-class
approach showed better results; therefore, seven classification categories (Forest, Green vegetation,
Dry vegetation, Soil, Water, Shadows, Thin clouds, Opaque clouds) were chosen empirically with a
trial-and-error approach in order to maximize the quality of the cloud and cloud shadow detection
without special consideration for the quality or relevance of the classification for all other categories.
Green vegetation refers to low vegetation, such as croplands or pastures; Dry vegetation refers to any
vegetation that appears in brown tones in true color images and has low NDVI values; and Soil refers
to bare soil and dirt roads. By contrast, the aim of the second classifier was solely to distinguish
between bare soil/dry vegetation and any green vegetation. A binary output was chosen because the
main interest was to distinguish healthy vegetation from all other landcover types, and a more precise
identification of the vegetation categories and state was beyond the scope and time constraints of
this project. The use of two classifiers allowed the challenge of reliably identifying a wide range of
categories by using separate identification steps to be bypassed. Additionally, having two separate
classifiers means that it is possible to use the vegetation classifier alone on clear scenes, which further
limits the possibility of cloud and cloud shadow misclassification.

The training data for both classifiers were collected on the GEE by random visual pixel selection
(Figure 5). No adjacent pixels were used and the distance between labelled points was at least 6 pixels.
The four granules of the site were converted to a single image with the mean function, and all band
values were converted to a range between 0 and 1. The previously described indices (i.e., NDVI, NDWI,
EVI, CI) were added as bands. For the cloud and cloud shadow classifier, 2523 points were collected
on four different scenes: Three cloudy scenes (18 January 2019, 19 March 2019, 7 June 2019) and one
cloud-free scene (17 June 2019) (Figure 5a–d). The cloudy images were selected to be representative
for both thin (i.e., cirrus) and opaque clouds. For the vegetation classifier, 1981 labelled points were
collected on two cloudy scenes (18 January 2019, 7 June 2019) and a cloud-free scene (17 June 2019)
(Figure 5e–g). The vegetation classifier has a binary output consisting of two classes: Vegetation and
bare soil/dry vegetation. All labelled points’ feature collections were merged and sampled on their
respective image. The two final collections thus obtained were randomized and attributed to training
datasets (75%) or validation datasets (25%), and then exported to Google Drive in TFRecord format
(an encoding format for binary records read by TensorFlow). The complete code can be found on
Zenodo (https://doi.org/10.5281/zenodo.3766743).

https://doi.org/10.5281/zenodo.3766743
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Figure 5. Labelled data used for training and validation of the Artificial Neural Network (ANN)
classifiers: (a–d) labelled data used for the cloud and cloud shadow classifier; (e–g) labelled data used
for the vegetation classifier.

In ANN algorithms, “neurons” refer to interconnected computational elements organized in
successive layers, while activation functions refer to mathematical equations determining the output
of a given layer of neurons. Both trained models were Keras sequential neural networks with two
dense layers (consisting of 55 neurons and a rectified linear units (ReLU) activation function) and two
dropout layers (rate of 0.2) to prevent overfitting, that is, excessive fitting of the model on the training
data. The clouds model has a 16-neuron input layer and a 7-class output layer. The vegetation model
has a 7-neuron input layer and a 2-class output layer.

2.5. Validation and Accuracy Assessment

The models were trained and validated on separate data. In total, 25% of the labelled data
points, unseen by the models during training, were used to assess its performance during a validation
step. The performance of the models on the previously unseen validation data was observed with a
confusion matrix (see Section 3.1), where the predictions are compared with the actual labels.

As an additional step, a visual assessment of the classification was done by superposing each
classification category on a true color (B423) image and checking the consistency of the results.

2.6. Data Processing

A workflow using the trained classifiers and consisting of four scripts (Figure 6), three running on
GEE (JavaScript) and one running on a Google Colab notebook using TensorFlow and Keras libraries
(Python), was implemented and applied to one year of data (5 September 2018–20 September 2019).
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The first script (JavaScript, GEE) allowed the selection and export of a Sentinel-2 image to GCS
with all bands and indices. An arbitrary threshold value of 50% cloud cover, based on the mean cloud
cover estimate from the Sentinel-2 metadata, was set. Above this threshold value, the image was
considered too cloudy for analysis and was not automatically exported.

The second script (Python, Google Colab notebook) ran the trained classifiers on the image.
The image was retrieved from GCS, parsed, pre-processed, classified, written to a TFRecord file on
Google Cloud Storage, and ingested into the GEE Assets. For clear images, the cloud and cloud shadow
classifier was not used.

The third script (JavaScript, GEE) processes the prediction outputs and produces a unified
synthesis of the vegetation and cloud classification, completed by a raster water mask hand drawn
using the GEE interactive geometry tools and stored in the Assets. From the cloud classifier output,
only the values of the pixels classified as opaque clouds, thin clouds, shadow, and water were used;
all other classes were discarded. The opaque and thin clouds were combined into a single "clouds"
class. The shadows and water pixels tended to be confused by the detection algorithm, that is, shadows
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were sometimes classified as water and vice versa. Because this misclassification did not extend to
other categories, both classes were combined in a unique "shadow" class. This pragmatic decision
could be taken because the actual water cover on the site is both scarce and stable over time and could
therefore easily be drawn by hand. Two images were prepared for export: A first classified image for
visualization and archiving purposes, including the categories Clouds, Shadows, Bare soil/dry vegetation,
Vegetation, and Water; and a second classified image destined for further analysis, from which clouds,
shadows, and water pixels were removed and replaced by a No data category.

The fourth and final script (JavaScript, GEE) used the classified image in order
to create a dynamically updated vegetation loss and gain map (VLGM) comprising the
categories Bare soil/dry vegetation, Vegetation, Vegetation loss detected, Vegetation loss confirmed,
and New vegetation detected and corrected for detection errors. In order to be confirmed, a loss
or gain had to be detected twice in a row (Figure 7). If no data were available in the subsequent image
classification, for example, because the area was covered by clouds, the detected status was maintained
instead of being confirmed or discarded.
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The complete code can be accessed directly in the Google Earth Engine code editor (https:
//colab.research.google.com/drive/1HgCUiKDqeNI-P1TG4iOK69R75HrkCw1r) or on Zenodo (https:
//doi.org/10.5281/zenodo.3766743).

https://colab.research.google.com/drive/1HgCUiKDqeNI-P1TG4iOK69R75HrkCw1r
https://colab.research.google.com/drive/1HgCUiKDqeNI-P1TG4iOK69R75HrkCw1r
https://doi.org/10.5281/zenodo.3766743
https://doi.org/10.5281/zenodo.3766743
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3. Results

3.1. Models

The confusion matrices produced with the models’ predictions showed that 60% to 85% of the
pixels were correctly classified (Figure 8). The clouds and the cirrus were almost only misclassified
as each other and as shadows, which is acceptable for the desired use of the model as the categories
were later merged into a single mask. Once merged into a single category, the misclassified clouds
and cloud shadow pixels dropped to <5%. Pixels corresponding to forest landcover were classified as
shadows 25% of the time, presumably when they were darker due to self-shading or the topography.
The vegetation and bare soil/dry vegetation classifier correctly classified 86.7% of the forest pixels and
79.5% of the bare soil/dry vegetation pixels. Soil/dry vegetation was misclassified as forest 20.5% of the
time. The overall accuracy for both models is >0.95 for the training and validation data.
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The visual assessment of the performance of the cloud and cloud shadow classifier also showed
very promising initial results on the SSIL dataset. Both opaque and thin clouds were reliably detected
and, after visual assessment, showed much better performance than the Sen2Core cloud mask included
with the data (Figures 9 and 10). Our cloud classifier detected cloud cover of more than 1% in 23
of the 37 analyzed images (Figure 9). In 13 cases, our classifier detected substantially more cloud
cover (between 5 and 25 percentage points) than the Sen2Cor algorithm. In six cases, cloud cover was
detected by our classifier but not by Sen2Cor, both in the presence of fire smoke and in the presence
of cirrus clouds. In three cases, the detected cloud cover percentages agreed well. In one image
(15 October 2018), Sen2Cor detected a large cirrus cover that our classifier did not detect. As can be
observed in Figure 10, these differences can be primarily attributed to the underdetection of cloud
pixels by the Sen2Cor algorithm. Because, in contrast to Sen2Cor, our classifier also identifies cloud
shadows, this means that the area that can be masked before further analysis is substantially larger
when our classifier is used (Figure 9).

Due to the choice of training data, the detection was very sensitive, with a tendency to classify
pixels as clouds even when the cover was very thin. This choice allowed for a lower occurrence of
vegetation misclassification due to altered radiometric signals. The shadow area underneath the clouds
was very precisely detected as well. Some shadows due to the topography were additionally detected
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when the cloud and cloud shadow classifier was run. Figure 10 also shows the output of the cloud and
shadow classifier in periods of forest fires (10 September 2019). The smoke cover, which is not identified
by the Sentinel-2 cloud cover algorithm, was poorly classified as shadows or clouds. This classification
occurred both when the cover was thick and thinner. Therefore, in the present state of our model,
such imagery is not suited for vegetation detection. Because our proposed system includes a dynamic
vegetation observation step (see next sections), the cloud and cloud shadow classification errors could
be corrected at later stages.
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3.2. Increase of the Temporal Data Density

The use of a cloud and cloud shadow classifier allowed the inclusion of images with a cloud cover
percentage up to 50%, which considerably increased the temporal resolution from 10 (clear images
exclusively) to 37 images (50% cloud cover or less) over one year. The percentages of pixels that could
be used for analysis over the whole dataset are shown in Figure 11.Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 21 
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The 50% threshold value for the cloud cover percentage showed satisfactory results, that is,
a low occurrence of false positives in the vegetation detection. When the cloud concentration over a
given area was especially high, false positives did occur. These, however, could be corrected in the
comparison process (Figure 12).
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image given for comparison.

3.3. Detection of the Vegetation Loss and Gain

The bare soil and vegetation algorithm showed valid results as well, as it was able to detect
individual pixels and was relatively sensitive to drier areas of the forest, with a tendency to detect rather
more than less vegetation loss (Figure 10, lower row). In particular, areas covered with lower vegetation
(e.g., croplands or cattle pastures), which are highly susceptible to seasonal changes, were detected
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by the model during the drier season, especially August and September. This sensitivity is justified
by the fact that areas covered by trees show only limited drying and change throughout the year.
Therefore, any dry or bare areas detected by the model are presumably bare of primary forest, even if
they are covered by low vegetation, such as croplands, which makes it suitable for the observation of
deforestation by illegal extension of cattle pastures.

The vegetation loss and gain detection system (Figures 12 and 13) allows a dynamic interpretation
of the time series and updates all categories, including the areas previously classified as Bare soil
or Vegetation loss confirmed where new vegetation was detected, which limits the accumulation of
outdated information over time. It also accounts for the evolution of the low vegetation areas (pastures,
croplands) over the seasons. On the 23 January 2019 image, new vegetation starts to appear and
is identified by the model (green area on the left-hand side of the image). On the 28 April 2019,
the vegetation gain has been confirmed and removed from the map. Indeed, on the true color image in
the top part, the vegetation is visibly healthy. On the 2 July 2019 image, senescence and drying-out of the
vegetation started occurring again—vegetation loss, in red, has been confirmed. A new vegetation loss
area, on the right-hand side, has been detected and partially confirmed as well. On the 11 August 2019
image, the vegetation loss has visibly progressed both on the right- and left-hand sides of the image.
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The evolution of the vegetation on the SSIL throughout one year (September 2018–September
2019) can be seen in Figures 13 and 14. At time zero of the monitoring, about 96% of the SSIL was
covered by forest and green vegetation, while 4% was covered by other types of surfaces (bare soil, dry
vegetation, settlements) (Figure 14). During the wet winter season, although regular observation of
the landcover was hindered by the frequent occurrence of cloud covers superior to 50%, a trend is
distinctly visible. The green vegetation cover expands, reaching more than 99% in May 2019. From June
2019 onwards, the percentage of dry and bare areas started increasing again until reaching values
comparable to the previous year. During August 2019 and the first part of September 2019, a very high
percentage of detected but unconfirmed bare/dry vegetation appeared due to the interference of forest
fire smoke. On the last analyzed image, this category decreases again due to the availability of clearer
images. In mid-September 2019, at the end of the monitored period, the area covered by confirmed
bare soil/dry land increased by more than 0.5% compared to mid-September 2018. This excess loss of
vegetation was confirmed and attributed to a localized deforestation event by a Suruì representative
(February 2020, personal communication).
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one-year dataset.

The vegetation loss and gain detection system is a proof of concept. Any shortcomings of the
classification algorithms are therefore transferred to it and only the comparison of data over time can
improve the quality of the final output. This, however, also means that any improvement done on the
models will seamlessly transfer to the vegetation loss and gain system without the need for additional
adaptation work.

4. Discussion

In its present state, the model is able to identify vegetation loss and gain while reliably filtering out
cloud and cloud shadow pixels. The vegetation detection efficiently distinguishes forest from bare soil
and senescence-prone biomass, such as cattle pastures, shrubs, or plantations. Moreover, it provides
an efficient false positive detection system, which prevents the accumulation of detection errors over
time. Owing to its coupled vegetation/cloud and shadow detection systems, useful information can be
extracted not only from cloud-free scenes but also from images with a high cloud cover percentage,
which, combined to the use of the short revisit time of the Sentinel-2 mission, allows for a high temporal
resolution. This is especially valuable in lowland tropical regions, where optical satellite imagery is
vulnerable to excessive cloud cover. The threshold value of 50% is indicative and could be selectively
increased when areas of interest, such as known vulnerable zones, are clear, even when the rest of the
scene is not. Because of the precision of the outline of detected clouds, areas in the holes of the clouds
could be included as well (Figure 10). The comparison system provided a time series showing the
evolution of the vegetation over time. Outdated information, e.g., previously bare areas reclaimed
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by vegetation growth, were removed from the map through the correction mechanism while newly
bared or dried-out surfaces were signaled. This allowed the observation of a distinct trend in the
vegetation loss and gain even during the cloudy winter months. In September 2019, a realistic increase
in vegetation loss compared to September 2018 could be observed.

The use of GEE and Google Colab notebooks allows the process to be run integrally from a common
web browser with an ordinary domestic internet connection without the necessity to download any
data on the personal computer of the user. This makes the system suitable for use in remote locations,
provided an internet connection can be established (the use of a laptop with the “mobile hotspot”
function of a mobile phone connected to the internet has proven to be sufficient without inducing any
significant treatment time increase).

Our workflow allowed us to successfully remove cloud and cloud shadow pixels from analyzed
images, thus significantly increasing the data density. The remaining pixels could be realistically
classified and used in an automated vegetation loss and gain monitoring with a self-correcting function
that led to the identification of a vegetation loss due to actual deforestation. This model can therefore
constitute a powerful monitoring tool to assist in the prevention and assessment of deforestation and
forest degradation. As all three steps of the strategy are separated, a more precise classification of the
vegetation categories, which was outside the scope of this project, could be further improved in the
future development of an ecoregion-specific monitoring system.

Compared with other studies, where underdetection of clouds and cloud shadows by globally
targeted clouds detectors was challenging in lowland tropical regions [18,21,22], our target classifier
combined with a false positive/false negative detection strategy yielded satisfactory results over the
region of study.

The first limitation of the system in its present state is its malfunction in the presence of forest
fire smoke, which has proven especially relevant in the chosen one-year dataset, as the intensity of
the 2019 fire season was high. The vulnerability of the model to the signal perturbations due to a
high fire-induced aerosol concentration in the drier season (August–September) could be overcome
with an additional classification category or with a dedicated classifier. The second limitation is the
lack of distinction between anthropogenic and seasonal vegetation loss. Because the natural seasonal
cycles of vegetation senescence and regrowth dominate several areas of the SSIL, notably in the legal
cropland zone, in the vicinity of vegetation-free rock formations and along the rivers, the signal can
be excessively cluttered by natural ecological processes, which hinders the detection of smaller scale
anthropogenic forest degradation. Therefore, this limitation implies that a final interpretation effort
is still required of the user. This distinction could be improved with two complementary strategies.
The first would consist in the hand mapping of known legal low vegetation areas. The produced
mask would allow the removal of these areas from the analysis entirely. In order to implement such a
solution, collaboration with the inhabitants of the SSIL is of paramount importance, as the legitimacy of
such masked areas cannot be deduced from satellite data alone. This strategy may imply that the model
will function best in well-known areas, where collaboration with local inhabitants is possible, and its
extension to other parts of the eco-region could be limited by a loss of classification quality. The second
strategy would be to include different types of data into the classification system, such as radar data.
As the Sentinel-2 mission, the Sentinel-1 mission consists of two twin satellites orbiting at 180◦ from
each other. These satellites are equipped with a C-band synthetic-aperture radar (SAR) instrument that
collects observational data regardless of the weather, as it is not susceptible to the cloud cover, with a
revisit time of 12 days for each satellite [46,47]. SAR imaging can be used to produce 3-D elevation
imagery after processing. Including such data in the classification model would allow filtering of
the vegetation loss signal by isolating alerts that correspond not only to dry bare land but also to
an elevation loss due to the felling of trees [48]. As an additional advantage, radar imagery can be
used to very effectively identify water, which would further improve the quality and resolution of the
detection and eliminate yet more false positives, and to improve the detection of cloud shadows, as in
the current state of the model, shadows due to the topography are partially detected as well. Moreover,
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for the analysis of a larger dataset spanning several years, a variability index for individual pixels
could be introduced as an additional tool for quality control and analysis improvement. In addition
to visual pixel selection by hand, the collection of training data could benefit from the inclusion of a
larger variety of data sources, such as on-site observational data or participative citizen science [49,50],
and by collection and organization of the reference spectra in a spectral library [51]. This would allow
for further finetuning of the model and an improved classification quality.

Owing to the rapid development of solutions that allow one to train a machine learning algorithm
without extensive prior knowledge in programming or costly investments in fast computers, the training
of a highly specialized classifier is now an implementable solution to support conservation efforts
in a given area. This project represents a first step in the development and implementation of a
specialized ecoregion-specific monitoring system. Further development and implementation of such a
system could be performed either with the GEE or with a Data Cube on Demand (DCoD) approach,
as proposed by Giuliani et al. [52]. The implementation in a DCoD system would allow heightened
ownership and control over the processed data, as well as a higher level of flexibility because machine
learning algorithms could be implemented directly into the structure.

5. Conclusions

Thanks to its high spatial, temporal, and spectral resolutions, Sentinel-2 is a potentially powerful
tool for the monitoring of deforestation and forest degradation. Nevertheless, its application in lowland
tropical regions is limited by the inherently frequent cloud cover, which greatly impacts the temporal
resolution of the images. Even though a low revisit time increases the chances of obtaining clear
images, the coverage outside the drier season (July–September) is insufficient to guarantee regular
monitoring. Therefore, to fully take advantage of the Sentinel-2 products and obtain the highest density
of data, cloud and shadow pixels must be reliably identified and removed from the analysis in order to
extract the informative areas of the image. If such processing can be implemented, the obtained dense
time series allows for effective and regular tracking of vegetation dynamics through time, including,
for example, seasonal variations, deforestation, and forest regrowth.

The proposed coupled vegetation/cloud and cloud shadow classification model was able to identify
vegetation loss and gain while reliably filtering out cloud and cloud shadow pixels. The vegetation
detection system efficiently distinguished undisturbed forest from bare soil and senescence-prone
vegetation for a test batch of one year of Sentinel-2 data for the SSIL territory. The false positive/false
negative detection system prevented the accumulation of errors over time and offered an overview
of the seasonal evolution of the vegetation on the SSIL. It is a promising first step towards a
specialized ecoregion-specific vegetation dynamics and deforestation monitoring system supporting
conservation efforts.
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