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Abstract: Multispectral Polarimetric Imagery (MSPI) contains significant information about an
object’s distribution, shape, shading, texture and roughness features which can distinguish between
foreground and background in a complex scene. Due to spectral signatures being limited to material
properties, Background Segmentation (BS) is a difficult task when there are shadows, illumination
and clutter in a scene. In this work, we propose a two-fold BS approach: multiband image fusion
and polarimetric BS. Firstly, considering that the background in a scene is polarized by nature,
the spectral reflectance and correlations and the textural features of MSPI are calculated and analyzed
to demonstrate the fusion significance. After that, integrating Principal Component Analysis (PCA)
with Fast Fourier Transform (FFT), a hybrid fusion technique is proposed to show the multiband fusion
effectiveness. Secondly, utilizing the Stokes vector, polarimetric components are calculated to separate
a complex scene’s background from its foreground by constructing four significant foreground masks.
An intensity-invariant mask is built by differentiating between the median filtering versions of
unpolarized and polarized images. A strongly unpolarized foreground mask is also constructed
in two different ways, through analyzing the Angle of Linear Polarization (AoLP) and Degree of
Linear Polarization (DoLP). Moreover, a strongly polarized mask and a strong light intensity mask
are also calculated based on the azimuth angle and the total light intensity. Finally, all these masks are
combined, and a morphological operation is applied to segment the final background area of a scene.
The proposed two-fold BS algorithm is evaluated using distinct statistical measurements and compared
with well-known fusion methods and BS methods highlighted in this paper. The experimental results
demonstrate that the proposed hybrid fusion method significantly improves multiband fusion quality.
Furthermore, the proposed polarimetric BS approach also improves the mean accuracy, geometric
mean and F1-score to 0.95, 0.93 and 0.97, respectively, for scenes in the MSPI dataset compared
with those obtained from the methods in the literature considered in this paper. Future work will
investigate mixed polarized and unpolarized BS in the MSPI dataset with specular reflection.

Keywords: polarimetric imagery; spectral reflectance; multiband fusion; background segmentation;
statistical measurement

1. Introduction

The emerging significance of Multispectral Polarimetric Imagery (MSPI) has been actively pursued
in diverse applications over the last few decades. Using advanced communication tools and techniques,
multispectral images are currently composed of several sub-bands from both the visible and near
infrared (NIR) wavelengths [1], with the latter material-dependent and capable of penetrating deeper
into materials. Potential applications could investigate acquiring an imaging system that performs
image denoising [2], image dehazing [3] and semantic segmentation [4]. Multispectral imaging is a mode
commonly reported in the literature for enhancing color reproduction [5], illuminant estimation [6],
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vegetation phenology [7,8], shadow detection [9] and background subtraction [10]. However, based on
only multispectral information, it is sometimes unfeasible to segment the background from a complex
scene, whereas polarimetric imagery is shown to extract meaningful information about surface
features, shapes, shading and smoothness in optical sensing images [11]. Specific photoreceptors
are responsible for polarized light vision, a phenomenon used by polarimetric imaging techniques
in diverse applications, such as specular and diffuse separation [12], material classification [13],
shape estimation [14], target detection [15–17], anomaly detection [18], man-made object separation [19]
and camouflaged object separation [20].

Currently, computer vision-based Background Segmentation (BS) has potential application for
shape detection, activity detection and recognition, behavioral understanding, surveillance, medical care
and parenting [21]. However, an error in object detection can degrade the overall performance of a
system. In terms of surveillance and monitoring systems, the foreground in a scene is described as a
disruptor that breaks up the background. Existing approaches [22,23] based on this criterion first look
for a region of interest to segment the background from a scene, with their performances reported
to depend on the contrast between an object and its background. Although a frame-differencing
approach may sometimes be beneficial for BS, selecting an appropriate threshold is a challenging
task due to the foreground and background sometimes being mixed in a complex scene. Given fast
processing power and a noise-handling capacity, an average image of a series of N bands can be
calculated to predict a difference image. However, challenges, including low lighting conditions,
illumination, occluded foreground and shadow effects, which can be camouflaged in an imaging
modality, including the visible light spectrum, need to be considered.

Although integrating data captured from multiple spectra followed by different polarization
filter orientations benefits a BS task, registering multispectral acquisitions is more challenging [24].
Combining six bands of multispectral images in a spectrum (420–1000 nm) and four different orientations
of linear polarization filters (0, 45, 90, 135) can improve the accuracy of a BS technique. In this paper,
to address the problem of the dissimilarity of multiband information, a multiband fusion framework
with an algorithm is proposed. Firstly, the fusion algorithm decomposes each band into low- and
high-frequency components and then the first Principal Component (PC) of each side is calculated.
This proposed automatic approach does not require either prior knowledge of the foreground objects
in a scene or a background model. After the polarimetric components are calculated, four different
foreground masks are generated to distinguish between the foreground and background.

The main contribution of this research is two-fold. Firstly, a hybrid fusion technique for
fusing information from multiple spectra with different polarimetric orientation images is proposed.
This stage is composed of a Fast Fourier Transform (FFT) and Principal Component Analysis (PCA),
with each spectrum initially decomposed into low and high frequencies. Then, the first Principal
Component (PC) of each frequency is computed and combined to obtain a final fused image. Secondly,
a polarimetric BS technique for segmenting a complex background from a scene is proposed. It uses
polarimetric components to compute the significant foreground masks that are then combined through
a morphological operation to produce the final background area of the scene. The proposed research
aims to segment a background of a complex scene utilizing MSPI features. The performances of these
approaches are evaluated and compared using a publicly available MSPI dataset to demonstrate the
significance of this study.

This paper is organized as follows. In Section 2, the background to multiband fusion in MSPI
is fully described. In Section 3, details of the MSPI dataset used are provided and the spectral
reflectance, correlations and textural features for obtaining information dissimilarity are analyzed.
In Section 4, a complete two-fold BS framework and algorithm are presented. A hybrid fusion
algorithmic framework, polarimetric component processing and a polarimetric BS algorithm with
significant steps and proper mathematical and logical explanations are also discussed. In Section 5,
the performance of the proposed hybrid fusion method and accuracy of the proposed BS algorithm
are evaluated and compared with those of existing approaches in this literature. An experiment on
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computational time for the proposed method is also presented and compared with other approaches in
this section. Finally, concluding remarks and suggested future directions are provided in Section 6.

2. Related Works

BS techniques usually assume that the intensity of background pixels varies from that of other
pixels in multiple spectra according to [25]:

Mx,y, λ,oi =

 1 i f d
(
Ix,y, λ,oi , Bx,y, λ,oi

)
> τG

0 otherwise
(1)

where τG is a global threshold, Mx,y, λ,oi , the final background mask at pixel (x, y) of a fused spectrum
(λ) image at a polarimetric orientation (oi) and d is the distance between the pixel of the predicted
background (B) and that of the fused image in spectrum λ(I) at orientation oi. In this paper, the literature
related to BS is reviewed in terms of multispectral fusion and polarimetric BS.

2.1. Fusion

In general, multispectral images contain both spectral and spatial redundancies. The former
is defined by a high correlation among multiple spectra and the latter by the correlation among
neighboring pixels. Multispectral fusion aims to reduce both these redundancies while destroying as
little as possible of the original image’s information and is usually performed by transform compression.
Individual techniques and their performances related to visible and infrared image fusion are discussed
in recent literature [26–28]. Although, in a lossless image compression technique, images remain
almost identical to their original versions, in a lossy one, a high compression ratio such as PCA [29–33],
which is based on dimensionality reduction, is calculated according to the covariance matrix (C):

C =
1
N

N∑
n=1

(
Xn −X

)(
Xn −X

)T
(2)

where N is the number of spectral bands, Xn is a vector containing the pixel intensities of the nth band
image and X is the mean of Xn. The eigenvectors and eigenvalues are then computed from C, after that
PCA scores also calculated and multiplied by those of the original pixel intensities of the band images
to obtain the first PC as a fused image [28]. Through applying PCA, Bavirisetti [34] has proposed
edge-preserving Fourth-order Partial Differential Equations (FPDEs) to fuse multisensor images.
Despite the advantage over energy compaction of the decorrelated spectral bands, the dependence on
data to calculate the C among the spectral bands is a disadvantage of PCA.

Due to the energy balance and registration problem existing in a multispectral data acquisition
system, the appearances of objects demonstrate low correlations in different spectral bands [35].
However, multispectral pixel-level and transform domain-based fusion can effectively present an
overall dataset. The traditional pixel-level fusion averages (AVG) method [36] contains the information
of multiple spectra and, although it is simple and fast, each band’s images participate equally in the
fused image without their information considered. In contrast, transform domain-based fusion methods
first decompose the source images into a sequence of sub-band ones through a specific mathematical
transform structure and then apply some fusion rules to determine the so-called sub-band coefficients [3].
Finally, a fused image is formed using the corresponding inverse transform. Mathematical transforms,
which are well known as Multiscale Geometric Analyses (MGAs) include the Discrete Wavelet
Transform (DWT) [37–39], Shearlet Transform (SHT) and Discrete Cosine Transform-based Laplacian
Pyramid (DCT–LP). The DWT generates four different coefficients: approximation, horizontal detail,
vertical detail and diagonal detail, with a mean–maximum rule applied to fuse those of multiple
spectra. Finally, an inverse transform is applied on all the final coefficients [27]. Although the DWT
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provides a higher signal-to-noise ratio (SNR) and better temporal resolution than other transforms,
its performance depends on the number of decomposition levels.

In the SHT [20], two significantly different images (A and B) are selected from spectral bands which
further decompose into some low- and many high-frequency coefficients (LiA and HiA, respectively).
The mean of the low frequencies is the final low-frequency approximation coefficient (Equation (3)) and,
by applying an area-based feature selection method (Equations (4) and (5)), the final high-frequency
detail coefficients are calculated. Eventually, a fused image is obtained using an inverse SHT as follows.

L(x, y) =
LA(x, y) + LB(x, y)

2
(3)

Hi(x, y) =
{

HA
i (x, y), SA

i (x, y) ≥ SB
i (x, y)

HB
i (x, y), otherwise

(4)

where S is the weighted energy of the local window (Ω) calculated as:

S(x, y) =
∣∣∣ f (x, y)

∣∣∣2 1
Card(Ω)

∑
(m,n)∈Ω

∣∣∣ f (m, n)
∣∣∣2 (5)

where Card(Ω) denotes the cardinality of a window (Ω) that is calculated by counting the number of
distinct elements in the (m, n) coordinates. The advantage of the SHT is that it includes multiscale,
shift-invariant and multidirectional image decompositions, but its computational complexity is
significant.

In the DCT–LP [40], firstly, a Gaussian Pyramid (GP) is constructed with a reduced size of a band’s
image and then the DCT and inverse DCT are applied on it, with an LP built by expanding the size of
the previous image and then applying the DCT and inverse DCT on it. After constructing a k-level LP
for individual images (Pi

k →
{
gi

k, li0, li1, . . . . . . , lik−1

}
, where i = 0, 1, . . . , N ), the fusion rule is

at the kth level, g f
k = gi

k/i (6)

and, at the k− 1 to 0 levels, g f
k−1 = l f

k−1 + E
(
g f

k

)
(7)

where E
(
g f

k

)
is an expanded function and l f

k−1 = lik−1 if |lik−1| > |l
j
k−1|, where j , i and j = 0, 1, . . . ., N.

Despite its signal extension capability, the DCT suffers from poor image quality.
Therefore, considering the pros and cons of individual methods, we propose a holistic hybrid

fusion approach for the lossy compression of multispectral images with high spatial resolutions by
integrating an FFT with PCA.

2.2. Segmentation

Recent literature on multispectral polarized BS has focused mainly on binary (or
foreground–background) segmentation [41] after fusion [42]. Without considering some constraints or
assumptions, BS in multiband images seems to be very difficult due to an object appearing in some
spectra exhibiting a low correlation [35]. Approaches based on monocular segmentation usually rely
on the hypotheses of visual saliency (e.g., an object appearing in a scene is highly focused) or human
oversight to achieve good results [43,44]. Given the additional assumptions that can be made about
the motion of an object or scene, the same issue in the temporal domain (i.e., for image sequences)
is easier to tackle. There are methods for motion clustering that depend on partitioning the optical
flow or trajectory points to identify image regions that behave differently from their surroundings [45].
Also, the close correlation between motion partitioning and the segmentation of video objects has
gained attention in the last decade [46,47].

Foreground–background separation is an easy task if the object of interest is available in
multiple spectra. An example of the assumption of visual appearance is where common foreground
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objects are presented, and the background demonstrates low correlations in multiple spectra [48–50].
In contrast, methods for mutual segmentation usually assume that the same object is observed from
multiple viewpoints and optimize the geometric consistency of the extracted foreground area [51–53].
Earlier mutual segmentation approaches which focus on single-spectrum imagery [53–55], with the
registration problem solved using depth cameras [56,57], offer a range-based solution for detecting
objects in a scene [51,52,58].

Currently, researchers are concentrating on combining spatial, spectral and polarimetric
information to effectively predict the background and foreground in a scene without creating any
background model. In some studies, color space mapping [13,20,29] is applied on fused multispectral
polarimetric components and then fuzzy C-means clustering on separate objects from the background.
Lu [59] applied PCA on different polarized images and then used a clustering technique to segment
objects. These methods do not require any previous background model to segment the foreground/object
from the background and are robust to illumination conditions. The proposed BS method creates some
significant foreground masks from different polarimetric components and combines them to segment a
complex background from a scene.

3. Analysis of the MSPI Dataset

Multispectral polarimetric data contain rich sets of information for discriminating foreground
objects from the background in a complex scene.

3.1. Description of the Dataset

The multispectral polarimetric image dataset used in this paper is obtained from a publicly
available one [60], which contains polarimetric and multispectral images from visible and near infrared
(NIR) bands in the range of 420–1000 nm. The imaging system generates 10 different scenes in six
spectral channels at four different polarimetric filter orientation angles (0, 45, 90, 135). Of them,
three scenes in which the background is polarized in nature are selected for our purpose. Samples of
the dataset at 0 polarimetric orientation (I0 ) are shown in Figure 1, where the liquid scene is composed
of reflecting objects, such as water in a bottle and a doll in a jar, the food scene of an apple and a banana,
and the leaf scene of real and fake leaves with a mixed background.
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orientations [60].
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3.2. Analysis of Spectral Reflectance

The camera response (ρi) of the ith channel is described by [1] as:

ρi =
λ=1000∑
λ=420

E(λ) R(λ) O(λ) Ci(λ) (8)

where E(λ) is the spectral emission of the illuminant, R(λ) the reactance, O(λ) the global transmittance
of all the optical elements and Ci(λ) the spectral sensitivity of the ith channel. After calculating the
measurement matrix (M), the spectral reflectance (R̂) is calculated as:

R̂ = M−1ρi (9)

The mean spectral reflectance of an area demonstrates variations in information among multiple
bands. It is also predicted that the foreground areas of different scenes, such as the liquid (L-Bottle,
L-Jar), food (F-Apple, F-Banana) and leaf (LF-Real, LF-Fake) ones, exhibit higher spectral reflectance
than their backgrounds as shown in Figure 2.
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3.3. Analysis of Multiband the Dissimilarity Matrix

In MSPI, the data redundancies that can occur in spectral bands denote that one band’s data can
be partly or fully predicted from those of the others. Multiband dissimilarity is calculated in two
different ways, by the Pearson correlation and Euclidean distance. We consider three different MSPI
scenes to compute their dissimilarity levels in multiple spectra.

3.3.1. Pearson Correlation

Higher correlations among multiple spectra demonstrate highly redundant information. To measure
an inherent correlation between two images (Amn and Bmn), the Pearson correlation coefficient (r) is
calculated as:

r =

∑
m

∑
n

(
Amn −A

) (
Bmn − B

)
√
(
∑

m
∑

n (Amn −A)2) (
∑

m
∑

n (Bmn − B)2)

(10)
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where A = 1
N

∑N−1
i=0 Amn and B = 1

N
∑N−1

i=0 Bmn.
The correlation matrices in the MSPI scenes due to the multiple spectra and multiple polarimetric

orientations are presented in Figure 3a–c [61]. As can be seen, band 6 in the liquid and leaf scenes
is not correlated with the other bands, while band 6 in the food scene is correlated with only band 5
above a threshold of 0.90. The bands not strongly correlated are indicated in green.
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3.3.2. Euclidean Distance

To measure the distances among multiple spectra, the classical method used is the Euclidian
distance that, between two images (Amn and Bmn), is calculated by:

d(A, B) =

√√√m−1∑
i=0

n−1∑
i=0

(Amn − Bmn)
2 (11)

and then normalized in the range (0–1). The distance matrices in the MSPI scenes due to the multiple
spectra and different polarimetric orientations are presented in Figure 3d–f. As can be seen, band 6 is
the most dissimilar to the others in the liquid and leaf scenes, while, in the food scene, bands 5 and 6
demonstrate similar information but are dissimilar to the others. The bands with large distances are
indicated in green.

3.4. Analysis of Multiband Textural Features

In MSPI, textural features describe the local spatial variations in intensity as well as the homogeneity
of images. They are divided into the two broad categories of first- and second-order statistical features,
with the former dependent mainly on a histogram analysis of gray-level image representations.
Considering zi as the gray value of the ith pixel, P(zi) is a normalized histogram and N the number of
distinctive gray levels, with the first-order histogram defined as [50]:

P(zi) =
number o f pixels with value I

number o f total pixels
(12)

The first-order statistical features are defined as follows [62].

1. Mean is a measure of the spreading of the
distribution from the mean value.

FOSMen, µ =
N−1∑
i=0

zi P(zi) (13)

2. Standard deviation is used to sharpen edges
as the intensity level changes by a large value
at the edge of an image.

FOSStd, σ =

√
N−1∑
i=0

(zi − µ)
2 P(zi) (14)

3. Energy is a measure of the homogeneity of the
histogram.

FOSEng, E =
N−1∑
i=0

(P(zi))
2 (15)

4. Skewness is a measure of the degree of the
histogram’s asymmetry around the mean.

FOSSkw, µ3 =
1
N

∑N−1
i=0 (zi−µ)

3(√∑N−1
i=0 (zi2− µ2 )

)3 (16)

5. Kurtosis is a measure of the histogram’s
sharpness, that is, whether the data are peaked
or flat relative to a normal distribution.

FOSKur, µ4 =
1
N

∑N−1
i=0 (zi−µ)

4(√∑N−1
i=0 (zi2− µ2 )

)4 (17)

The second-order statistics or Gray-level Co-occurrence Matrix (GLCM) define a square matrix
the size of which represents the probability of the gray value (g1) being moved from a fixed spatial
location relationship (size and direction) to another gray value (g2). Assuming that f (i1, j1) is a 2D
gray-scale image, where S is a set of pixels with a certain spatial relationship in the region and P the
GLCM, this is expressed as [63]:

P(i, j) =
#{[(i1, j1), (i2, j2)] ∈ S

∣∣∣ f (i1, j1) = g1 & f (i2, j2) = g2 }

#S
(18)
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where # is used to define the quantity. The second-order statistical features are defined as follows.

1. Contrast is a measure of the local variations
present in an image, that is, it reflects the depth
and smoothness of the image’s textural structure.

SOSCon =
N−1∑
i=0

N−1∑
j=0

(i− j)2P(i, j) (19)

2.
Correlation is a measure of the gray-level linear
dependence between the pixels at specified
positions relative to each other, that is, it reflects
the similarity of an image’s texture in the
horizontal or vertical direction.

SOSCor =
∑N−1

i=0
∑N−1

j=0 (i−x)( j−y)P(i, j)
σxσy

(20)

where, x =
∑N−1

i=0 i
∑N−1

j=0 P(i, j),

y =
∑N−1

j=0 j
∑N−1

i=0 P(i, j),

and σx2 =
∑N−1

i=0 (i− x)2 ∑N−1
j=0 P(i, j),

σy2 =
∑N−1

j=0 ( j− y)2 ∑N−1
i=0 P(i, j)

3. Angular Second Moment or Energy is a
measure of the global homogeneity of an image.

SOSEng =
N−1∑
i=0

N−1∑
j=0

P(i, j)2 (21)

4. Homogeneity is a measure of the local
homogeneity of an image.

SOSHom =
N−1∑
i=0

N−1∑
j=0

P(i, j)

1+|i− j|
2 (22)

5. Entropy is a measure of a histogram’s uniformity,
that is, it reflects the complexity of the textural
distribution.

SOSEnt = −
N−1∑
i=0

N−1∑
j=0

P(i, j) log2[P(i, j)] (23)

The MSPI’s textural features are presented in Figure 4. As can be seen, the kurtosis, skewness,
energy and entropy values demonstrate high variations in the bands in the liquid, food and leaf scenes.
Therefore, it is predicted that the information in MSPI is not inherently correlated among the bands.
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4. Proposed Two-Fold BS

Our approach can be described as two-fold as it uses a low-level fusion of multiple spectra and
polarimetric component-based BS.

4.1. Overall Framework and Algorithm

As, in our proposed method, the multiple spectra of each polarimetric filter orientation are fused
to solve intricate situations and benefit from the complementarity of the information among multiple
bands, it consists of multiband polarimetric fusion and BS. The whole process is decomposed into
five main steps: in the first, multiband polarimetric data are captured and analyzed; in the second,
a combination of a FFT and PCA is applied on multiple spectra to calculate the fused imagery/image of
each polarimetric filter orientation; in the third, the polarimetric components are calculated; in the
fourth, four different significant masks are obtained; and, in the last, all of the foreground masks are
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combined and applied in a morphological operation to generate the final background mask. Figure 5
demonstrates this proposed two-fold BS framework.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 25 
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Figure 5. Proposed two-fold Background Segmentation (BS) framework.

The aim of this research is the joint use of spatial, spectral and polarimetric information to segment
a polarized background from a complex scene, with Algorithm 1 describing the steps for multiband
fusion and BS. In it, the significance of fusion is analyzed by calculating the spectral reflectance,
correlation and textural features, and then the proposed fusion algorithm (Algorithm 2) is applied to
determine the polarimetric components. Finally, Algorithm 3 is used to segment the background from
a complex scene.

Algorithm 1. Multiband Fusion and BS

Requires:
Multiband Polarimetric Image Dataset

Ensures:
Background (BG) segmentation through Multiband Polarimetric Fusion

1: Multiband Polarimetric Image Dataset Analysis
2: Calculate Spectral Reflectance of the Mean Foreground (FG) and BG Area
3: Calculate Correlation Among Bands and Polarimetric Orientation
4: Calculate First Order and Second Order Texture Features
5: if Information Differs Significantly among Bands, then
6: Polarimetric Orientation-wise Multiband Fusion (Algorithm 2)
7: Evaluate and Performance of the Fusion Method Statistically
8: end if
9: if I0◦ , I45◦ , I90◦ , I135◦ exist then

10: Compute Stokes Vector: S0 − S2

11: Compute Polarimetric Components: DoLP, AoLP and Unpol
12: end if
13: BS in Polarimetric Imagery (Algorithm 3)
14: Evaluate and Compare Performance of the Proposed Method Statistically
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4.2. Hybrid Fusion Framework and Algorithm

An analysis of MSPI in terms of spectral reflectance, correlation and textural features can predict the
significance of multiband pixel-level fusion. The proposed fusion method is based on 2D neighborhood
information, such as gradients or edge magnitudes and orientations, with the source images multiple
spectral ones (Imi) and the fused image (Im f ) based on different polarimetric filter orientations.
This method is hybrid in nature as it combines two different techniques, an FFT and PCA, as shown in
Figure 6. Firstly, by applying a Gaussian low-pass filter, each spectral image is decomposed into low-
and high-frequency components (LPFi and HPFi, respectively). Then, a Discrete Fourier Transform
(DFTi) of each band is calculated with the help of the FFT. Multiplying the DFTi by the LPFi and HPFi,
the final FFTs (FLPi and FHPi) are obtained. Then, applying an inverse FFT, the results are converted
to the spatial domain as the final low and high frequencies of each band as:

DFTi = f f t(bandi) (24)

FLPi = LPFi ×DFTi, FHPi = HPFi ×DFTi (25)

LPi = i f f t(FLPi), HPi = i f f t(FHPi) (26)
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Then, the covariance matrix, eigenvector and eigenvalue of each low- and high-frequency
component are calculated and the transformed image reconstructed by determining their first PCs.
Finally, these components are combined to obtain the fused image; Figure 6 illustrates the framework of
this method. MSPI often presents complementary information about the foreground and background
in a scene efficiently combined by pixel-level fusion. The process for polarimetric orientation-wise
multiband fused imagery is described in Algorithm 2.

Algorithm 2. Polarimetric Orientation-wise Multiband Fusion

Requires:
MSPI Scene Dataset

Ensures:
Polarimetric Orientation−wise Fused Imagery

1: for all polarimetric orientationsk do
2: for all bandi do
3: Create a Gaussian Low Pass Filter (LPFi) and Gaussian High Pass Filter (HPFi)
4: Calculate a Discreate Fourier Transform DFTi
5: Multiply DFTi with LPFi and HPFi

6:
Convert the Result to the Spatial Domain by inverting Multiplication result
Apply Inverse Fast Fourier Transformation to the multiplication results which produce band-wise final
results as LPk,i and HPk,i

7: end for
8: Calculate the covariance and eigenvector of LPk and HPk
9: Calculate the first Principal Component of LPk and HPk

10: Calculate the fused imagery by adding both Principal Components
11: end for
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4.3. Calculation of Polarimetric Components

The fused images calculated at different polarimetric orientations (00, 450, 900, 1350) are labeled
I00 , I450 , I900 and I450 , respectively, to determine their polarimetric components. The Stokes parameters
(S0–S2) [64] describe the linear polarization characteristics using a three-element vector (S), as shown
in Equation (27), where S0 represents the total intensity of light, S1 the difference between horizontal
and vertical polarizations and S2 the difference between linear +45◦ and −45◦ ones.

S =


S0

S1

S2

 =


I00 + I900

I00 − I900

I450 − I1350

 (27)

The DoLP is a measure of the proportion of the linear polarized light relative to the light’s total
intensity, the AoLP the orientation of the major axis of the polarization ellipse, which represents
the polarizing angle where the intensity should be the strongest, and the Unpol a measure of the
unpolarized light according to the dataset’s author. The DoLP, AoLP and Unpol are derived from the
Stokes vector, respectively, as:

DoLP =
Ipol

Itot
=

√
S2

1 + S2
2

S0
(28)

AoLP =
1
2

tan−1
(

S2

S1

)
(29)

Unpol = S0 −
1
2

√
S1

2 + S22 (30)

4.4. Proposed BS Algorithm

The proposed BS algorithm, which involves five different steps for generating four significant
foreground masks through processing the polarimetric components, is presented in Algorithm 3.

Algorithm 3. BS in Polarimetric Imagery

Requires:
Stokes Vector and Polarimetric Components

Ensures:
Segmented Background f rom a scene

1: if S0 − S2, DoLP, AoLP, UoLP exist then
2: Significant Foreground Mask Generation

3:
Construct an intensity invariant mask through differentiating the median filtering version of unpolarized
and polarized imagery

4: Calculate a strongly unpolarized foreground mask in two different ways utilizing AoLP and DoLP
5: Calculate a strongly polarized foreground mask
6: Calculate a strong light intensity mask based on azimuth angle and S0.
7: Combine steps 3-6 and apply a morphological operation to segment the total background area of a scene.
8: end if

• Step 1. Construction of intensity-invariant mask

The proportion of the unpolarized to total intensity is defined as the degree of unpolarized
intensity (Equation (31)). A DoLP modulation coefficient can be used to stretch the contrast and,
thereby, the separability of the foreground/background areas in a polarimetric scene [29]. This function
should be continuous in the field of the DoLP and monotonically increase with it. A logarithmic
function is a natural choice for this purpose, as pointed out by Shannon [65], and the DoLP modulation
coefficient (MDoLP) is defined in Equation (32). The differentiation between the median filtering
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versions of the degree of the unpolarized image (DUnpol) and MDoLP in Equation (33) produces an
intensity-invariant mask as:

DUnpol = Unpol ÷ S0 (31)

MDoLP = DoLP · log (1 + DoLP ) (32)

MaskIntInv =
∣∣∣DUnpol −MDoLP

∣∣∣ > Threshold (33)

• Step 2. Construction of strongly unpolarized mask

An indirect unpolarized mask is calculated through a DoLP analysis. Firstly, due to the dark
offset and spatial nonuniformity of light, a DoLP image may contain noise. Therefore, a FFT with a
Gaussian low-pass filter is applied to smooth it and reduce the noise level (Equation (34), where D(u, v)
is the distance from a point (u, v ) to the center of its frequency in the DoLP, and D0 is the cutoff

frequency) and the FFT of the DoLP image with padding obtained by Equation (35). The transformed
image is multiplied by the filter and then an inverse FFT applied to obtain a noise-free smooth image
(Equation (36)). The calculated low-pass filtered image of the DoLP (Smooth) is multiplied by the
DUnpol to obtain a lower intensity (lower global threshold) of the polarized image and then binarized
to calculate a noise-free smooth unpolarized mask (Equation (37)).

L(u, v) = e−D2(u,v)/2D2
0 (34)

F(u, v) = f f t (DoLP) (35)

SDoLP = i f f t (L (u, v) × F (u, v)) (36)

MaskIndUnp = ∼ imbinarize
(
SDoLP ×DUnpol

)
(37)

A direct unpolarized mask is calculated using an AoLP textural analysis. A desultory value of
the AoLP denotes a rough surface that indicates the unpolarized part of a scene and a continuous
one a smooth surface, which indicates the polarized part of a scene [20]. To segment the unpolarized
part, firstly, a textural image is created by applying entropy filtering around a 9-by-9 neighborhood of
the AoLP. The aim is to obtain an output image (MaskDirUnp) in which each output pixel contains the
entropy value of the 9-by-9 neighborhood around the corresponding pixel in the input image of the
AoLP as:

MaskDirUnp = imbinarize (entropy f ilt(AoLP)) (38)

A final unpolarized mask is generated through a bit-AND operation. Because the contrast,
illumination and energy levels are not uniform among the scenes in the bands, some portions of an
individual scene gain advantages during this process, with some considering an AoLP textural analysis
and others a DoLP one. Applying this operation on both sides obtains an exact unpolarized mask as:

MaskStUnp = MaskIndUnp & MaskDirUnp (39)

• Step 3. Calculation of strongly polarized mask

Based on Otsu’s method for calculating the global threshold, the DoLP image is converted to a
binary one to obtain a strongly polarized mask of a scene as:

MaskStPol = imbinarize(DoLP f ) (40)

• Step 4. Calculation of strong light intensity mask

The inclination or azimuth angle (β) of the polarized light is calculated. The electric field vector
(E) is divided into two orthogonal plane waves (Ex and Ey) in the direction of the x- and y-axes,
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respectively. The calculations of Ex and Ey depend on S0, S1 and S2, as in Equations (41) and (42), and
the azimuth angle is defined in Equation (43). Finally, as the β is calculated from the DoLP, a noise-free
version of it is determined using Equations (41)–(43) and renamed SAzimuth.

Ex =
√
(S0 ×DoLP) + S1 (41)

Ey =
√
(S0 ×DoLP) − S1 (42)

β = tan−1
(
Ey/Ex

)
(43)

The total intensity image (S0) is divided by the logarithmic function of β to calculate the area
of the maximum strong light intensity. The purpose of using this natural logarithmic function of β
is to stretch the contrast and, thus, the separability of the strong light intensity areas in polarimetric
images by:

MaskStLight = imbinarize
(

S0

log(1 + SAzimuth)

)
(44)

• Step 5. Combination of foreground masks and application of morphological operation

All the foreground areas, such as the intensity-invariant, strongly unpolarized, strongly polarized
and strong light intensity masks, are calculated and fused to obtain the final foreground mask
(Equation (45)). Then, a morphological structuring operation based on a dilation followed by an
erosion to boost the segmentation performance is applied on the combined background mask. The final
background area in the corresponding scene is denoted in black and it can be seen that some object
parts are mixed with the background due to the presence of polarization.

MaskForeground = MaskIntInv ∪MaskStUnp ∪MaskStPol ∪ MaskStLight (45)

5. Experimental Results

In this section, performance evaluations and comparisons of the proposed two-fold BS and other
approaches using different metrics in terms of multiband fusion and polarimetric BS are discussed.
Also, computational time analyses of individual methods are conducted.

5.1. Performance Evaluation of MSPI Fusion

5.1.1. Selection of Fusion Metric

Currently, the quality of a fused image can be quantitively evaluated using the metrics [66] Mean
Absolute Percentage Error (MAPE), Peak Signal-to-Noise Ratio (PSNR), Pearson Correlation Coefficient
(PCOR) and Mutual Information (MI). The MAPE is a measure of the closeness between predictions
of the reference and fused images. The PSNR block computes the PSNRs of the reference and fused
images. A lower value of MAPE and higher value of PSNR indicate a better quality of the reconstructed
or fused image. The PCOR computes the linear correlation coefficient between the reference and
fused images, while MI indicates the mutual dependence between them, with the higher their values,
the better the correlation. Considering two images A and B, the mathematical evaluation measures of
the aforementioned metrics are:

MAPE =
1
n

n∑
i=1

∣∣∣∣∣∣
(

Ai − Bi
Bi

)
× 100

∣∣∣∣∣∣ (46)

PSNR = 10 . log10

MAX2
I

MSE

 (47)
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PCOR =

∑
m

∑
n(Amn −A) (Bmn − B)√

(
∑

m
∑

n(Amn −A)2) (
∑

m
∑

n(Bmn − B)2)

(48)

MI =
∑
a∈A

∑
b∈B

P(a, b) log
P(a, b)

P(a) P(b)
(49)

5.1.2. Observation of Fusion Quality

To evaluate the performance of fusion, the median image of each band is considered the reference
one and the fused image the resultant one. The former contains the central value of the bands and
tends to retain more detailed information. Table 1 demonstrates that the average PSNR value of the
proposed method is lower than other methods; however, the average MAPE value is significantly
better than some references. The average metric value of the three scenes demonstrates that the fusion
quality of our proposed hybrid fusion-based approach is superior in terms of its higher PCOR and MI
compared to those in the current literature.

Table 1. Mean Absolute Percentage Error and Peak Signal-to-Noise Ratio error metrics (MAPE, PSNR)
and Pearson Correlation Coefficient and Mutual Information correlation metrics (PCOR, MI) of different
fusion methods.

MAPE PSNR PCOR MI

0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦ 0◦ 45◦ 90◦ 135◦

Li
qu

id
Sc

en
e DWT [37] 26.28 33.42 41.25 31.74 31.94 32.96 31.73 32.28 0.99 0.99 0.99 0.98 2.32 2.42 2.32 2.18

PCA [33] 19.23 26.47 34.69 22.54 29.05 28.88 28.86 28.86 0.99 0.99 0.99 0.99 2.62 2.72 2.64 2.49
DCT–LP [40] 146.25 167.14 189.36 150.89 23.19 24.57 24.12 22.99 0.81 0.83 0.84 0.82 0.93 1.09 1.01 0.92

SHT [20] 93.80 123.43 164.35 116.91 19.60 19.32 20.01 19.46 0.86 0.88 0.88 0.86 1.32 1.48 1.37 1.25
FPDE [34] 16.79 21.53 27.83 19.28 30.48 31.08 31.24 30.51 0.99 0.99 0.99 0.99 2.73 2.87 2.77 2.63
Proposed 30.86 39.55 52.80 35.23 18.90 19.37 19.49 19.10 0.99 0.99 0.99 0.99 2.89 2.97 2.84 2.75

Fo
od

Sc
en

e

DWT [37] 11.13 16.33 15.08 14.22 32.56 32.28 31.37 32.04 0.99 0.99 0.99 0.99 2.68 2.60 2.57 2.76
PCA [33] 5.06 8.81 8.56 6.64 30.19 28.13 27.53 30.00 0.99 0.99 0.98 0.99 3.02 2.76 2.68 3.00

DCT–LP [40] 93.21 156.36 157.00 122.33 21.64 21.59 21.24 22.05 0.84 0.81 0.81 0.83 1.17 1.04 1.02 1.16
SHT [20] 20.39 30.40 30.56 22.83 20.47 19.21 18.38 20.01 0.95 0.92 0.92 0.94 1.87 1.70 1.62 1.85

FPDE [34] 19.79 31.96 30.23 25.02 20.11 18.76 19.16 19.93 0.90 0.80 0.81 0.89 2.21 1.77 1.77 2.20
Proposed 10.14 15.66 15.08 12.22 16.90 18.15 18.32 17.14 1.00 0.99 0.99 1.00 3.32 3.07 3.05 3.43

Le
af

Sc
en

e

DWT [37] 15.00 14.45 14.52 14.95 26.14 26.63 26.60 26.29 0.98 0.97 0.97 0.98 2.20 2.07 2.07 2.22
PCA [33] 5.32 8.64 9.51 5.37 26.95 22.53 21.97 26.60 0.99 0.94 0.93 0.99 2.78 2.35 2.30 2.75

DCT–LP [40] 55.15 63.95 62.89 54.54 14.87 14.53 14.61 14.82 0.84 0.76 0.75 0.84 1.17 1.10 1.12 1.18
SHT [20] 26.72 32.41 36.56 26.46 13.19 11.96 11.89 13.04 0.86 0.76 0.74 0.85 1.58 1.57 1.56 1.60

FPDE [34] 9.51 24.55 32.66 10.82 25.41 20.43 18.84 24.64 0.98 0.89 0.86 0.97 3.43 2.01 1.48 3.28
Proposed 10.41 14.39 15.58 10.30 10.54 12.14 12.22 10.75 0.99 0.96 0.95 0.99 2.89 2.52 2.47 2.88

A
ve

ra
ge

DWT [37] 17.47 21.40 23.62 20.30 30.21 30.63 29.90 30.20 0.99 0.98 0.98 0.99 2.40 2.36 2.32 2.39
PCA [33] 9.87 14.64 17.59 11.52 28.73 26.51 26.12 28.49 0.99 0.97 0.97 0.99 2.81 2.61 2.54 2.74

DCT–LP [40] 98.20 129.15 136.42 109.25 19.90 20.23 19.99 19.95 0.83 0.80 0.80 0.83 1.09 1.08 1.05 1.09
SHT [20] 46.97 62.08 77.16 55.40 17.75 16.83 16.76 17.50 0.89 0.85 0.85 0.88 1.59 1.58 1.52 1.57

FPDE [34] 15.36 26.01 30.24 18.37 25.33 23.42 23.08 25.03 0.95 0.89 0.88 0.95 2.79 2.22 2.01 2.70
Proposed 17.14 23.20 27.82 19.25 15.44 16.55 16.68 15.66 0.99 0.98 0.98 0.99 3.03 2.86 2.79 3.02

5.1.3. Comparison of Performances of Fusion Methods

The textural features of the fused images are presented in Figure 7. It can be seen that the kurtosis,
skewness and energy of the liquid, food and leaf scenes demonstrate lower values for the proposed
hybrid fusion method than for the DWT [37], PCA [33], AVG [36], DCT–LP [40], SHT [20] and FDPE [34]
while, in contrast, its entropy is predicted to be higher than those of the DWT, PCA and AVG methods.
Therefore, it is considered that, overall, the proposed hybrid pixel-level fusion method generates the
maximum amount of information among multiple spectra.
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Figure 7. Analysis of multiband fusion-based first- and second-order textural features of scenes:
(a) liquid, (b) food and (c) leaf.

5.1.4. Visualization of Fusion Performance

It is obvious that multiband fusion methods demonstrate better BS accuracy than direct
processing [67,68]. The multiband fusion results shown in Figure 8 demonstrate that the proposed
hybrid fusion approach has an advantage over the other methods as it appears strongly at the edge of
an object, which will enable foreground objects to be further separated from a scene.
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Figure 8. Samples of results of fusion methods across multiple bands at 0◦ polarimetric orientation.

5.2. Calculation of Polarimetric Component

Based on different fusion methods, the polarimetric components S0 and DoLP are calculated and
shown in Figure 9. Analyzing the DoLP values, it is predicted that, in the scenes, the backgrounds are
polarized, whereas the foregrounds have mixed polarized and unpolarized intensities.
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5.3. Performance Evaluation of MSPI BS

5.3.1. Selection of BS Metric

The BS method is evaluated at the pixel level of a binarized scene in which the foreground
and background are white and black, respectively. Its performance can be divided into four
pixel-wise classification results: true positives (Tp), which mean correctly detected foreground pixels;
false positives (Fp), that is, background pixels incorrectly detected as foreground ones; true negatives
(Tn), which indicate correctly detected background pixels; and false negatives (Fn), that is, foreground
pixels incorrectly detected as background ones. The binary classification metrics used in this paper
are accuracy, specificity, sensitivity, Geometric mean (G-mean), precision, recall and the F1-score.
Accuracy is measured as the proportion of true results obtained, either Tn or Tp; specificity (a Tn

fraction) as the proportion of actual negatives predicted as negatives; sensitivity (a Tp fraction) as the
proportion of actual positives predicted as positives; the G-mean, the root of the product of specificity
and sensitivity; precision, the number of foreground pixels detected that are actually foreground ones;
recall, the number of foreground pixels detected from the actual foreground (recall and sensitivity are
similar); the F1-score (a boundary F1 measure) the harmonic mean of the precision and recall values,
which measures how closely the predicted boundary of an object matches its ground-truth and is an
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overall indicator of the performance of binary segmentation. The mathematical evaluation measures
of the aforementioned metrics follow [69]:

Accuracy (AC) =
Tp + Tn

Tp + Fn + Tn + Fp
(50)

Speci f icity (SP) =
Tn

Tn + Fp
(51)

Sensitivity (SN) or Recall (RC) =
Tp

Tp + Fn
(52)

Geometric−Mean (GM) =
√

Speci f icity× Sensitivity (53)

Precision (PR) =
Tp

Tp + Fp
(54)

F1− Score (F1S) = 2×
Precision×Recall
Precision + Recall

(55)

5.3.2. Generation of Ground Truth

Each ground truth is generated manually by an expert with the maximum possible background
among bands covered. In Figure 10, for the scenes’ binary ground truths, the black and white pixels
indicate their backgrounds and foregrounds, respectively.
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Figure 10. Ground truths of the MSPI dataset for: (a) liquid scene, (b) food scene, (c) leaf scene.

5.3.3. Comparison of BS Accuracy: Direct vs. Fusion

In Table 2, the performances of BS in terms of the metrics for direct and fusion-based approaches
are compared, where B-1 to B-6 denote Bands 1 to 6, respectively, in the range of 400–1000 nm. As can
be seen, the mean of an individual evaluation metric is significantly higher for a fusion-based BS
method than for a direct band-wise BS one. Also, it can be ascertained that the mean accuracy, G-mean
and F1-score are 0.88, 0.86 and 0.91, respectively, for the former, and 0.74, 0.67 and 0.80 for the latter.

5.3.4. Visualization of Performance of BS

The polarimetric BS errors are shown in Figure 11 in which purple and green denote the error
areas of the segmentation methods present in the ground truths’ black and white portions, respectively.
These errors are lower for the fusion-based methods than for the direct band-wise ones, with our
proposed hybrid fusion-based polarimetric BS approach superior to all the others.
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Table 2. Evaluation of direct- vs. fusion-based BS performances for three scenes in the MSPI dataset.

Direct BG Separation Fusion-based BG Segmentation

AC SP SN GM PR RC F1S AC SP SN GM PR RC F1S

Liquid
Scene

B-1 0.91 0.68 0.96 0.80 0.93 0.96 0.94 DWT [37] 0.96 0.97 0.96 0.97 0.99 0.96 0.98
B-2 0.91 0.74 0.95 0.84 0.94 0.95 0.95 PCA [33] 0.96 0.95 0.96 0.95 0.99 0.96 0.97
B-3 0.92 0.84 0.94 0.89 0.96 0.94 0.95 AVG [36] 0.96 0.98 0.95 0.97 1.00 0.95 0.97
B-4 0.91 0.61 0.98 0.77 0.92 0.98 0.95 DCT–LP [40] 0.94 0.73 0.98 0.85 0.94 0.98 0.96
B-5 0.91 0.78 0.94 0.86 0.95 0.94 0.94 SHT [20] 0.95 0.81 0.98 0.89 0.96 0.98 0.97
B-6 0.95 0.81 0.98 0.89 0.96 0.98 0.97 FPDE [34] 0.92 0.98 0.91 0.94 1.00 0.91 0.95

Proposed 0.97 0.98 0.97 0.97 1.00 0.97 0.98

Food
Scene

B-1 0.62 0.69 0.59 0.64 0.81 0.59 0.68 DWT [37] 0.91 0.85 0.93 0.89 0.93 0.93 0.93
B-2 0.59 0.76 0.51 0.63 0.83 0.51 0.63 PCA [33] 0.95 0.85 0.99 0.92 0.94 0.99 0.96
B-3 0.54 0.88 0.39 0.59 0.88 0.39 0.54 AVG [36] 0.92 0.87 0.94 0.90 0.94 0.94 0.94
B-4 0.60 0.67 0.56 0.61 0.79 0.56 0.66 DCT–LP [40] 0.92 0.75 0.99 0.86 0.90 0.99 0.94
B-5 0.53 0.87 0.37 0.57 0.86 0.37 0.52 SHT [20] 0.85 0.73 0.91 0.82 0.88 0.91 0.89
B-6 0.93 0.80 0.99 0.89 0.92 0.99 0.95 FPDE [34] 0.84 0.79 0.86 0.82 0.90 0.86 0.88

Proposed 0.96 0.90 0.99 0.94 0.96 0.99 0.97

Leaf
Scene

B-1 0.65 0.25 0.77 0.44 0.77 0.77 0.77 DWT [37] 0.71 0.90 0.65 0.76 0.95 0.65 0.77
B-2 0.63 0.29 0.73 0.46 0.77 0.73 0.75 PCA [33] 0.80 0.82 0.79 0.80 0.93 0.79 0.86
B-3 0.67 0.63 0.68 0.66 0.86 0.68 0.76 AVG [36] 0.81 0.80 0.82 0.81 0.93 0.82 0.87
B-4 0.68 0.24 0.81 0.44 0.78 0.81 0.79 DCT–LP [40] 0.92 0.81 0.95 0.88 0.94 0.95 0.94
B-5 0.55 0.52 0.57 0.54 0.79 0.57 0.66 SHT [20] 0.76 0.55 0.82 0.67 0.86 0.82 0.84
B-6 0.82 0.26 1.00 0.50 0.81 1.00 0.89 FPDE [34] 0.58 0.83 0.50 0.65 0.91 0.50 0.65

Proposed 0.89 0.84 0.90 0.87 0.95 0.90 0.92

Average Direct 0.74 0.63 0.76 0.67 0.86 0.76 0.80 Fusion 0.88 0.84 0.89 0.86 0.94 0.89 0.91
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5.3.5. Comparison of BS Accuracy: Proposed Method vs. Those in Literature

It is worth mentioning that the performances of these existing BS methods are not exactly
comparable, as each reports its accuracy for a specific MSPI database. Also, the recognition accuracy
values obtained from the fusion methods and color-mapping techniques used for segmentation vary.

By integrating an FFT with PCA for a fusion approach and then generating foreground masks
for the segmentation task, the proposed BS method obtains higher accuracy, G-mean and F1-score
values for the liquid (0.97, 0.97 and 0.98, respectively), food (0.96, 0.94 and 0.97, respectively) and leaf
(0.89, 0.87 and 0.92, respectively) scenes in the MSPI dataset than those in the existing literature on
foreground separation methods, as presented in Table 3.

Table 3. Comparison of performances of BS methods for three scenes in the MSPI dataset.

Liquid Scene Food Scene Leaf Scene

AC SP SN GM PR RC F1S AC SP SN GM PR RC F1S AC SP SN GM PR RC F1S

Wolf [13] 0.69 0.00 0.84 0.06 0.79 0.84 0.82 0.57 0.99 0.38 0.61 0.99 0.38 0.55 0.65 0.40 0.73 0.54 0.80 0.73 0.76
Zhao [29] 0.95 1.00 0.94 0.97 1.00 0.94 0.97 0.81 0.38 1.00 0.62 0.78 1.00 0.88 0.44 0.93 0.28 0.51 0.93 0.28 0.44
Zhou [20] 0.67 1.00 0.60 0.78 1.00 0.60 0.75 0.70 0.85 0.62 0.73 0.90 0.62 0.74 0.58 0.40 0.64 0.51 0.78 0.64 0.70
Lu [59] 0.75 1.00 0.69 0.83 1.00 0.69 0.82 0.89 0.72 0.96 0.83 0.88 0.96 0.92 0.51 0.62 0.48 0.54 0.80 0.48 0.60
Proposed 0.97 0.98 0.97 0.97 1.00 0.97 0.98 0.96 0.90 0.99 0.94 0.96 0.99 0.97 0.89 0.84 0.90 0.87 0.95 0.90 0.92

Figure 12 shows the average performances of individual methods for scenes in the MSPI dataset.
It is clear that the proposed method performs better than the others with a mean accuracy, G-mean and
F1-score of 0.95, 0.93 and 0.97, respectively.
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Figure 13 presents the error areas (purple and green) obtained from the individual methods for
different scenes in the MSPI dataset. As can be seen, the proposed system reports fewer BS errors than
the others. In the liquid scene, however, the background is completely separated by the proposed
method, due to weak polarization in the jar cap’s area; it has some errors. In the food (apple and
banana) and leaf scenes, although their foregrounds are completely separated by the proposed method,
there are some errors due to strong unpolarization in their background areas.

5.4. Computational Time Analysis

The experiments are carried out using MATLAB on a desktop with a hardware configuration of
16 GB RAM and 3.4 GHz Intel Core i7 CPU. Table 4 presents the running times (in seconds) of the
individual methods for multiband fusion and polarimetric BS approach. As can be seen, the proposed
system incurs slightly longer computational times than the PCA-based multiband fusion method,
but shorter ones than the polarimetric BS, with its shortest mean running time demonstrating its
effectiveness in terms of BS in MSPI.
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The experiments are carried out using MATLAB on a desktop with a hardware configuration of 
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Table 4. Analysis of computational times of different techniques for three scenes in the MSPI dataset.

Running Time (Seconds) – Multiband Fusion Running Time (Seconds) – Polarimetric BS

Liquid Food Leaf Average Liquid Food Leaf Average

DWT [37] 55.76 57.01 57.51 56.76 Wolf [13] 10.74 10.14 11.35 10.74
PCA [33] 38.70 38.19 37.26 38.05 Zhao [29] 8.66 8.93 7.40 8.33
AVG [36] 63.05 63.47 62.94 63.15 Zhou [20] 12.38 8.95 12.57 11.30

DCT–LP [40] 56.40 56.00 56.70 56.37 Lu [59] 10.81 10.61 11.60 11.01
SHT [20] 162.06 163.48 160.23 161.92 Proposed 2.52 3.45 3.74 3.23

FPDE [34] 113.20 113.91 113.90 113.67
Proposed 44.65 44.62 44.58 44.62

6. Conclusions

In this paper, a two-fold BS approach involving multiband fusion followed by polarimetric BS is
proposed for MSPI. Combining complementary information from spectral and polarimetric cues in the
visible and NIR ranges improves a foreground’s contrast and details. This framework and algorithm
demonstrate the significance of multiband fusion through analyzing spectral reflectance, correlation
and textural features. The proposed hybrid fusion method first decomposes each band image into
low and high frequencies using an FFT. Then a PCA is performed, with the first PC of each frequency
computed and combined with the others to obtain a final fused image. The proposed fusion algorithm
predicts better fusion quality with fewer errors in terms of the MAPE, PSNR, COR and MI than
the DWT, PCA, DCT–LP, SHT and FPDE techniques. After fusion, the polarimetric components are
calculated through a Stokes vector analysis. Finally, four significant foreground masks are generated
and combined with the polarimetric components to segment the complex background of a scene.
The proposed BS algorithm is compared with four baseline approaches based on fusion, color mapping
and fuzzy C-means clustering using an MSPI dataset. The experimental results illustrate the validity
and efficiency of the proposed BS method based on diverse performance evaluation metrics. They also
demonstrate that it significantly improves the mean accuracy, G-mean and F1-score to 0.95, 0.93,
0.97, respectively, for three scenes in the MSPI dataset compared with those in the existing literature
referenced in this paper.

As an extension of this work, we will investigate an advanced BS method in which the background
and foreground of a scene are mixed with polarized and unpolarized intensities. We will also address
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the issues related to the specular reflection of the foreground area in a scene that may mistakenly be
detected as the background. As it is known that the specular reflection in an area of strong light intensity
can destroy the shape of an actual object; developing an algorithm for detecting and reconstructing a
secular reflection in the MSPI dataset will be explored.
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