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Abstract: A multitude of factors considered necessary for an informed choice of the location of
the vineyard can be overwhelming for the decision-maker. Is there still a place for knowledge
valuable from the perspective of an experienced winegrower in the era of precise measurements?
The informative use of so-called common knowledge is possible owing to fuzzy-based techniques,
which allow for the representation of intuitive notions in terms of quantitative measures. The work
uses tools based on fuzzy logic to cover the scope of common knowledge within the decision-making
process. Owing to its flexibility and ability to deal with imprecise input data while maintaining
the simple construction, the fuzzy logic solution filled the gap between GIS data and wine grower’s
experience. Based on the data from the thematic literature, a set of rules was created to interpret
the relationships between popular site selection criteria. The dynamics and manner of interaction
between variables were determined using adequate membership functions. Pre-processing using GIS
with remote sensing data was considered as a preliminary stage for the analysis. By using the graphical
interface, the system operation facilitates the work of a potential user. The obtained results indicated
the possibility of an alternative approach to classical analyses by replacing or extending the meaning
of some variables using information based on feelings and perceptions. Research constitutes a premise
for the further development of expert systems using widely understood domain knowledge.

Keywords: decision-making; location analysis; fuzzy logic; common knowledge; wine industry; vineyard

1. Introduction

The wine industry is an emerging economic sector in many parts of the world like Asia [1],
Africa [2], America [3], Australia [4], and Europe [5]. The development of wine production requires
the transformation of selected croplands into vineyards. Within this process, site selection is proved to
be the most significant and fundamental decision in the whole life of a vineyard [6–8]. Researchers
and winemakers underline that there is no other comestible product that reflects its place of origin
as it is in the case of the vine [9]. This specification of a particular space is named a “terroir”.
It is defined as an interaction between the physical and human environment [10]. The primary physical
environment attributes that are usually considered are climate, soils, and topography, while the human
environment most frequently refers to viticultural practices and legal constraints [7,10,11]. The criteria
on which the process of site selection is based are defined as “factors” in the professional wine industry
related literature. The set of factors in particular “terroir” reveals originality and recognition of
the products [9], and the combination of site and grape variety affects the future results each season [7].
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Therefore, a recognition of factors and inter-relationships between them that influence the vineyard
prospering has the crucial role in the site selection. Nevertheless, the process of choosing factors
and analyzing them is complicated. First, there is an ongoing debate on which of the factors is
the most significant [10]. According to Wilson [12], science may not understand factors in a range that
will allow to define the contribution of them. Moreover, the contribution of specific factors varies
across the land and is different for specific regions [13,14]. Additionally, Wilson underlines other
aspects of “terroir” connected with somewhat spiritual and not measurable factors such as “the joys,
the heartbreaks, the pride, the sweat, and the frustrations of history” [12] (p. 55), which for many people
are more important while selecting the site than the scientific reasons. Although, while the general
factors are instead stated, the analyses that contribute to each of them differentiate widely.

Through years researchers have verified attributes of terroir based on relationships between
vineyard site and quality of wine [10]. Based on all the factors ever mentioned by researchers
and winegrowers, the analyses can be very extensive. Every factor is related to data that should be
acquired, which is also connected with the costs of the entire site selection process. While the quality
information is essential—the cost rises when the precision of data increases [7]. It is especially crucial
at the first stage of site selection when there are many site options, and the risk of acquiring data that is
not required is high.

Additionally, even if every factor will be examined by an expert and the data will be of the highest
possible quality—the perfect terroir may not be found, while the site selection is usually based on
compromises [10]. Apart from these reasons, the question of sustainability arises. It is crucial to
remember that vineyard is a part of a broader ecosystem, and this aspect should also be considered
while selecting the site [8].

When the data strategy is already chosen, there is also a question about a method of analysis
that should include an optimal amount of factors and correlation between them to achieve the best
results while minimalizing the costs and risks. Experts nowadays are most often recommending
the utilization of geospatial and remote sensing technologies to support decisions in the vineyard
selection process [7,8,10,15–17]. The multi-criteria analyses in geographic information systems
(GIS) enable the incorporation of factors related to spatial data such as climate, topography, soils,
and land-use [10,18–21]. Criteria connected with these factors could be presented as geographic layers
and then aggregated and assessed with GIS tools, including their reclassification, assessment of different
weights, and applying priorities to different criteria [7]. The necessary data that has to be gathered to
perform analyses include climate and soil maps, remote sensing data (LIDAR data and vector data
(for point, linear and polygonal features such as buildings, rivers, water sources)), and land-zone
maps. Difficulty and cost of the information gathering vary across the land—while in some regions,
maps can be outdated or even non-existent. However, not always the quality and availability of data
allows for practical spatial analysis, researchers agree on the need to use GIS tools or remote sensing at
the initial stage of selecting “candidate” locations [22,23]. Following these examples, the workflows
emerged within the field, which successfully combine remote sensing science with applied fuzzy logic
functionality [24–27]. This first selection stage is crucial because it largely depends on the success
of the methods to expand the final decision space. Besides, because of its flexibility, preliminary
spatial analyses can be supplemented as data availability increases along with the popularity of remote
sensing science, gradually increasing its participation in the decision-making process without harming,
e.g., alternative sources of information [28,29].

Struggles in data acquisition can significantly extend the process of vineyard site selection
and the costs related to it with the necessity to hire experts from the field of biology, chemistry,
or climate. Some criteria are not representable in spatial dimension and can be defined as “common
knowledge.” Some winegrowers are convinced that while technology and experts could improve
the quality, the vineyard site selection requires the utilization of local wisdom, knowledge, intuition
and walking over the site to “sight, touch, smell and in some cases even taste to determine its viticultural
potential” [14] (p. 60).
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In the case of criteria based on feelings, experiences, as well as knowledge not resulting directly
from the analysis of numerical data, making decisions can cause many problems, often leading to
the abandonment of these criteria or their significant reduction [28]. However, research confirms
that the use of this type of information in the decision-making process can have positive effects on
the result [28,30,31]. Methods based on multi-criteria decision-making systems were used to include
qualitative factors in the decision-making process [32] (p. 299–300). In recent years, the popularity
of these methods has increased, which confirms their increasing use in fields such as environmental
engineering [33], business [34,35], spatial planning [36–39], and social science [40]. One of the theories
used in decision systems is the logic of fuzzy sets [41]. Part of this theory is the so-called fuzzy logic,
which allows the occurrence of several intermediate values determining the degree of belonging of
a given element to the set [42]. This logic proved to be useful in engineering applications [43,44],
data mining [45], but also the construction of so-called expert systems [46,47]. Owing to the ability
of fuzzy logic systems to generalize knowledge not previously interpreted as a part of classical
logic, it became possible to construct “intelligent” systems that could start using unconventional
knowledge [48]. These systems have also been successfully introduced in studies using spatial
information—improving the process of making location decisions [31,49–51]. The most important
spatial information for the location of vineyards using fuzzy logic was included by Badr [31], while
Coulon-Leroy pointed to the possibility of using imperfect knowledge in the modeling of sophisticated
agronomic features [52]. The research was also carried out on the use of local knowledge in situating
vineyards [53,54].

Finally, while facing all factors, problems, and constraints mentioned above, there is always
a decision of winegrower on what strategy of analyses to choose. That is why a method used for
vineyard selection should be flexible and adjusted to local conditions and legal constraints, costs,
and risks that the winegrower is ready to sustain and also one’s beliefs that may refer to common
knowledge. In this paper, the method that enables the inclusion of common knowledge in vineyard
site selection is presented. The system based on fuzzy logic was built as an extension of preliminary
spatial analysis and was used in an attempt to transfer factors considered to be qualitative, as well as
those that do not require technical support into a framework that allows obtaining informative data.
During the creation of the system, the focus was placed on the factors constituting an alternative to
widely used methods based on costly, expert-involved research, while maintaining the fundamental
GIS-based pre-processing. The primary purpose of this work is, therefore, an attempt to enhance
spatial decision-making technologies with the use of collective knowledge factors when assessing
the suitability of a given site for wine-growing.

This paper is organized as follows. In the second section—Materials and Methods—the data
used to obtain general knowledge information is introduced as well as the outline of preliminary
spatial analysis, followed by a basic description of the fuzzy logic-based methodology used in this
paper. In the Results section, the proposition of the knowledge acquisition method is presented,
and then, by specifying membership functions and rules, system operation is proposed. The Discussion
section presents the conclusions of the decision-making environment, along with parallel applications.
The possibilities of further research on the use of common knowledge in the vineyard site selection are
also discussed.

2. Materials and Methods

2.1. Materials for Spatial Information Acquisition

Among factors that can be considered while selecting the site for vineyard, a significant number of
them requires expert analyses and utilization of specific techniques (including GIS tools). When choosing
the initial criteria for determining the location conditions, it is vital to trace the standards for different
regions of the world [55]. An essential factor for the entire analysis is access to remote sensing data
with a resolution that allows to obtain minimal informative knowledge, which constitutes the basis
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for the use of extensions based on the fuzzy logic system. It should be noted at the same time that
the quality and availability of numerical altitude data is continuously increasing and is available
without charge in many areas [56]. Three fundamental analyses that are necessary for valid pre-location
selection include determining elevation, slope, and aspect suitability (Figure 1).
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Figure 1. A general scheme of spatial pre-processing for vineyard site selection.

2.2. Materials for Common Knowledge Acquisition

The information, obtained at an initial stage, can be successively expanded by a number of
additional remote or on-site tests. Although remaining additional factors can be examined with
alternative effort or lower cost with the utilization of information type that can be addressed as common
knowledge. These factors are defined in this paper as “interchangeable,” while they can be examined by
an expert but also by a winemaker her-/himself based on observation and site inspection. Some factors,
such as, i.e., slope, aspect, are not replaceable with common knowledge and could be defined as “expert
only”. However, there is also a group of factors that refers exclusively to local knowledge and could
be defined as “the common only”, such as local winegrower examination or history of viticulture of
the site. Table 1 presents the groups of chosen interchangeable factors and the common only factors
with the common knowledge descriptions that were the basis for the method of vineyard site selection
explained below.

Table 1. Common and interchangeable factors with corresponding descriptions used for knowledge
acquisition for the fuzzy decision system.

Factor Common Knowledge

Topography

Elevation
Ask other local growers for a location of a “sweet spot” in absolute
and local elevation, which is a zone of earliest ripening with a lower

risk of winter injury and frost [8].

River valley

Look for wide river valleys that have positive mezoclimate because
of the lower height above the sea than surroundings [6,57]; this

positive effect would not appear in small valleys and narrow gorges
in which the cold air is accumulated [58,59].

Water reservoir

Look for a site that is not surrounded by shallow lakes, ponds,
backwaters, swamps, and wetlands because they have a negative

influence on thermal conditions. Their ability of heat accumulation
is infinitesimal, and a wide evaporation surface creates a danger of

frost appearance. The positive influence can only appear with
the big and deep rivers and lakes that are located up to a dozen

meters from the site [60].
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Table 1. Cont.

Factor Common Knowledge

Soil

Internal water drainage

Walk through a field after heavy rain—if water stands for a day or
more after a rain—choose another site [8], or dig a hole two feet deep
and feel it with water—if water drains out in 8 h the internal water
drainage is excellent, in 24 h: good, in 48 h: adequate, and after 48 h:

poor [11].

pH level

Make a test of soil pH—when pH is between 5.5 and 6.5 the site is
optimal when it is below 5.5—there might be a problem with

phosphorus deficiency and aluminium toxicity; pH up to 7.5 is
acceptable, but above 7.5 vines may develop zinc and iron chlorosis
deficiency; to influence nutrition uptake pH between 5.0 and 6.0 will

be optimal [8].

Stone content Choose the site that does not have excessive stone content; rocks on
or near the surface are not desirable [8].

Erosion intensity Choose the site that does not have excessive erosion of topsoil [8].

Heat accumulation

Too little heat accumulation can stunt grape ripening, while too
much heat shortens the growing season and does not allow for

proper development of flavour [8]; the newest research present that
sites with light-colored soils (arenaceous or calcareous) can improve
the wine quality. This type of soil reflects the light—fruits are better
enriched with light, and in their rind, there are more polyphenolic

compounds [61].
Climate

Frost

Choose the site where the cold air is drained quickly from
the ground; avoid concave land (where the cold air would settle);

slopes and vineyard borders without barriers (like buildings or trees)
provide good air drainage [8]; the range of frost basin can be

determined by observation of spring and autumn hoarfrost (around
6 a.m.) and appearance of half-day and nightly fog [58]; the evening

walk in late summer or autumn can also be a valuable
experience—when walking down the slope the feeling of chill should

appear—below this site the vineyard should not be located [62].
Winter injury Do not plant grapes in wet, low-lying areas of the site [8].

Rainfall shadows

Too much rain can lead to enormous compaction if the soil is in poor
condition, and also more insects may appear; analyze

the distribution of rain using climate data services or talking to
winegrowers to find “rain shadows”—areas that receive less rain

than their surroundings [8].

Wind

Choose the places that are relatively secluded and shielded from
north and west; light wind (2–3 m/s) has a positive influence on
the health of vine by hampering the growth of fungal diseases;
the heavy wind has a negative influence on the microclimate of

the vineyard [62].
Other

Local winegrower examination Walk the site with local winegrower who can examine the whole
property with the knowledge of local conditions.

Surroundings
Observe the surrounding of the site—trees, buildings, hills,

and other barriers that interrupt the vineyard, especially from south
and west are not desirable [8,62].

History of viticulture at the site

The historical localization of vineyards can be the proof of good site,
but only if these vineyards had economic value and survived for

70–80 years; the localizations of small garden vineyards are not good
factors, while they were often planted as a decoration and not for

economic reasons [63]; it is also important to notice that in the past,
vineyard districts were stated based on trade area localization

and not always connected with the terroir of the site [64].

2.3. Information Acquisition and Membership Functions

The information contained in the revised scientific literature (Table 1) has been developed based
on input data to apply the basic principles of the fuzzy logic decision framework. According to
the method used, the input variables were considered in two stages. First, the sub-models in each
of the thematic groups were created, and then, aggregated results for each group were subjected to
the final application. Below is the method of formulating input data ranges (Table 2) and identification
queries for the first stage of the analysis. In order to make the assessment process easier for users,
the ranges of notes for particular criteria were fitted into a fixed 0 to 10 scale, except for the “internal
water drainage” factor, where authors suggest 0 to 60 range pointing to the “intuitive” understanding
of information presented in hours. In case of “pH level” variable—the 0–10 range results from default
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pH scale and does not result from any transformations. Also, the y-axis representing set of membership
function values was normalized to 0–1 range for further aggregation and presentation convenience.

Table 2. Membership functions characteristics for variables within each thematic group.

Variable Type of Membership Function Range No. of Functions

Topography
Elevation Pi-shaped 0–10 3

River valley Generalized bell-shaped 0–10 3
Water reservoir Trapezoidal 0–10 2

Soil
Internal water drainage Generalized bell-shaped 0–60 4

pH level Generalized bell-shaped 0–10 4
Stone content Gaussian combination 0–10 2

Erosion intensity Triangular 0–10 2
Heat accumulation Generalized bell-shaped 0–10 3

Climate
Frost—air drainage Triangular 0–10 3

Frost—cooling sensation Gaussian combination 0–10 3
Winter injury Generalized bell-shaped 0–10 3

Rainfall shadows Gaussian 0–10 3
Wind Trapezoidal 0–10 2

Other
Local winegrower examination Triangular 0–10 3

Surroundings Product of two sigmoidal 0–10 2
History of viticulture at the site Gaussian 0–10 2

Support inquiries have been prepared to enable the user to work with the decision-making system.
The supporting queries were developed in order to provide help for user during adjustment to 1 to 10
operating scale. For instance, while assessing the particular variable, there should be a question as:
“In scale from 0 to 10—what is the measure of sensation, according to the evening walk test, given that 0
means no chill perceptible and 10 stands for distinct cooling sensation?” Each of the variables can be
assessed on a given range by responding to an issue as directed (Table 3). If the question does not
apply to a specific site, it is possible to select the “none” option, which will exclude the indicator from
further analysis. For a detailed description of parameters to which the queries refer—please see Table 1
(Materials and Methods section) with supporting references.

Table 3. Set of supporting queries for variables assessment.

Variable Supporting Queries

Elevation To what extent the elevation satisfy the “sweet spot” parameters?
River valley How vast is the river valley?

Water reservoir How well does the reservoir satisfy its desired parameters?
Internal water drainage How many hours does the water stand on the field?

pH level What is the measured pH level?
Stone content Are there many rocks on or near the surface of the field?

Erosion intensity How excessive is the erosion of the topsoil?
Heat accumulation What is the dominant color of the soil?
Frost—air drainage Are there any obstacles to air drainage?

Frost—cooling sensation What is the sensation, according to the “evening walk” test?
Winter injury What is the content of wet, low-lying areas?

Rainfall shadows How frequent are rainfalls?
Wind What is the intensity of the wind?

Local winegrower examination How does the local grower assess the site?
Surroundings Are there many interrupting surroundings?

History of viticulture at the site How good is your proof of proper prior viticultures at the site?

The examples of graphical representations of the developed membership functions, are presented
below (Figures 2–4). The complete set of functions, broken down into groups of variables, is presented
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in Appendix A. The choice of functions was based primarily on the analysis of information contained
in the text so that it was possible to reflect the underlying dynamics of variability and the nature of
the guidelines. During the analysis of the text describing the considerations of common knowledge,
the courses of functions were adapted to the description. For instance, the intensity of erosion was applied
by means of two triangular functions, because of the unambiguous indication of stress conditions
(description of moderate and excessive erosion), the lacking obvious middle point criterion in the text
caused the intersection of functions at an understandable point (5,0.5) (Figure 2). The membership
function for pH level was developed based on accurate operational scale for this factor. Starting from
“too-low” at the beginning of the scale, generalized bel-shaped decreases gradually and gains increase
positive membership value from 4.6 to 6 (optimal pH), maintained through 6 to 7 (acceptable pH),
and afterwards intersected by “too_high” function at 0.3 membership value of 7.3 pH, gradually
increasing to 1, which points to the—better documented in literature—negative impact of too high soil
pH level, than this considered as too low (Figure 3). In case of viticulture history factor, the chosen gaussian
functions are constructed in a way, that with the existence of strong deceptive proof or information bias
denoted in the literature, the membership value is at its peak (1) for negative assessment. As the belief
in deceptiveness of data decreases, and no proof for proper positive history is given, the functions
reach intersection in point (5,0.2) which indicates no extensive harm to the decision-making process as
the knowledge is neutral (or there are no convincing proofs for either scenario). As the belief in data
that confirm positive scenario increases, the function gradually increases from 5 to 10, which points to
proven 70–80 years of farming practice (Figure 4).Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 34 
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Logical rules have been created for each set of variables within individual groups. Employing
rules, it was possible to compile the results of the evaluation of variables within the fuzzy inference
system. The general logical framework used for operations on functions within one variable is
presented in Table 4. Thus, it was possible for knowledge obtained from literature to be reflected in
fuzzy rules.

Table 4. General rules for functions interactions.

Fuzzy Inference System Mamdani

AND method MIN
OR method MAX
Implication MIN
Aggregation MAX

Defuzzification Centroid

Mamdani fuzzy inference was first implemented as a method of constructing a control system
through the synthesis of a set of language control rules obtained from experienced human operators [65].
Since Mamdani systems have more straightforward and easy to comprehend rule bases, they are better
adapted for expert system implementations where the rules are generated from actual expert experience,
such as medical diagnostics. In this research, the Mamdani was chosen based on its applicability
to common knowledge interpretation skill and on its advantages confirmed in literature: intuitive,
well-suited to human input, interpretable rule base, and widespread acceptance [66]. The output of
each rule is a Fuzzy set derived from the function of the output membership and the FIS inference
process. Using the FIS aggregation method these output fuzzy sets are combined into one single fuzzy
set. The combined output fuzzy collection is then defuzzified to determine a final crisp output value
using one of the methods defined as defuzzification methods.

Fuzzy rules developed for topography, soil, climate, and other variables are presented
in Appendix B.

2.4. Implementation of Fuzzy Logic-Based System

Figure 5 shows the basic idea of a fuzzy system used in this research. Its components are as
follows [67]:

1. Factors—fundamental data, which consists of common knowledge obtained from the literature
search. As the aim of this paper states: only the Common and Interchangeable variables were used
in further steps;

2. Information acquisition—it is the phase of translating acquired data into manageable information
in terms of deriving if-then rules, as well as ranges of possibilities;
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3. Membership functions—a step of applying proper membership functions to different
linguistic terms;

4. Fuzzy rules—a transformation of acquired information to a set of if-then rules with selected
examples of principles used in the process of aggregating results from individual groups:

a. (Topography==Bad) & (Soil==Bad) & (Climate==Bad) & (Other==Bad) =>

(Site_Final_Assessment=Bad_Site) (1)
b. (Topography==Good) & (Soil==Bad) & (Climate==Good) & (Other==Good) =>

(Site_Final_Assessment=Average_Site) (1)
c. (Topography==Good) & (Soil==Good) & (Climate==Good) & (Other==Bad) =>

(Site_Final_Assessment=Average_Site) (1)
d. (Topography==Good) & (Soil==Good) & (Climate==Good) & (Other==Good) =>

(Site_Final_Assessment=Good_Site) (1)
e. (Topography==Bad) & (Soil==Good) & (Climate==Good) & (Other==Bad) =>

(Site_Final_Assessment=Bad_Site) (1)

5. Fuzzy inference system—a process of the inference cycle fuzzy matching execution, fuzzy conflict
resolution (logical operators strategy), and fuzzy rule-firing when faced with given information;

6. User interface—environment for communication between fuzzy decision support system and user.
The interface should be as easy to follow as possible.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 34 
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Figure 5. A general scheme of fuzzy logic system implementation for vineyard site selection.

While interpreting the acquired if-then rules, the following steps were performed [68]:

1. Fuzzification of input: resolving of all fuzzy statements in the antecedent to a degree of membership
between 0 and 1.

2. Application of fuzzy operator to multiple part antecedents: applying fuzzy logic operators to resolve
the antecedent to a single number between 0 and 1, which is the degree of support for the rule.

3. Application of implication method: using the degree of support for the entire rule to shape the output
fuzzy set. The consequence of a fuzzy rule assigns an entire fuzzy set to the output. This fuzzy
set is represented by a membership attribute, which is chosen to show the following qualities.
If the antecedent was only partially valid (i.e., a value less than one is assigned), then the inference
method truncated the output fuzzy set under the chosen implication method (Appendix C).

For this research, the MATLAB® Fuzzy Logic Designer by MathWorks® was used [67].
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3. Results

3.1. Graphical Representation of the Developed Fuzzy System

Examples of relationships between variables in their possible configurations are presented in
the following part of the paper. This representation of the rules allows a better understanding of
the often complex logical relationships between a large number of variables in their various states.
One example per category is presented (Figures 6–9). The impact of particular notes given to two of
the variables is then interpreted with logical rules and finally is visible as a position on the surface graph.
It is possible to observe a sample space for each possible outcome. The color HSV (hue, saturation,
value) scale on the graph represents the similar regions of the variable set logical intersection resulting
in adequate output on Z-axis. It is possible to observe what is the impact on topography suitability
assessment when assigning different notes to River Valley and Elevation factors. For instance, in order
to achieve high topography rating in the decision system, the notes of values should fall between 3.5
and 10 for Elevation and 7.5 to 10 in case of River Valley component.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 34 
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3.2. Aggregated Results

The results obtained from the created sub-models were again included in the membership
gunctions framework so that it was possible to aggregate the results of groups and present the results
within a unified space. As in the previous stage of work, a set of rules was created to implement
aggregation using Mamdani FIS (Figure 5). The graphic representation of the event space (set of all
possible outcomes or results of experiment driven by developed rules) for sample variables: topography
and soil shows how the decision system has been simplified compared to analyses within sub-models
(Figure 10). It is noticeable that to achieve a high suitability note, the topography and soil categories
should both gain values above 5 in the decision-making process, reaching the peak at 8. It is worth
noticing, that the resulting value of 10 is impossible in that case, because there is a lack of remaining
components (climate and other), so the model is penalized. This is due to the use of previously
systematized results, which allowed for derivation of fewer, clear rules. The appearance of the event is
also affected by the use of equal weights for individual variables.
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After the preparation and aggregation of data within sub-models, followed by the final model,
it is possible to support the decision-making process using user interface (Figure 11). Similar interfaces
have been already used at the stage of working on sub-models to help assess individual variables
within each group. The results of these assessments, after transformation into membership functions,
allowed for intuitive control of the process of assessing the potential of a given location (on a scale
from 0 to 10) to establish a vineyard.
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Figure 11. An example of how the user interface works during the final assessment process. Control is
done by changing the value of the variable (slider), which automatically adjusts the result, based on
the interaction between the established fuzzy rules.

3.3. Assessment Method Simulation

There was a simulation of vineyard site assessment methodology performed. A set of notes was
selected to present how different notes impact the “site final assessment factor.” The example was done
for factors aggregated within sub-models. According to the implemented method, the GIS reclassified
factor acts as a logit qualificator for further computations. Table 5 contains results of ten different
assessment scenarios.
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Table 5. Simulation of assessing model performance.

Scenario GIS Topography Soil Climate Other Assessment Suitability

1 0.50 5.0 5.0 5.0 5.0 4.48 Average
2 0.30 7.5 6.3 3.6 1.2 2.84 Bad
3 0.87 7.8 6.8 7.2 8.6 6.46 Average
4 0.59 3.5 2.9 2.6 5.0 4.01 Average
5 0.81 0.4 1.1 4.0 6.9 3.60 Average
6 0.94 8.8 8.5 8.8 9.2 7.64 Good
7 0.77 5.4 6.1 6.0 7.3 4.90 Average
8 0.57 0 8.8 0 8.1 2.01 Bad
9 0.90 9.3 7.0 8.1 8.1 6.95 Good

10 1 10 10 10 10 10.00 Good

The different tested scenarios of factors arrangement for suitability assessment show how set of
developed rules interact with membership functions to obtain final result.

4. Discussion

The research undertaken in this work focused on checking the possibilities of decision-making
with the use of expert and common knowledge factors when assessing the suitability of a given site
for wine-growing. In practice, the systematization of common knowledge issues is intended to help
expand the decision-making space when particular “hard” data is unavailable, impossible to use
for various reasons. This situation may occur when making location decisions for vineyards that
require access to a large amount of various data, often of qualitative nature with non-technical origin.
In the paper, the implementation possibility of fuzzy inference acting as a valuable supplement to
the basic GIS and remote sensing methods was proposed. Referring to others [31,69,70] pointing
to active cooperation and flexibility of these environments, which allows maintaining balance in
the selection of methods, depending on the user’s capabilities. It is also suggested that methods based
on fuzzy logic could be useful for winegrowers who want to systematically use a large amount of
information and then attempt to support or question the decisions suggested by other sources of
information. The method can also be a way to collect knowledge and observations that winegrowers
have been passing on for generations, or that have been operating in the environment for a long time
as so-called “rules of thumb”.

In thematic literature, it is confirmed that common knowledge is an essential and potentially
applicable element, especially in an industry as old and rich in “proven rules” as winemaking [55,71].
In this case, it also seems reasonable to strive to incorporate unconventional or non-scientific knowledge
into the decision-making process [14,72]. This need is associated with the traditional approach that is
continuously present in the environment, referring to “sight, touch, smell, and (. . . ) taste” example from
Introduction [73]. Similarly, as pointed out by [14], a properly developed system of this type can achieve
the status of “expert system” over time—especially given the possibility of its continuous expansion.
This is a direction that has already been taken by specialists from other industries [74,75]. The most
important aspects of the advantage of well-developed expert systems over the traditional approach to
mathematical modeling have been demonstrated in the literature [76]. However, the near future does
not indicate that fuzzy logic-based systems will obtain the status of unambiguous and underlying
sources of informative decisions. This is due to the existing limitations of these solutions.

Fuzzy controllers and inference systems used for this research require predefined membership
functions and fuzzy inference rules for mapping data into linguistic variable terms to make fuzzy
work [77]. With unique domain knowledge as context, the decision-making function was to use an
inference technique to get an optimal or nearly optimal solution from input information. In numerous
research, various methods concerning decision-making in a complex environment were discussed [78–81].
Between them, creating a detailed mathematical model to explain the dynamic environment is often
shown as a robust solution. However, for all complicated settings, reliable mathematical models neither
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always exist nor can they be extracted, since the context may not be completely understood. Another
method pointed out in literature is to seek human expert help [76]. However, in case of an informative
decision on vineyard selection, the cost of hiring an expert may be high, and when the decision needs
to be taken, there might not be any human experts available. Where the abovementioned methods
are not entirely suitable—knowledge-based systems come in handy [82]. Within the inference system,
the knowledge base can evolve incrementally and can be continuously modified to enhance the efficiency
of assessment as it grows. Besides, such a system approach is capable of incorporating knowledge
from many fields, minimizing query costs, decreasing the probability of danger, and providing a quick
response [83]. Current fuzzy systems, however, have the following general constraints: 1) May not be
equipped with a specific structure from which to address different types of problems; thus, they are
problem-dependent, and 2) human experts play a very significant role in the development of fuzzy
system controls. Recently, numerous fuzzy systems have been developed, which automatically extract
fuzzy rules from data [76,84,85]. Without the aid of human experts, prototypes of fuzzy rule bases can be
easily created in these systems. Nonetheless, membership rules also need to be predefined and therefore
are typically created by human experts or experienced users. One of the basic limitations of fuzzy logic
systems is, despite the existence of many positive examples of cooperation, their inseparability from
GIS in the case of analyses conducted in space [31,86]. As in other studies, FL-based solutions support
the so-called “relevant systems” and constitute a sub-system with a control or advisory function [87–89].
The arbitrariness of assessments based on feelings and experiences by the assumption that are not
the results of precise measurements is also seen as another of the limitations of these solutions [90].
However, as it was stated by Tzung-Pei [76] that the dynamics of development and the growing
popularity of FL tools could constitute not only support but also a competition of many traditional
models. Especially as systems based on the human ability to notice patterns and interpret experiences,
it should also be noted, after Keenan [91], that in decision-making systems, in which, for motivated
reasons, the balance between FL-based solutions and technical methods may not be maintained in
favor of the latter. In essence, one should consider giving up FL systems, or treat them as support,
the second opinion. Apart from existing limitations, the FL-based systems have advantages that
convince users to use their capabilities when creating expert systems. First of all, fuzzy logic systems
are flexible and allow for modification of the underlying rules. Even imprecise, distorted, and biased
input information can be dealt with during the implementation of the system. Owing to the widely
developed tools—such systems can be easily developed and maintained. Since FL-based technologies
involve human reasoning and decision-making, they are useful in providing solutions to complex
problems in different types of applications.

However, the research done in this paper indicates the potential to extend classic decision-making
methods using remote sensing data to include additional forms of information. In this aspect,
the originality of the work manifests itself by drawing attention to the possibility of systematic
introduction of qualitative common knowledge data to the decision-making process by a user who is
not an expert in the field of spatial information systems. In turn, for an expert, the system’s flexibility
allows it to improve its functioning as decision support by adapting the rules and membership
functions as the quality of domain knowledge data and accessibility of GIS tools increases. The issues
raised in the work also draw attention to the challenge for remote sensing science in the context
of approach to qualitative research methods and integration with secondary technologies such as
fuzzy logic systems. Informational use of tools that interpret common knowledge requires a strong
substantive basis, especially in the formulation of conclusions and rules. FL—ased inference works
best when supported by domain knowledge. However, when such knowledge is available within
one system that can be used to obtain an additional opinion by an indecisive or seeking support
from users—such systems seem to be worth developing in the future. In the case of the field of
knowledge so much based on the knowledge of experienced winegrowers, with often multi-generational
traditions—attempts to transform this knowledge into generally available tools can shed new light on
the complex decision-making localization process.
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5. Conclusions

There are many opportunities to utilize information, mainly spatial information, during
the vineyard selection process. The identification of significant factors provides growers and producers
with better information and therefore supports better decision-making and quality of results. However,
secondary knowledge based on many years of experience exists in the environment of specialist
winegrowers. Methods based on fuzzy logic, such as the one presented in this article, help in striving to
systematize a group of factors that are difficult to interpret. Owing to them, the classic decision-making
process becomes flexible and more resistant to deficiencies in the primary data. Also, the validation
method for this study in essential for future implementation. The common knowledge-based decision
system would be applied to selected prospering vineyards to check if they follow the rules described in
the domain literature. For some factors, it could be impossible to retrace the initial conditions existing
prior to the vineyard. In such a case, authors propose to interview professional winegrowers on their
experience with common knowledge factors role while establishing the business. Owing to the work
on improving the knowledge database—it is possible to develop a functional expert system. Therefore,
in the next works, the authors plan to expand the system supporting decisions with new data and rules
as well as to provide validation results for selected vineyards.
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Appendix B

[Input: Topography]—Logical Rules
1. (Elevation==bad_conditions) & (River_Valley==Small_Valley) &

(Water_Reservoir==Shallow_Swampy) => (Topography=Bad) (1)
2. (Elevation==bad_conditions) | (River_Valley==Small_Valley) |

(Water_Reservoir==Shallow_Swampy) => (Topography=Bad) (1)
3. (Elevation==good_conditions) & (River_Valley==Small_Valley) &

(Water_Reservoir==Shallow_Swampy) => (Topography=Bad) (1)
4. (Elevation==“sweet_spot”) & (River_Valley==Small_Valley) &

(Water_Reservoir==Shallow_Swampy) => (Topography=Bad) (1)
5. (River_Valley==Small_Valley) & (Water_Reservoir==Shallow_Swampy) => (Topography=Bad)

(1)
6. (Elevation==bad_conditions) & (River_Valley==Medium_Valley) &

(Water_Reservoir==Shallow_Swampy) => (Topography=Bad) (1)
7. (Elevation==bad_conditions) & (River_Valley==Large_Valley) &

(Water_Reservoir==Shallow_Swampy) => (Topography=Bad) (1)
8. (Elevation==bad_conditions) & (Water_Reservoir==Shallow_Swampy) => (Topography=Bad)

(1)
9. (Elevation==bad_conditions) & (River_Valley==Small_Valley) &

(Water_Reservoir==Deep_Large) => (Topography=Bad) (1)
10. (Elevation==good_conditions) & (River_Valley==Small_Valley) &

(Water_Reservoir==Deep_Large) => (Topography=Moderate) (1)
11. (Elevation==“sweet_spot”) & (River_Valley==Small_Valley) &

(Water_Reservoir==Deep_Large) => (Topography=Good) (1)
12. (River_Valley==Small_Valley) & (Water_Reservoir==Deep_Large) =>

(Topography=Moderate) (1)
13. (Elevation==bad_conditions) & (River_Valley==Medium_Valley) &

(Water_Reservoir==Deep_Large) => (Topography=Moderate) (1)
14. (Elevation==bad_conditions) & (River_Valley==Large_Valley) &

(Water_Reservoir==Deep_Large) => (Topography=Moderate) (1)
15. (Elevation==bad_conditions) & (Water_Reservoir==Deep_Large) => (Topography=Bad) (1)
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16. (Elevation==bad_conditions) & (River_Valley==Small_Valley) => (Topography=Bad) (1)
17. (Elevation==good_conditions) & (River_Valley==Small_Valley) => (Topography=Moderate)

(1)
18. (Elevation==“sweet_spot”) & (River_Valley==Small_Valley) => (Topography=Moderate) (1)
19. (Elevation==bad_conditions) & (River_Valley==Medium_Valley) => (Topography=Bad) (1)
20. (Elevation==bad_conditions) & (River_Valley==Large_Valley) => (Topography=Moderate)

(1)
21. (Elevation==good_conditions) & (River_Valley==Medium_Valley) &

(Water_Reservoir==Deep_Large) => (Topography=Good) (1)
22. (Elevation==good_conditions) & (River_Valley==Large_Valley) &

(Water_Reservoir==Deep_Large) => (Topography=Good) (1)
23. (Elevation==“sweet_spot”) & (River_Valley==Large_Valley) &

(Water_Reservoir==Deep_Large) => (Topography=Good) (1)
24. (River_Valley==Large_Valley) & (Water_Reservoir==Deep_Large) => (Topography=Good)

(1)

[Input: Soil]—Logical Rules
1. (Internal_water_drainage==very_good) & (pH_level==too_low)

& (Stone_content==acceptable) & (Erosion_intensity==moderate) &
(Heat_accumulation==dark_coloured) => (Soil=Moderate) (1)

2. (Internal_water_drainage==good) & (pH_level==too_low) & (Stone_content==acceptable) &
(Erosion_intensity==moderate) & (Heat_accumulation==dark_coloured) => (Soil=Moderate) (1)

3. (Internal_water_drainage==adequate) & (pH_level==too_low) & (Stone_content==acceptable)
& (Erosion_intensity==moderate) & (Heat_accumulation==dark_coloured) => (Soil=Bad) (1)

4. (Internal_water_drainage==poor) & (pH_level==too_low) & (Stone_content==acceptable) &
(Erosion_intensity==moderate) & (Heat_accumulation==dark_coloured) => (Soil=Bad) (1)

5. (pH_level==too_low) & (Stone_content==acceptable) & (Erosion_intensity==moderate) &
(Heat_accumulation==dark_coloured) => (Soil=Bad) (1)

6. (Internal_water_drainage==very_good) & (pH_level==optimal)
& (Stone_content==acceptable) & (Erosion_intensity==moderate) &
(Heat_accumulation==dark_coloured) => (Soil=Good) (1)

7. (Internal_water_drainage==very_good) & (pH_level==acceptable)
& (Stone_content==acceptable) & (Erosion_intensity==moderate) &
(Heat_accumulation==dark_coloured) => (Soil=Moderate) (1)

8. (Internal_water_drainage==very_good) & (pH_level==too_high)
& (Stone_content==acceptable) & (Erosion_intensity==moderate) &
(Heat_accumulation==dark_coloured) => (Soil=Bad) (1)

9. (Internal_water_drainage==very_good) & (Stone_content==acceptable) &
(Erosion_intensity==moderate) & (Heat_accumulation==dark_coloured) => (Soil=Moderate)
(1)

10. (Internal_water_drainage==very_good) & (pH_level==too_low)
& (Stone_content==excessive) & (Erosion_intensity==moderate) &
(Heat_accumulation==dark_coloured) => (Soil=Bad) (1)

11. (Internal_water_drainage==very_good) & (pH_level==too_low) &
(Erosion_intensity==moderate) & (Heat_accumulation==dark_coloured) => (Soil=Moderate)
(1)

12. (Internal_water_drainage==very_good) & (pH_level==too_low)
& (Stone_content==acceptable) & (Erosion_intensity==excessive) &
(Heat_accumulation==dark_coloured) => (Soil=Moderate) (1)

13. (Internal_water_drainage==very_good) & (pH_level==too_low) &
(Stone_content==acceptable) & (Heat_accumulation==dark_coloured) => (Soil=Bad) (1)



Remote Sens. 2020, 12, 1775 19 of 31

14. (Internal_water_drainage==very_good) & (pH_level==too_low)
& (Stone_content==acceptable) & (Erosion_intensity==moderate) &
(Heat_accumulation==greyish_or_inbetween) => (Soil=Moderate) (1)

15. (Internal_water_drainage==very_good) & (pH_level==too_low)
& (Stone_content==acceptable) & (Erosion_intensity==moderate) &
(Heat_accumulation==light_coloured) => (Soil=Good) (1)

16. (Internal_water_drainage==very_good) & (pH_level==too_low) &
(Stone_content==acceptable) & (Erosion_intensity==moderate) => (Soil=Moderate) (1)

17. (Internal_water_drainage==good) & (pH_level==optimal) & (Stone_content==acceptable) &
(Erosion_intensity==moderate) & (Heat_accumulation==greyish_or_inbetween) => (Soil=Good) (1)

18. (Internal_water_drainage==adequate) & (pH_level==optimal) & (Stone_content==acceptable)
& (Erosion_intensity==moderate) & (Heat_accumulation==greyish_or_inbetween) => (Soil=Good) (1)

19. (Internal_water_drainage==poor) & (pH_level==optimal) & (Stone_content==acceptable) &
(Erosion_intensity==moderate) & (Heat_accumulation==greyish_or_inbetween) => (Soil=Moderate)
(1)

20. (pH_level==optimal) & (Stone_content==acceptable) & (Erosion_intensity==moderate) &
(Heat_accumulation==greyish_or_inbetween) => (Soil=Good) (1)

21. (Internal_water_drainage==good) & (pH_level==acceptable) & (Stone_content==acceptable)
& (Erosion_intensity==moderate) & (Heat_accumulation==greyish_or_inbetween) => (Soil=Good) (1)

22. (Internal_water_drainage==good) & (pH_level==too_high) & (Stone_content==acceptable) &
(Erosion_intensity==moderate) & (Heat_accumulation==greyish_or_inbetween) => (Soil=Moderate)
(1)

23. (Internal_water_drainage==good) & (Stone_content==acceptable) &
(Erosion_intensity==moderate) & (Heat_accumulation==greyish_or_inbetween) => (Soil=Good) (1)

24. (Internal_water_drainage==good) & (pH_level==optimal) & (Stone_content==acceptable) &
(Erosion_intensity==moderate) & (Heat_accumulation==light_coloured) => (Soil=Good) (1)

25. (Internal_water_drainage==good) & (pH_level==optimal) & (Stone_content==acceptable) &
(Erosion_intensity==moderate) => (Soil=Good) (1)

26. (Internal_water_drainage==good) & (pH_level==optimal) & (Stone_content==excessive) &
(Erosion_intensity==moderate) & (Heat_accumulation==greyish_or_inbetween) => (Soil=Moderate)
(1)

27. (Internal_water_drainage==good) & (pH_level==optimal) & (Erosion_intensity==moderate)
& (Heat_accumulation==greyish_or_inbetween) => (Soil=Good) (1)

28. (Internal_water_drainage==good) & (pH_level==optimal) & (Stone_content==acceptable) &
(Erosion_intensity==excessive) & (Heat_accumulation==greyish_or_inbetween) => (Soil=Moderate)
(1)

29. (Internal_water_drainage==good) & (pH_level==optimal) & (Stone_content==acceptable) &
(Heat_accumulation==greyish_or_inbetween) => (Soil=Good) (1)

30. (Internal_water_drainage==good) & (pH_level==optimal) & (Stone_content==excessive) &
(Heat_accumulation==greyish_or_inbetween) => (Soil=Moderate) (1)

31. (Internal_water_drainage==good) & (pH_level==optimal) &
(Heat_accumulation==greyish_or_inbetween) => (Soil=Good) (1)

32. (Internal_water_drainage==adequate) & (pH_level==acceptable) &
(Heat_accumulation==light_coloured) => (Soil=Good) (1)

33. (Internal_water_drainage==poor) & (pH_level==acceptable) &
(Heat_accumulation==light_coloured) => (Soil=Moderate) (1)

34. (pH_level==acceptable) & (Heat_accumulation==light_coloured) => (Soil=Good) (1)
35. (Internal_water_drainage==adequate) & (pH_level==too_high) &

(Heat_accumulation==light_coloured) => (Soil=Moderate) (1)
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36. (Internal_water_drainage==adequate) & (Heat_accumulation==light_coloured) =>

(Soil=Good) (1)
37. (Internal_water_drainage==adequate) & (pH_level==acceptable) => (Soil=Good) (1)
38. (Internal_water_drainage==adequate) & (pH_level==acceptable) &

(Stone_content==acceptable) & (Heat_accumulation==light_coloured) => (Soil=Good) (1)
39. (Internal_water_drainage==adequate) & (pH_level==acceptable) &

(Stone_content==excessive) & (Heat_accumulation==light_coloured) => (Soil=Moderate) (1)
40. (Internal_water_drainage==adequate) & (pH_level==acceptable) &

(Erosion_intensity==moderate) & (Heat_accumulation==light_coloured) => (Soil=Good) (1)
41. (Internal_water_drainage==adequate) & (pH_level==acceptable) &

(Erosion_intensity==excessive) & (Heat_accumulation==light_coloured) => (Soil=Moderate)
(1)

42. (Internal_water_drainage==poor) & (pH_level==too_high) => (Soil=Bad) (1)
43. (pH_level==too_high) => (Soil=Bad) (1)
44. (Internal_water_drainage==poor) & (pH_level==too_high) &

(Heat_accumulation==light_coloured) => (Soil=Bad) (1)
45. (Internal_water_drainage==poor) & (pH_level==too_high) & (Stone_content==acceptable) &

(Heat_accumulation==light_coloured) => (Soil=Bad) (1)
46. (Internal_water_drainage==poor) & (pH_level==too_high) & (Stone_content==excessive) &

(Heat_accumulation==light_coloured) => (Soil=Bad) (1)
47. (Internal_water_drainage==poor) & (pH_level==too_high) & (Erosion_intensity==moderate)

& (Heat_accumulation==light_coloured) => (Soil=Bad) (1)
48. (Internal_water_drainage==poor) & (pH_level==too_high) & (Erosion_intensity==excessive)

& (Heat_accumulation==light_coloured) => (Soil=Bad) (1)
49. (Internal_water_drainage==poor) & (pH_level==too_high) & (Stone_content==acceptable) &

(Erosion_intensity==moderate) & (Heat_accumulation==light_coloured) => (Soil=Bad) (1)
50. (Internal_water_drainage==poor) & (pH_level==too_high) & (Stone_content==excessive) &

(Erosion_intensity==moderate) & (Heat_accumulation==light_coloured) => (Soil=Bad) (1)
51. (Internal_water_drainage==poor) & (pH_level==too_high) & (Stone_content==excessive) &

(Erosion_intensity==excessive) & (Heat_accumulation==light_coloured) => (Soil=Bad) (1)
52. (Internal_water_drainage==poor) & (pH_level==too_high) & (Stone_content==excessive) &

(Erosion_intensity==excessive) & (Heat_accumulation==greyish_or_inbetween) => (Soil=Bad) (1)
53. (Internal_water_drainage==poor) & (pH_level==too_high) & (Stone_content==excessive) &

(Erosion_intensity==moderate) & (Heat_accumulation==greyish_or_inbetween) => (Soil=Bad) (1)
54. (Internal_water_drainage==poor) & (pH_level==too_high) & (Stone_content==acceptable) &

(Erosion_intensity==moderate) & (Heat_accumulation==greyish_or_inbetween) => (Soil=Bad) (1)
55. (Internal_water_drainage==poor) & (Stone_content==acceptable) &

(Erosion_intensity==moderate) & (Heat_accumulation==dark_coloured) => (Soil=Bad) (1)
56. (Internal_water_drainage==poor) & (Stone_content==acceptable) &

(Erosion_intensity==excessive) & (Heat_accumulation==dark_coloured) => (Soil=Bad) (1)
57. (Internal_water_drainage==poor) & (Stone_content==excessive) &

(Erosion_intensity==excessive) & (Heat_accumulation==dark_coloured) => (Soil=Bad) (1)
58. (Internal_water_drainage==poor) & (Stone_content==excessive) &

(Erosion_intensity==moderate) & (Heat_accumulation==dark_coloured) => (Soil=Bad) (1)

[Input: Climate]—Logical Rules
1. (frost_-_air_drainage==obstacles_-_no_relocation) & (winter_injury==no_low-lying&wet_areas)

& (rain_shadows==Too_little_rain) & (wind==Light_wind) & (frost_-_sensation==cooling_not_perceptible)
=> (Climate=Moderate) (1)
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2. (frost_-_air_drainage==few_impediments) & (winter_injury==no_low-lying&wet_areas) &
(rain_shadows==Too_little_rain) & (wind==Light_wind) & (frost_-_sensation==cooling_not_perceptible)
=> (Climate=Moderate) (1)

3. (frost_-_air_drainage==free_of_impediments) & (winter_injury==no_low-lying&wet_areas) &
(rain_shadows==Too_little_rain) & (wind==Light_wind) & (frost_-_sensation==cooling_not_perceptible)
=> (Climate=Good) (1)

4. (winter_injury==no_low-lying&wet_areas) & (rain_shadows==Too_little_rain) &
(wind==Light_wind) & (frost_-_sensation==cooling_not_perceptible) => (Climate=Good) (1)

5. (frost_-_air_drainage==obstacles_-_no_relocation) & (winter_injury==a_few_low-lying&wet_areas)
& (rain_shadows==Too_little_rain) & (wind==Light_wind) & (frost_-_sensation==cooling_not_perceptible)
=> (Climate=Moderate) (1)

6. (frost_-_air_drainage==obstacles_-_no_relocation) & (winter_injury==many_low_lying&wet_areas)
& (rain_shadows==Too_little_rain) & (wind==Light_wind) & (frost_-_sensation==cooling_not_perceptible)
=> (Climate=Bad) (1)

7. (frost_-_air_drainage==obstacles_-_no_relocation) & (rain_shadows==Too_little_rain) &
(wind==Light_wind) & (frost_-_sensation==cooling_not_perceptible) => (Climate=Good) (1)

8. (frost_-_air_drainage==obstacles_-_no_relocation) & (winter_injury==no_low-lying&wet_areas)
& (rain_shadows==Optimal_amount) & (wind==Light_wind) &
(frost_-_sensation==cooling_not_perceptible) => (Climate=Good) (1)

9. (frost_-_air_drainage==obstacles_-_no_relocation) & (winter_injury==no_low-lying&wet_areas)
& (rain_shadows==Too_much_rain) & (wind==Light_wind) &
(frost_-_sensation==cooling_not_perceptible) => (Climate=Moderate) (1)

10. (frost_-_air_drainage==obstacles_-_no_relocation) & (winter_injury==no_low-lying&wet_areas)
& (wind==Light_wind) & (frost_-_sensation==cooling_not_perceptible) => (Climate=Good) (1)

11. (frost_-_air_drainage==obstacles_-_no_relocation) & (winter_injury==no_low-lying&wet_areas)
& (rain_shadows==Too_little_rain) & (wind==Strong_wind) &
(frost_-_sensation==cooling_not_perceptible) => (Climate=Bad) (1)

12. (frost_-_air_drainage==obstacles_-_no_relocation) & (winter_injury==no_low-lying&wet_areas)
& (rain_shadows==Too_little_rain) & (frost_-_sensation==cooling_not_perceptible) => (Climate=Bad)
(1)

13. (frost_-_air_drainage==obstacles_-_no_relocation) & (winter_injury==no_low-lying&wet_areas)
& (rain_shadows==Too_little_rain) & (wind==Light_wind) & (frost_-_sensation==moderate_cooling)
=> (Climate=Moderate) (1)

14. (frost_-_air_drainage==obstacles_-_no_relocation) & (winter_injury==no_low-lying&wet_areas)
& (rain_shadows==Too_little_rain) & (wind==Light_wind) & (frost_-_sensation==distinct_cooling)
=> (Climate=Bad) (1)

15. (frost_-_air_drainage==obstacles_-_no_relocation) & (winter_injury==no_low-lying&wet_areas)
& (rain_shadows==Too_little_rain) & (wind==Light_wind) => (Climate=Moderate) (1)

16. (frost_-_air_drainage==few_impediments) & (winter_injury==a_few_low-lying&wet_areas)
& (rain_shadows==Optimal_amount) & (wind==Strong_wind) &
(frost_-_sensation==moderate_cooling) => (Climate=Moderate) (1)

17. (frost_-_air_drainage==free_of_impediments) & (winter_injury==a_few_low-lying&wet_areas)
& (rain_shadows==Optimal_amount) & (wind==Strong_wind) &
(frost_-_sensation==moderate_cooling) => (Climate=Moderate) (1)

18. (winter_injury==a_few_low-lying&wet_areas) & (rain_shadows==Optimal_amount) &
(wind==Strong_wind) & (frost_-_sensation==moderate_cooling) => (Climate=Good) (1)

19. (frost_-_air_drainage==few_impediments) & (winter_injury==many_low_lying&wet_areas)
& (rain_shadows==Optimal_amount) & (wind==Strong_wind) &
(frost_-_sensation==moderate_cooling) => (Climate=Bad) (1)
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20. (frost_-_air_drainage==few_impediments) & (rain_shadows==Optimal_amount) &
(wind==Strong_wind) & (frost_-_sensation==moderate_cooling) => (Climate=Moderate) (1)

21. (frost_-_air_drainage==few_impediments) & (winter_injury==a_few_low-lying&wet_areas)
& (rain_shadows==Too_much_rain) & (wind==Strong_wind) &
(frost_-_sensation==moderate_cooling) => (Climate=Bad) (1)

22. (frost_-_air_drainage==few_impediments) & (winter_injury==a_few_low-lying&wet_areas)
& (wind==Strong_wind) & (frost_-_sensation==moderate_cooling) => (Climate=Bad) (1)

23. (frost_-_air_drainage==few_impediments) & (winter_injury==a_few_low-lying&wet_areas)
& (rain_shadows==Optimal_amount) & (wind==Light_wind) &
(frost_-_sensation==moderate_cooling) => (Climate=Good) (1)

24. (frost_-_air_drainage==few_impediments) & (winter_injury==a_few_low-lying&wet_areas)
& (rain_shadows==Optimal_amount) & (frost_-_sensation==moderate_cooling) => (Climate=Good)
(1)

25. (frost_-_air_drainage==few_impediments) & (winter_injury==a_few_low-lying&wet_areas)
& (rain_shadows==Optimal_amount) & (wind==Light_wind) & (frost_-_sensation==distinct_cooling)
=> (Climate=Moderate) (1)

26. (frost_-_air_drainage==few_impediments) & (winter_injury==a_few_low-lying&wet_areas)
& (rain_shadows==Optimal_amount) & (wind==Strong_wind) &
(frost_-_sensation==distinct_cooling) => (Climate=Bad) (1)

27. (frost_-_air_drainage==few_impediments) & (winter_injury==a_few_low-lying&wet_areas)
& (rain_shadows==Optimal_amount) & (frost_-_sensation==distinct_cooling) => (Climate=Bad) (1)

28. (frost_-_air_drainage==few_impediments) & (winter_injury==a_few_low-lying&wet_areas)
& (rain_shadows==Optimal_amount) => (Climate=Moderate) (1)

29. (frost_-_air_drainage==few_impediments) & (winter_injury==a_few_low-lying&wet_areas)
& (rain_shadows==Optimal_amount) & (wind==Strong_wind) => (Climate=Bad) (1)

30. (frost_-_air_drainage==few_impediments) & (winter_injury==a_few_low-lying&wet_areas)
& (rain_shadows==Optimal_amount) & (wind==Light_wind) => (Climate=Moderate) (1)

31. (frost_-_air_drainage==free_of_impediments) & (winter_injury==many_low_lying&wet_areas)
& (rain_shadows==Too_much_rain) & (wind==Light_wind) & (frost_-_sensation==distinct_cooling)
=> (Climate=Good) (1)

32. (frost_-_air_drainage==free_of_impediments) & (winter_injury==many_low_lying&wet_areas)
& (rain_shadows==Too_much_rain) & (wind==Strong_wind) & (frost_-_sensation==distinct_cooling)
=> (Climate=Moderate) (1)

33. (frost_-_air_drainage==free_of_impediments) & (winter_injury==many_low_lying&wet_areas)
& (rain_shadows==Too_much_rain) & (frost_-_sensation==distinct_cooling) => (Climate=Bad) (1)

34. (winter_injury==many_low_lying&wet_areas) & (rain_shadows==Too_much_rain) &
(frost_-_sensation==distinct_cooling) => (Climate=Bad) (1)

35. (winter_injury==many_low_lying&wet_areas) & (rain_shadows==Too_much_rain) &
(wind==Strong_wind) & (frost_-_sensation==distinct_cooling) => (Climate=Bad) (1)

36. (winter_injury==many_low_lying&wet_areas) & (rain_shadows==Too_much_rain) &
(wind==Light_wind) & (frost_-_sensation==distinct_cooling) => (Climate=Bad) (1)

37. (frost_-_air_drainage==free_of_impediments) & (rain_shadows==Too_much_rain) &
(wind==Light_wind) & (frost_-_sensation==distinct_cooling) => (Climate=Moderate) (1)

38. (frost_-_air_drainage==free_of_impediments) & (rain_shadows==Too_much_rain) &
(wind==Strong_wind) & (frost_-_sensation==distinct_cooling) => (Climate=Bad) (1)

39. (frost_-_air_drainage==free_of_impediments) & (rain_shadows==Too_much_rain) &
(frost_-_sensation==distinct_cooling) => (Climate=Bad) (1)

40. (frost_-_air_drainage==free_of_impediments) & (winter_injury==many_low_lying&wet_areas)
& (frost_-_sensation==distinct_cooling) => (Climate=Bad) (1)
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41. (frost_-_air_drainage==free_of_impediments) & (winter_injury==many_low_lying&wet_areas)
& (wind==Strong_wind) & (frost_-_sensation==distinct_cooling) => (Climate=Bad) (1)

42. (frost_-_air_drainage==free_of_impediments) & (winter_injury==many_low_lying&wet_areas)
& (wind==Light_wind) & (frost_-_sensation==distinct_cooling) => (Climate=Moderate) (1)

43. (frost_-_air_drainage==free_of_impediments) & (winter_injury==many_low_lying&wet_areas)
& (rain_shadows==Too_much_rain) => (Climate=Bad) (1)

44. (frost_-_air_drainage==free_of_impediments) & (winter_injury==many_low_lying&wet_areas)
& (rain_shadows==Too_much_rain) & (wind==Strong_wind) => (Climate=Bad) (1)

45. (frost_-_air_drainage==free_of_impediments) & (winter_injury==many_low_lying&wet_areas)
& (rain_shadows==Too_much_rain) & (wind==Light_wind) => (Climate=Moderate) (1)

[Input: Other]—Logical Rules
1. (Local_grower_examination==Negative_note) & (Surroundings==little_obstacles) &

(Viticulture_history==deceptive_proof) => (Other=Bad) (1)
2. (Local_grower_examination==Average_note) & (Surroundings==little_obstacles) &

(Viticulture_history==deceptive_proof) => (Other=Bad) (1)
3. (Local_grower_examination==High_note) & (Surroundings==little_obstacles) &

(Viticulture_history==deceptive_proof) => (Other=Moderate) (1)
4. (Surroundings==little_obstacles) & (Viticulture_history==deceptive_proof) =>

(Other=Moderate) (1)
5. (Local_grower_examination==Negative_note) & (Surroundings==obstacles&tall_trees) &

(Viticulture_history==deceptive_proof) => (Other=Bad) (1)
6. (Local_grower_examination==Negative_note) & (Viticulture_history==deceptive_proof) =>

(Other=Bad) (1)
7. (Local_grower_examination==Negative_note) & (Surroundings==little_obstacles) &

(Viticulture_history==proven_70-80_yrs_farming) => (Other=Moderate) (1)
8. (Local_grower_examination==Negative_note) & (Surroundings==little_obstacles) =>

(Other=Bad) (1)
9. (Local_grower_examination==Average_note) & (Surroundings==little_obstacles) &

(Viticulture_history==proven_70-80_yrs_farming) => (Other=Good) (1)
10. (Local_grower_examination==Average_note) & (Surroundings==obstacles&tall_trees) &

(Viticulture_history==proven_70-80_yrs_farming) => (Other=Moderate) (1)
11. (Local_grower_examination==Average_note) & (Viticulture_history==proven_70-80_yrs_farming)

=> (Other=Moderate) (1)
12. (Local_grower_examination==High_note) & (Surroundings==obstacles&tall_trees) &

(Viticulture_history==proven_70-80_yrs_farming) => (Other=Good) (1)
13. (Surroundings==obstacles&tall_trees) & (Viticulture_history==proven_70-80_yrs_farming)

=> (Other=Good) (1)
14. (Local_grower_examination==High_note) & (Viticulture_history==proven_70-80_yrs_farming)

=> (Other=Good) (1)
15. (Local_grower_examination==High_note) & (Surroundings==obstacles&tall_trees) =>

(Other=Good) (1)

Appendix C

[System]
Name=‘Topography’
Type=‘mamdani’
Version=2.0
NumInputs=3
NumOutputs=1
NumRules=24



Remote Sens. 2020, 12, 1775 24 of 31

AndMethod=‘min’
OrMethod=‘max’
ImpMethod=‘min’
AggMethod=‘max’
DefuzzMethod=‘centroid’
[Input1]
Name=‘Elevation’
Range=[010]
NumMFs=3
MF1=‘bad_conditions’:’pimf’,[−4.5 −0.5 0.5 4.5]
MF2=‘good_conditions’:’pimf’,[3.01497261758657 4.51497261758657 5.51497261758657

9.51497261758657]
MF3=‘“sweet_spot”‘:’pimf’,[8 9.5 10.5 14.5]
[Input2]
Name=‘River_Valley’
Range=[010]
NumMFs=3
MF1=‘Small_Valley’:’gbellmf’,[2.5 2.5 0]
MF2=‘Medium_Valley’:’gbellmf’,[2.5 2.5 5]
MF3=‘Large_Valley’:’gbellmf’,[2.5 2.5 10]
[Input3]
Name=‘Water_Reservoir’
Range=[010]
NumMFs=2
MF1=‘Shallow_Swampy’:’trapmf’,[−9-119]
MF2=‘Deep_Large’:’trapmf’,[1 9 11 19]
[Output1]
Name=‘Topography’
Range=[0 10]
NumMFs=3
MF1=‘Bad’:’gbellmf’,[2.9492600422833 2.5 0]
MF2=‘Moderate’:’gbellmf’,[2.5 2.5 5]
MF3=‘Good’:’gbellmf’,[3.0338266384778 2.5 10]
[Rules] %Obtain from “LogicRules.txt”

[System]
Name=‘Soil’
Type=‘mamdani’
Version=2.0
NumInputs=5
NumOutputs=1
NumRules=58
AndMethod=‘min’
OrMethod=‘max’
ImpMethod=‘min’
AggMethod=‘max’
DefuzzMethod=‘centroid’
[Input1]
Name=‘Internal_water_drainage’
Range=[0 60]
NumMFs=4
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MF1=‘very_good’:’gbellmf’,[9.6 2.5 9.6]
MF2=‘good’:’gbellmf’,[10 2.5 28.8]
MF3=‘adequate’:’gbellmf’,[9.996 5.44 48]
MF4=‘poor’:’gbellmf’,[10 2.5 58.4783898827884]
[Input2]
Name=‘pH_level’
Range=[0 10]
NumMFs=4
MF1=‘too_low’:’gbellmf’,[1.67 2.5 −0.493522548426897]
MF2=‘optimal’:’gbellmf’,[0.803300431832201 3.34 5.85]
MF3=‘acceptable’:’gbellmf’,[0.763 2.5 6.43917951881555]
MF4=‘too_high’:’gbellmf’,[2.07154225786552 2.5 9.57]
[Input3]
Name=‘Stone_content’
Range=[0 10]
NumMFs=2
MF1=‘acceptable’:’gauss2mf’,[3.397 −1 3.397 1]
MF2=‘excessive’:’gauss2mf’,[3.397 9 3.397 11]
[Input4]
Name=‘Erosion_intensity’
Range=[0 10]
NumMFs=2
MF1=‘moderate’:’trimf’,[−10 0 10]
MF2=‘excessive’:’trimf’,[0 10 20]
[Input5]
Name=‘Heat_accumulation’
Range=[0 10]
NumMFs=3
MF1=‘dark_coloured’:’gbellmf’,[2.5 11.56 0]
MF2=‘greyish_or_inbetween’:’gbellmf’,[2.5 2.5 5]
MF3=‘light_coloured’:’gbellmf’,[2.5 19.0151906763554 10]
[Output1]
Name=‘Soil’
Range=[0 10]
NumMFs=3
MF1=‘Bad’:’gaussmf’,[2.52282691206061 0]
MF2=‘Moderate’:’gaussmf’,[2.123 5]
MF3=‘Good’:’gaussmf’,[2.57669510235372 10]
[Rules] %Obtain from “LogicRules.txt”

[System]
Name=‘Climate’
Type=‘mamdani’
Version=2.0
NumInputs=5
NumOutputs=1
NumRules=45
AndMethod=‘min’
OrMethod=‘max’
ImpMethod=‘min’
AggMethod=‘max’
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DefuzzMethod=‘centroid’
[Input1]
Name=‘frost_-_air_drainage’
Range=[0 10]
NumMFs=3
MF1=‘obstacles_-_no_relocation’:’trimf’,[−4.167 0 4.167]
MF2=‘few_impediments’:’trimf’,[0.8333 5 9.167]
MF3=‘free_of_impediments’:’trimf’,[5.833 10 14.17]
[Input2]
Name=‘winter_injury’
Range=[0 10]
NumMFs=3
MF1=‘no_low-lying&wet_areas’:’gbellmf’,[2.07587908698334 5.39 −5.55e-17]
MF2=‘a_few_low-lying&wet_areas’:’gbellmf’,[1.45 2.5 3.8803084515731]
MF3=‘many_low_lying&wet_areas’:’gbellmf’,[2.84658852560148 2.5 8.92]
[Input3]
Name=‘rain_shadows’
Range=[0 10]
NumMFs=3
MF1=‘Too_little_rain’:’gaussmf’,[4.0789452284036 −5.55e-17]
MF2=‘Optimal_amount’:’gaussmf’,[2.123 5]
MF3=‘Too_much_rain’:’gaussmf’,[2.12 10.29]
[Input4]
Name=‘wind’
Range=[0 10]
NumMFs=2
MF1=‘Light_wind’:’trapmf’,[−9 −1 1 9]
MF2=‘Strong_wind’:’trapmf’,[1 9 11 19]
[Input5]
Name=‘frost_-_sensation’
Range=[0 1]
NumMFs=3
MF1=‘cooling_not_perceptible’:’gauss2mf’,[0.1699 −0.05 0.1699 0.05]
MF2=‘moderate_cooling’:’gauss2mf’,[0.1699 0.45 0.1699 0.55]
MF3=‘distinct_cooling’:’gauss2mf’,[0.1699 0.95 0.1699 1.05]
[Output1]
Name=‘Climate’
Range=[0 10]
NumMFs=3
MF1=‘Bad’:’gaussmf’,[2.123 0]
MF2=‘Moderate’:’gaussmf’,[2.123 5]
MF3=‘Good’:’gaussmf’,[2.123 10]
[Rules] %Obtain from “LogicRules.txt”

[System]
Name=‘Other’
Type=‘mamdani’
Version=2.0
NumInputs=3
NumOutputs=1
NumRules=15
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AndMethod=‘min’
OrMethod=‘max’
ImpMethod=‘min’
AggMethod=‘max’
DefuzzMethod=‘centroid’
[Input1]
Name=‘Local_grower_examination’
Range=[0 10]
NumMFs=3
MF1=‘Negative_note’:’trimf’,[−5 0 5]
MF2=‘Average_note’:’trimf’,[0.0185070943861811 5.01850709438618 10.0185070943862]
MF3=‘High_note’:’trimf’,[5 10 15]
[Input2]
Name=‘Surroundings’
Range=[0 10]
NumMFs=2
MF1=‘little_obstacles’:’psigmf’,[0.549 −6 −0.5583 4]
MF2=‘obstacles&tall_trees’:’psigmf’,[0.549 3.982 −0.549 13.98]
[Input3]
Name=‘Viticulture_history’
Range=[0 10]
NumMFs=2
MF1=‘deceptive_proof’:’gaussmf’,[2.59 0]
MF2=‘proven_70-80_yrs_farming’:’gaussmf’,[2.12 9.105]
[Output1]
Name=‘Other’
Range=[0 10]
NumMFs=3
MF1=‘Bad’:’gbellmf’,[2.9492600422833 2.5 0]
MF2=‘Moderate’:’gbellmf’,[2.5 2.5 5]
MF3=‘Good’:’gbellmf’,[3.0338266384778 2.5 10]
[Rules] %Obtain from “LogicRules.txt”
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