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Abstract: Crop stand count and uniformity are important measures for making proper field
management decisions to improve crop production. Conventional methods for evaluating stand count
based on visual observation are time consuming and labor intensive, making it difficult to adequately
cover a large field. The overall goal of this study was to evaluate cotton emergence at two weeks
after planting using unmanned aerial vehicle (UAV)-based high-resolution narrow-band spectral
indices that were collected using a pushbroom hyperspectral imager flying at 50 m above ground.
A customized image alignment and stitching algorithm was developed to process hyperspectral
cubes efficiently and build panoramas for each narrow band. The normalized difference vegetation
index (NDVI) was calculated to segment cotton seedlings from soil background. A Hough transform
was used for crop row identification and weed removal. Individual seedlings were identified based
on customized geometric features and used to calculate stand count. Results show that the developed
alignment and stitching algorithm had an average alignment error of 2.8 pixels, which was much
smaller than that of 181 pixels from the associated commercial software. The system was able to count
the number of seedlings in seedling clusters with an accuracy of 84.1%. Mean absolute percentage
error (MAPE) in estimation of crop density at the meter level was 9.0%. For seedling uniformity
evaluation, the MAPE of seedling spacing was 9.1% and seedling spacing standard deviation was
6.8%. Results showed that UAV-based high-resolution narrow-band spectral images had the potential
to evaluate cotton emergence.

Keywords: stand count; seedling uniformity; unmanned aerial vehicle; hyperspectral image
processing; image alignment and stitching

1. Introduction

Crop stand count and seedling development status, such as vigor, are important agronomic
factors to assess crop emergence [1]. The evaluation of crop emergence can allow making timely
and proper field management decisions in seedling stage. For example, the decision of replanting
cotton (Gossypium hirsutum L.) is often made based on plant population (stand count), density and
uniformity of seedlings [2,3]. Conventional methods to assess crop stand count and seedling vigor rely
on visual observation by farmers or scientists that is time-consuming, labor-intensive, and not feasible
when evaluating large production fields. Crop emergence in a production field is usually assessed by
measuring plants in randomly-selected sampling areas, which is not accurate [4]. There is a pressing
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need to develop an efficient tool that can quickly and accurately evaluate stand count and uniformity
for timely field management decision making.

Image sensing technology is promising to address the challenges in efficient and accurate evaluation
of crop stand and seedling development status. Ground vehicles equipped with high-resolution
image sensors have been used to evaluate crop emergence, including crop stand and health in early
stages [5–7]. Although ground-based images are promising in monitoring small-size seedlings, they are
inefficient to collect data in large production fields. Unmanned aerial vehicle (UAV)-based imaging
systems have been used as a high-throughput tool to collect field data in different research and
commercial applications. Researchers have been using UAVs equipped with RGB (red-green-blue)
cameras to estimate wheat density [8] by estimating the overall number of crop pixels, to evaluate
stand count for cotton [9], corn [10], and rapeseed [11] based on morphological features of crop leaves,
and to evaluate rice stand count using a deep learning model [12]. Crop seedlings are relatively small
in size and require a fine ground sample distance (GSD) for identification and segmentation of single
plants from images. Therefore, UAV-based imaging systems usually fly at a very low altitude (e.g.,
5–10 m above ground level, AGL) and slow speed to obtain sufficient numbers of pixels of plants.

Table 1 summarizes the platforms and sensors that have been used in some recent studies for the
evaluation of crop emergence based on UAV-based imaging systems, including image collection time,
flight height, image resolution, and accuracy in estimation of stand count.

Table 1. A brief summary of studies for crop emergence assessment using unmanned aerial vehicle
(UAV)-based imagery.

Camera Crop and Purpose DAP (Days) Imaging
Height (m) GSD (cm/pixel) Performance Reference

RGB Wheat, uniformity 110 and 111 7 0.06 RMSE = 0.44–3.99 [6]
RGB Wheat, stand count 14, 31 and 40 3–7 0.08–0.18 RMSE = 14.3% [8]
RGB Cotton, stand count 6–11 15–20 0.63–0.89 Accuracy = 88.6% [9]
RGB Corn, stand count 20 and 23 10 0.24 Accuracy = 96.0% [10]

RGB Rapeseed, stand count 27–37 20 0.41 MAE = 9.8%, MAE
= 5.1% [11]

RGB Rice stand count 13 20 0.55 Accuracy = 93.36% [12]

RGB Sorghum, population Not
mentioned 40 Not mentioned MAE = 6.7% [13]

RGB Potato, stand count 35 30 0.5 Accuracy = 96.6% [14]

RGB Maize, stand count 3- to 5-leaf
stage 50 1.4 R2 = 0.89 [15]

RGB and
Multispectral

Angustifolia seedling
detection 68–92 5 RGB: 0.1,

multispectral: 0.46

Only reported VIs
were significant

through time
[16]

RGB Angustifolia seedling
classification 1, 25, 68 5, 10, 15 0.1, 0.26, 0.4 Accuracy > 80.0% [17]

Multispectral Wheat, stand count 40 and 236 100 3.00 r = 0.86–0.87 [18]
Multispectral Potato, stand count 32, 37 and 43 15 0.44 r = 0.82 [19]

Abbreviations: RGB = red, green and blue; DAP=days after planting; GSD = ground sample distance; VIs =
vegetation indices; MAE = mean absolute error; RMSE = root mean square error; r = Pearson correlation coefficient.

It can be seen from the table that the majority of the studies used RGB cameras to estimate stand
count [8–11,15,19]. However, crop color in UAV images is affected by soil reflectance and is distorted
when the proportion of soil in the image is high [20]. The reduction in contrast between crops and soil
creates some challenges for segmentation and identification of cotton seedlings. To improve image quality,
high-resolution (4K or 8K) cameras have been used in research [14,15]. For example, the studies of [16]
and [17] showed the potential of using a UAV-based RGB camera (20 M pixel) for seedling detection.

Previous research [11] indicated that visible images were potentially affected by sunlight
conditions [21] and suggested that using multispectral images with near infrared (NIR) spectral
bands could be more efficient for crop segmentation. Multispectral images have been used to assess
crop emergence using vegetation indices (VIs), such as the normalized difference vegetation index
(NDVI) and green normalized difference vegetation index (GNDVI) [18,19]. However, most commercial
multispectral cameras have low image resolution, ranging around 1–2 M pixels. Examples are the



Remote Sens. 2020, 12, 1764 3 of 22

Micasense RedEdge-M (Micasense Inc., Seattle, WA, USA) and the Parrot Sequoia (Parrot SA Inc.,
Paris, France), each of which have 1.2 M pixel resolution [22]. A few customized multispectral cameras
that are made by replacing the filter of one of the channels of a high-resolution RGB camera with
a near-infrared filter (e.g., XNiteCanonElph130 used in [18,19]) have relatively higher resolution (e.g.,
12 M pixel) and low cost. Those cameras have been successfully used in crop yield estimation [23],
crop stress monitoring [24,25] and high throughput phenotyping [26]. These studies focused on areas
or plots within fields at middle or late crop growth stages, where needs may be different from those
for crop seedling studies. The customized multispectral cameras have broad spectral bands (e.g.,
around 80–100 nm for the XNiteCanonElph130) similar to those of the original cameras, and have
same issues of color distortion, incorrect focus and small dynamic range [23] when they are used in
seedling studies. Approaches to improve the quality of images may include collecting data at lower
altitude [27] or combining VIs with a digital surface model (DSM) [28]. Studies also found that crop
detection accuracy could be improved by selection of suitable VIs. The green-red vegetation index
(GRVI) [29,30] and the wide-dynamic-range vegetation index (WDRVI) [31] showed promising results
compared to the widely used NDVI and may be considered for seedling detection studies.

High-resolution narrow-band spectral images from a pushbroom hyperspectral camera were used
for seeding evaluation in this study to address the pertinent challenges of color distortion of RGB
cameras and low-resolution spectral cameras. However, the application of UAV-based pushbroom
hyperspectral cameras is challenging, partly due to the difficulty in alignment and stitching of
line-scanned images. Pushbroom hyperspectral imagers acquire data by scanning targeted objects line
by line [32] while moving at a consistent speed relative to the target objects. Any speed variation may
cause shifts in different bands during scanning and moving (flying), which may result in different
spatial areas being sensed by different spectral bands [33]. Pushbroom hyperspectral imaging systems
may improve the accuracy of alignment and stitching by using a high-performance GPS and inertial
measurement unit (IMU) to track the variations of speed, pitch, roll and yaw angles of the imagers [34],
or by using other sensors (i.e., RGB cameras or Light Detection and Ranging [LiDAR]) to provide
image feature references [35]. However, adding additional sensors or devices makes the system
very expensive and complicated to operate. Moreover, unlike snapshot images, current widely used
stitching (or orthomosaic) software for processing UAV images, e.g., Agisoft PhotoScan (Agisoft LLC, St.
Petersburg, Russia) and Pix4D (Pix4D Inc., Prilly, Switzerland), do not support pushbroom hyperspectral
images for alignment and stitching. Although hyperspectral imager producers provide data processing
software for their sensors, the software usually requires strict and complicated procedures for data
collection, such as high-precision georeferencing, very high sampling rate, low and consistent UAV
flight velocity, less wind and sufficient image features. However, crop fields are usually uniform and do
not have sufficient image features, especially in early growth stages, when crops are small and there
are fewer color variations to serve as features for image alignment and stitching. Meanwhile, there is
always variation in flight speed, height and attitude due to guidance errors and wind, which makes it
challenging to process hyperspectral images using the standard data processing software.

Therefore, this study aimed to test the performance of high-resolution narrow-band spectral
imagery to evaluate cotton seedlings, focusing on stand count and uniformity. The specific objectives
included: (1) to develop a novel image alignment and stitching method for processing hyperspectral
cube images, and (2) to identify single seedlings and evaluate seedling emergence using high-resolution
narrow-band spectral images. We also discussed the potential of the extracted information from the
narrow-band spectral images for quantification of seedlings’ quality or vigor in future studies.

2. Materials and Methods

2.1. Experimental Field and Ground Data Collection

This study was conducted in a cotton research field at the Fisher Delta Research Center of
the University of Missouri, located in the upper portion of the Mississippi River Delta region near
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Portageville, MO, USA (36.411◦ N, 89.697◦ W). The experimental field has dimensions of about
320 m × 160 m with the long dimension in the south-north direction. The spatial variability of soil
texture in the field is large due to both alluvial and seismic activities. Soil texture is closely related to
water holding capacity, which may significantly affect plant emergence and production [36]. Apparent
soil electrical conductivity (ECa), a good indicator of soil texture [37], was mapped using a Veris 3100
instrument (Veris Technologies, Salina, KS, USA) equipped with a GPS system in 9 May 2016.

Cotton cultivar PHY 375 WRF (Dow Agrosciences, Indianapolis, IN, USA) was planted on bedded
soil using a commercial planter (John Deere 1700, Moline, IL, USA) on 16 May 2018, at a seeding rate of
12 seed/m in a south-north direction with a row spacing of 0.97 m, resulting in 148 crop rows in total.
There was no irrigation applied from planting to the date of image data collection.

2.2. UAV Imagery Data Acquisition

Imagery data were collected using a UAV-based hyperspectral imaging system consisting of
a UAV platform (DJI Matrice 600 Pro, DJI, Shenzhen, China) and a pushbroom hyperspectral camera
(OCI-UAV-1000, BaySpec Inc., San Jose, CA, USA). A UAV control app (Autopilot, Hangar Technology,
Austin, TX, USA) was used to plan flight paths and set way-points, flight speed, and height. Before
flying, flight speed (5.5 km/h) and height (50 m AGL) were planned to achieve a high image overlap
(99.3% in the forward direction in this study) required for stitching images. Images were only collected
for the center part of the field (Figure 1) due to the 20-min flight limitation of the UAV batteries
available at the time. The hyperspectral camera included 103 spectral bands with a bandwidth of
2–5 nm in the spectral range of 600–970 nm. A tablet computer (Surface Pro, Microsoft, Redmond,
WA, USA) mounted on the UAV platform was used to control the camera and collect data using the
camera control software (SpecGrabber, Bayspec Inc., San Jose, CA, USA). The GSD was 0.79 cm/pixel at
the flight height of 50 m AGL with a frame size of 1088 × 2048. Before taking off, the exposure time
was set properly to avoid overexposure. A white poster board, whose reflectance from 350 nm to
1000 was measured using a spectrometer (Jaz, Ocean Optics Inc., Largo, FL, USA), was used for white
radiometric calibration. The initial frame rate of the camera was set as 35 frames per second (fps);
however, the frame rate was reduced on occasion due to overheating of the tablet. The collected images
were saved on the solid-state storage hard drive (SSD) of the tablet and were downloaded for further
processing after flying. Ground reference points (GRPs) consisting of 12 fence posts (~1.1 m above
ground) with white polytechnic boards (30 cm × 30 cm) and twelve 53 cm × 53 cm squares constructed
with half-inch polyvinyl chloride (PVC) pipes were distributed throughout the field for GSD calibration
after image alignment and stitching. Figure 1 shows the positions of the GRPs (squares in the image).
Image data were collected near solar noon (around 12:50 p.m. Central Daylight Time) at 15 days after
planting on 1 June 2018. Weather was stable and considered constant during data collection.
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Figure 1. UAV flight paths and the position of GRPs. The black line shows the UAV flight path recorded
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Remote Sens. 2020, 12, 1764 5 of 22

2.3. Image Alignment and Stitching

An image frame, referred to as a raw image henceforward, collected by the pushbroom
hyperspectral camera was an 8-bit grey scale image. One raw image collected in the test field
(Figure 2) shows that each image frame includes 824 × 2048 effective pixels. The 824 pixels in the
vertical direction are generated by the 103 bands of the camera, with eight pixels per band, i.e., 103 ×
8 = 824 pixels. There are 2048 pixels for each spectral band forming a so-called spectral line in the
horizontal direction, which covered 16 m on the ground when acquired at 50 m AGL.
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Figure 2. One raw image includes 103 spectral bands in the range of 600–970 nm with eight spectral
lines per band. Each spectral line includes 2048 pixels in the horizontal direction, resulting in an
effective resolution of 824 × 2048 pixels for each raw image.

The UAV-based imaging system scanned the field along the UAV flight direction as shown by the
blue arrows in Figure 1. To generate a panorama of the target field in each spectral band, an algorithm
was developed to process the raw images. This was required due to low accuracy in alignment and
stitching when using the CubeCreator software supplied by the camera manufacturer (BaySpec Inc.,
San Jose, CA, USA). The processing procedure included (1) feature detection and matching, (2) removal
of false matches, (3) calculation of a geometric transformation matrix, and (4) development of spectral
band stitching images. The workflow of the stitching process is illustrated in Figure 3. Raw image
features were detected to stitch the successive images. Then, the matching features between every two
successive raw images were used to calculate a transformation matrix M. Each raw image consisted of
103 bands, each 8 pixels wide (as described in Figure 2). To generate a panorama image for each band,
the 8-pixel strips of each band were segmented from all the raw images, and stitched using the same
transformation matrix M calculated from the raw image frames. In the end, spectral cubes containing
103 bands in the Z-axis (Figure 3) were generated. These cubes had the same 2048-pixel width as the
raw images in the X-axis, and the Y-axis corresponding with the length of the image scanning paths
of the two scanning directions (see Figure 1). The final spectral cubes were the panorama images
collected for each UAV flight path.

2.3.1. Feature Detection and Matching

Image features were detected using the method of Speeded-Up Robust Features (SURF),
a 128-dimension (8 orientation bins for each of the 4 × 4 location bins) local feature detector and
descriptor developed in [38]. As a scale-invariant feature, SURF used image pyramids and different
sized box filters to find points of interest at different scale spaces [39]. The scale space of SURF
was divided into octaves and each octave was subdivided into a constant number of scale levels.
The number of pyramid octaves and of octave layers were both set to 4 in this study. After feature
detection, the k-nearest neighbors (KNN) algorithm was used to match the most similar feature pairs
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in two successive raw images. The KNN calculated all of the Euclidean distances of features with
each other to find the closest K matches. In this study, K was set to two (K = 2); therefore, the KNN
algorithm returned the two closest key points for each key point to be matched.
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2.3.2. Removal of False Matches

False matches were those pixels that had the shortest Euclidean distance but were different objects
in the successive images. To detect and remove false matches, a distance ratio test was conducted
to compare the Euclidean distance of the closest key point to that of the second-closest key point
identified by KNN [39]. It was assumed that the first closest key point came from the same object as
the key point to be matched, while the second-closest key point came from another object. Distance
ratio tests checked the similarity of the two nearest matches to select the matches with high similarity
in successive images that were not reliable and should be removed. All matches whose distance ratio
test was greater than 0.75 were removed in this study.

The images were collected on a calm day, and the UAV was parallel flying with the ground with
minimum variations in roll and pitch, but small adjustments in yaw angle due to navigation error
(flight heading, speed and height). Therefore, the geometric transformations for matching any two
successive images only included the operations of translation, scale and rotation. Considering the low
flight speed of the UAV and the high degree of image overlap, the rotation and scale factor of two
successive images were less than 0.03 degrees and 0.005 based on statistical analysis of 20,000 matches
obtained in this study. Therefore, in the case where scale and rotation were small enough to be
negligible, the matching lines of the correct matches should have similar slopes and lengths. The slope
and length of the matching lines were calculated using Equations (1) and (2):

slope =
y2 − y1

x2 − x1
(1)

length =

√
(x2 − x1)

2 + (y2 − y1)
2 (2)

where, (x1, y1) and (x2, y2) are the coordinates of a key point and its matching point in two successive
images. The matches were considered to be false matches if the slopes and lengths of the matching
lines had a large difference from other matches, as for the two red matches in Figure 4. Thresholds of
0.15 degrees for slope and 30 pixels for length were used for determining false matches.

Another way to determine false matches was to calculate the ratio of the slope and the length of
one matching line to the mean value of all matching lines in two successive images. The ratios of the
slope and length of the correct matches would be close to 1. The thresholds for false matches were set
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as lower than 0.9 and greater than 1.1. Both the methods discussed above were used in this study to
remove false matches.
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of the yellow matches were similar (parallel lines). However, the lines of two false matches (the red
matches of No. 11 and 12) had obviously steeper slopes and longer or shorter lengths than the rest of
the matching lines.

2.3.3. Calculation of the Geometric Transformation Matrix

Once the correct matches were identified, transformation matrices of each pair of two successive
images were calculated. As mentioned earlier, only translation, scale and rotation were considered in
this study. The transform matrix M is shown as Equation (3) [40]:

M =

[
sx·cosθ −sinθ tx

sinθ sy·cosθ ty

]
(3)

where, tx and ty are the distance in pixels of translation in the horizontal and vertical directions, sx and
sy are the scale factors in the horizontal and vertical directions, and θ is the rotation angle. Assuming a
pixel value of an image coordinate I(x, y) was to be transformed into its previous image coordinate
I’(x’,y’), Equation (4) shows the transformation of these two images based on the transform matrix M:

M =

[
sx·cosθ −sinθ tx

sinθ sy·cosθ ty

]
(4)

where, (x, y) and (x’, y’) are image coordinates of image I(x, y) and I’(x’,y’). The initial values of tx

and ty were the mean distance of all matches in two successive images, the initial value of θwas set
as 0 degrees (no rotation), and both scale factors, sx and sy were set to 1 (no scaling). A grid search
iteration method was used to search for the optimum solutions of the five parameters in M [41]. Due to
the small changes between the two successive images in this study, the search ranges of translation
distance were set as ±10 pixels with an increment of 0.2 pixels, the scale factor was 0.9995 to 1.0005
with an increment of 0.00025, and the rotation range was –0.065 to 0.065 degrees with an increment of
0.005 degrees. A corresponding image I′

(
x̂′, ŷ′

)
would be generated based on each search result and
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I(x, y). The error was defined as the sum of Euclidean distances between I’(x’,y’) and I′
(
x̂′, ŷ′

)
, shown

as Equation (5):

error =
n∑

i=0

√(
x′i − x̂′i

)2
+

(
y′i − ŷ′i

)2
(5)

where, n is the number of matches in both I’(x’,y’) and I′
(
x̂′, ŷ′

)
.

2.3.4. Dynamic Panorama and Spectral Band Stitching

There were two main steps within the stitching algorithm (see Figure 3): (1) the raw images were
used to calculate M; (2) M was used to stitch every 8-pixel spectral band strip of the raw images to
generate 103 spectral band panoramas. The reason that M had to be calculated using raw images is
that it was impossible to get enough feature matching using only 8-pixel spectral band strips.

When calculating each M using every two successive raw images, each raw image was added to
the panorama based on Equation (4) one at a time, aligning the raw image with the previous raw images
already in the panorama. The panorama expanded its original boundary dynamically according to the
coordinates of the four corners of each new added raw image.

The panorama developed in this study combined approximately 2200 raw images in each flight
path. It was inefficient to perform SURF feature detection on the entire panorama every time a new
raw image was added. Therefore, the SURF feature detection was only conducted in one previously
added raw image. With each raw image added to the panorama, the coordinates of its four corners on
the panorama were recorded. The SURF feature detection was only conducted on the region bounded
by these four corners instead of the entire panorama. Once the feature detection was done in this raw
image, it was used for matching with the next raw image and calculating the next M for the next raw
image stitching. M of every two successive images was recorded in a txt file.

When the txt file that included all the M values for every two successive raw images had been
established, it was used for panorama stitching of each spectral band. A panorama of each spectral band
was generated by the 8-pixel spectral strips segmented from raw images. To apply the transformation
matrix M calculated from the raw images, the same image size was required instead of the 8-pixel
image height of the spectral strips. Therefore, each 8-pixel spectral strip was padded with zeros to the
same size as the raw image and this image was used for the spectral band panorama stitching. Only
non-zero-pixel values were added to the spectral band panorama one at a time using Equation (4).

2.3.5. Alignment Error in Images of Different Bands

Ideally, images of the 103 spectral bands are aligned pixel by pixel. However, there is always
error in alignment due to camera movement, sequential sensing of the 103 channels, and issues with
the algorithms used to conduct the alignment [42]. To evaluate the alignment accuracy of images in
all 103 bands, an indicator of alignment error was defined as the average coordinate shift (mean of
Euclidean distances between image pixels) of the same objects in each two different spectral bands.
In this study, the GRPs that were clearly identified were used as reference objects to test the alignment
performance. We manually recorded the coordinates of the four corners of the square PVC pipes
in 103 spectral panoramas and calculated the shift. The raw images collected in the first flight path
that contained three PVC pipes were stitched using the commercial CubeCreator software associated
with the hyperspectral camera and the algorithm of this paper to compare their alignment errors.
All processing of the stitching algorithm in this section was conducted using the Opencv v3.4.2.16
package in Python [43].

2.4. Segmentation of Cotton Stand

Two previous studies [44,45] summarized the widely used narrow-band spectral reflectance
indices for various applications in different crops, including NDVI, fluorescence ratio index, and water
normalized difference vegetation index. In this study, several spectral reflectance indices, including
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four NDVI and two normalized difference red edge (NDRE) indices calculated with different bands
were examined for identifying suitable indices for seedling segmentation. To segment plants from
images, it is desired to have large difference between vegetation indices of plants and soil. Figure 5
shows the histograms of three vegetation indices that have different ability to distinguish plants
and soil.
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Figure 5. Image histograms of three example indices. (a) NDVI calculated using bands at 841 nm and
667 nm, which had large difference between mean soil NDVI and crop NDVI and had small overlap
between the edge of soil NDVI and crops NDVI. (b) NDRE calculated using bands at 841 nm and 716 m.
(c) NDVI calculated using bands at 900 nm and 667 nm.

Image histograms and visual observations confirmed that NDVI calculated using Equation (6)
gave the largest contrast between cotton seedlings and soil:

NDVI =
R841 −R667

R841 + R667
(6)

where, R841 and R667 are the pixel values in the images of 841 nm and 667 nm bands. Figure 6a shows
that the NDVI values of soil and non-soil (crops and weeds) had sufficient contrast to remove soil with
a threshold of NDVI <0.35. The threshold may need to be changed for other studies according to the
soil texture and crop conditions. Figure 6b shows the binary image after soil was removed where the
connected regions might be cotton seedlings, weeds and/or noise. The small objects, including most of
the noise, were removed using a connected region threshold of <20 pixels. Meanwhile, the connected
regions >350 pixels were considered to be weeds and were removed (Figure 6c). To segment cotton
crop rows, a Standard Hough Transform (SHT) [46] was applied to search the long lines in the images.
Weeds growing in inter-rows were inconsistent and had fewer pixels compared to crop rows. Therefore,
the false SHT-detected lines due to weeds were removed by detecting the lines with less than 10 objects.
After the crop lines were identified, the Euclidean distances between the center of each connected
region and the lines were calculated, and the objects that had a distance of less than eight pixels from
a crop line were assigned to the closest objects (seedling or seedling cluster) in this row while the rest
were considered to be weeds in inter-rows. After the above pre-processing, each of the remaining
objects was defined as one region of interest (ROI) (i.e., the object in each red box in Figure 6d). One ROI
might contain one single seedling or multiple connected seedlings as a cluster. All the image processing
procedures described in this section were conducted in Matlab R2018a (MathWorks, Inc., Natick, MA,
USA).
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Figure 6. Illustration of the segmentation process of cotton seedlings based on an NDVI image. (a) An
NDVI image of a portion of field. There was a square of PVC pipe in the fourth cotton row from the
left; (b) Binary image converted using a threshold NDVI <0.35 to remove soil; (c) Binary image after
removing noise (small objects) and large weeds. The green dotted lines shown in the image were
the detected rows based on the Standard Hough Transform. The red dots and yellow dots mark the
beginning and the end of the detected parts within a row; (d) Detected cotton seedlings or clusters of
seedlings. The red boxes mark the regions of interest (ROIs) that contained a single cotton seedling or a
cluster of connected cotton seedlings.

2.5. Evaluation of Cotton Stand Count

2.5.1. Image Features for Determining Number of Seedlings

Crop stand is generally quantified as the number of plants per a fixed length of crop row or a fixed
unit of field area [8,11]. To obtain an accurate stand count, it is important to count the number of single
plants that clustered in a ROI. Eleven morphological features [47], including shape, dimension and
pattern, were defined to differentiate each ROI with multiple seedlings, as shown in Table 2.

Table 2. Image features used to segment individual cotton seedlings.

Feature Name Definition

F1 Object area The total number of pixels of the objects in a ROI
F2 Convex area Area (number of pixels) of the smallest convex polygon of a ROI
F3 Major axis length Length (in pixels) of the major axis of the ellipse in a ROI
F4 Minor axis length Length (in pixels) of the minor axis of the ellipse in a ROI
F5 Perimeter The perimeter (in pixels) of a ROI
F6 Area-perimeter ratio The ratio of object area within ROI to its perimeter
F7 Aspect ratio The ratio of width to height of the bounding box of a ROI
F8 Extent Ratio of object area to the pixels of the bounding box
F9 Solidity Ratio of the object area to convex area

F10 Eccentricity Eccentricity of the ellipse that has the same second-moment as the ROI
F11 Equivalent diameter Diameter of a circle with the same area as the ROI
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Analysis of variance (ANOVA) was used to compare the values of the 11 features for different
numbers of seedlings (i.e., one, two, three, or four) in an ROI at a significance level of 0.05 based on
Tukey’s Honest significant difference test. The goal of this analysis was to determine if these features
could accurately distinguish the number of seedlings in each ROI. Since feature pairs (or groups)
with a strong linear relationship were considered to be redundant variables [48], Pearson correlation
coefficients between each two of these features were calculated and principal component analysis
(PCA) [49] was used to replace those features with strong linear relationships with fewer linearly
uncorrelated variables. Variables without collinearity and PCA-derived variables were combined in
a new data set for further use. The above statistical analyses were conducted using R software (RStudio
Desktop 1.1.453, RStudio, Boston, MA, USA).

2.5.2. Development of Decision Tree Model

A decision tree classifier was used to identify the number of cotton seedlings in each ROI using the
new combined data set. To establish the training and testing dataset for the decision tree model, a total
of 1200 ROIs were identified using the procedure in Section 2.4 from three sections of different flight
paths, and the number of seedlings in each ROI was manually counted and labelled. Before counting,
a series of image pre-processing methods, including gamma correction, Laplace enhancement and
contrast adjustment, were used to improve the clarity of the images to make visual counting easier.
The features of the 1200 ROIs and their corresponding labels were split into two sets: 70% as the
training set, and 30% as the testing set. A decision tree model is not robust with a small number of
tree branches, but the model might over fit when too many branches are used [50]. In this study,
an ensemble method, AdaBoost [51], that combines many simple decision trees was used to improve
the robustness of classification. Decision trees with depth no more than two were used to avoid the
overfitting problem. The number of decision trees used in the AdaBoost model was determined by
balancing the decision tree number to have sufficient classification accuracy and lower overfitting [50].
Therefore, 20% of the training set was used as the validation data set to identify an optimal number
of trees using a 5-fold cross-validation. Misclassification error was defined as zero one loss, which
assigns 0 to a correct classification but 1 for an incorrect classification [52]. Accuracy was defined as
the ratio of the number of correct classifications to the total number in the data set.

The descriptive statistical analysis on the labelled ROIs showed that 76.3% of the ROIs contained
one single cotton seedling, 19.3% contained two connected seedlings, 3.8% had three connected
seedlings and 0.6% had four connected seedlings. This is an unbalanced data set that might cause
errors during the modelling process [53]. Therefore, a naive random over-sampling method was used
to generate new samples by random replacement of the minority class(es) to build a balanced synthetic
dataset to replace the training set [53].

2.5.3. Evaluation of Stand Count and Uniformity

Plant density was defined as plants per meter in a row [6]. In this study we calculated plant
density from the total number of cotton seedlings in all ROIs within a 1-m crop row. The GSD was
calibrated using PVC pipe squares in flight paths with a dimension of 53 cm × 53 cm. The length of
a side of the PVC square averaged 67.8 image pixels, which was 129 pixels per meter in the images
(i.e., GSD = 0.778 cm/pixel). The mean spacing (x) and the standard deviation (δ) of the spacing
between plants, shown as Equations (7) and (8) [54], are commonly used for describing seed spacing
uniformity [55]. Mean absolute percentage error (MAPE) was used to evaluate the accuracy of the
plant density and uniformity estimations:

x =
1
n

∑n

i=1
xi (7)

δ =

√
1
n

∑n

i=1
(xi − x) (8)
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where, xi is the seedling spacing (cm) estimated using the imaging method. The seedling spacing was
calculated using the distance between the center points of two ROIs containing only single seedlings.
If a ROI included m seedlings, the xi between two neighbor seedlings in this ROI was calculated using
Equation (9):

xi =
2Lm

m
(9)

where, Lm is the major axis length of the ROI. If a seedling is outside a ROI that includes m seedlings,
the xi of the seedling to its neighbor seedling in the ROI was calculated by Equation (10):

xi = D−
Lm

2m
(m− 1) (10)

where, D is the distance between center points of two ROIs. All processing in this section except for
the two statistical analyses were conducted with the Scikit-learn package in Python [56].

3. Results

3.1. Alignment Error

Table 3 shows the alignment error in pixels of shift using algorithms from CubeCreator and the
one developed in this study. It can be seen from the table that the alignment errors of the 10 samples
processed by the CubeCreator were substantially larger than those obtained from the algorithm
developed in this study. The results indicate that the image alignment and stitching method proposed
in this study provided an effective way to process data from the pushbroom imaging system.

Table 3. Comparison of the alignment error (pixels) using both CubeCreator and the algorithm
developed in this study.

Sample
Points 1 2 3 4 5 6 7 8 9 10 Average/std

CubeCreator 164.0 165.0 165.0 165.7 185.4 186.0 187.1 197.6 198.0 197.2 181.1 ± 13.9
This study 3.6 3.2 2.9 3.5 2.6 2.3 2.4 2.6 2.7 2.6 2.8 ± 0.4

3.2. ROI Feature Analysis

Mean values of all features defined in Table 2 for ROIs with different numbers of cotton seedlings
were found to be significantly different (Figure 7). The object area (F1), convex area (F2), major axis
length (F3), perimeter (F5) and equivalent diameter (F11) in the ROIs with more seedlings were
significantly greater than those with fewer cotton seedlings (Figure 7a–e,k). Since cotton was planted
in rows, if seedling number increased in a ROI, this tended to increase the major axis length (F3)
to a greater extent than the minor axis length (F4). (Figure 7c,d). For the same reason, aspect ratio
decreased when the number of cotton seedlings increased (Figure 7g). When image data were collected,
cotton seedlings showed two different growth stages, whereby some had only two cotyledons, while
others had two cotyledons and one true leaf [57], which might be caused by the variation of soil
conditions, seed vigor and planting depth. The single cotton seedlings showed different sizes and
shapes in the images. If a ROI only included one cotton seedling, eccentricity (F10) could have a large
variance due to the differences in seedling shape. ROIs with more cotton seedlings were longer than
those with fewer seedlings, and the eccentricity would become close to 1, while the variance decreased
(Figure 7j). These results show that the features extracted in this study could effectively distinguish
ROIs with different numbers of cotton seedlings.
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Figure 7. Boxplot of each ROI feature for different numbers of cotton seedlings. The legend at the
right upper applies to plots (a–k) and represents the number of cotton seedlings in each ROI. Different
lower-case letters indicate a significant difference at the 5% level of the ANOVA test.

Table 4 shows the correlation matrix between each pair of features, which shows that the Pearson
correlation coefficients among F1, F2, F3, F5 and F11 were greater than 0.9 because they were all
area-derived features. These five features were normalized to the range of [0, 1] and used as for a PCA
analysis to generate two area-derived features to replace the highly correlated features. After conversion,
the new data set consisted of eight features.

Table 4. Correlation matrix between features. Features with * are highly correlated (r > 0.9).

Feature F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11

F1 * 1.00
F2 * 0.99 § 1.00
F3 * 0.94 0.97 1.00
F4 0.78 0.75 0.62 1.00

F5 * 0.94 0.97 0.97 0.75 1.00
F6 0.30 0.29 0.29 0.21 0.28 1.00
F7 –0.53 –0.53 –0.54 –0.48 –0.56 –0.17 1.00
F8 –0.37 –0.43 –0.47 –0.37 –0.52 –0.11 0.27 1.00
F9 –0.47 –0.56 –0.62 –0.47 –0.69 –0.16 0.41 0.78 1.00

F10 0.35 0.39 0.53 –0.08 0.41 0.24 –0.22 –0.29 –0.37 1.00
F11 * 0.97 0.95 0.91 0.87 0.94 0.30 –0.58 –0.41 –0.53 0.32 1.00

§: bold numbers mark the numbers of r > 0.9.

3.3. Evaluation of Cotton Emergence

The new data set was used to develop a classification model based on the AdaBoost model
for the evaluation of cotton stand count. The variation of zero one loss of models with different
numbers of decision trees calculated using the validation data set is shown in Figure 8a, indicating
that the classification errors were unstable [48] when the number of decision trees was less than 35.
As the number of decision trees increased, the classification error decreased and became more stable.
The model obtained the lowest error rate when the number of decision trees was 150 but increased
slightly afterward, which might be due to over-fitting. Therefore, the number of decision trees was set
at 150.
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The relative importance of the eight features, which indicates that the two area-derived features
and aspect ratio were the most important parameters for estimation of the number of cotton seedlings
in each ROI is shown in Figure 8b. These results are consistent with those from other published papers.
For example, the area feature was the most commonly used feature for crop counting in early growth
stages as found by [9]. Object orientation and extent were the most important features for counting
crops with slender leaves such as wheat as shown by [6], while length-width ratio, density and border
length were more important for counting crops with round leaves such as rapeseed as highlighted
by [11].Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 22 
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Figure 8. Parameter decision for the number of trees (a) and the relative importance of the eight
features (b).

The manual count of cotton seedlings of the 360 ROIs in the test data set was 501, and the estimated
number was 491, or 2% less than the manual count, indicating good performance in estimating the
overall stand count. The accuracy for classifying the ROIs with different number of seedlings in the
test dataset using the developed method was 84.1%. Figure 9 shows the confusion matrix including
the number of ROIs classified in each category and their percent (e.g., percent of classified ROIs in
category of one seedling is 181/[181 + 17 + 1] × 100 = 91%).
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It can be seen that most of the misclassifications happened in ROIs containing two and three
seedlings, which were fewer in number compared to those with one seedling. The low classification
accuracy in such categories reduced the overall classification accuracy. The possible reasons for
misclassification are many, but the main reason may be the large variation in seedling size, shape and
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the ways of leaves overlapped. The variation in seedling may due to the various characteristics of the
seedbed (variation in soil moisture, soil texture, organic matter, surface residues, and soil temperature),
planting equipment (variation in planting depth and seed distribution), and seed quality [58]. Figure 10
shows some examples of seedlings with different size, shape and overlap. Figure 10a,c show that
number of seedlings in all three ROIs was classified correctly. However, the number was misclassified
in the ROIs in Figure 10b,d due to the various sizes of seedlings that confused the algorithm. Although
all the ROIs in Figure 10c,d included one seedling, they have different area sizes and shapes, which
might be caused by different growth rates due to different soil conditions. All ROIs in Figure 10a,b
included two cotton seedlings but they show different overlapping shapes. Combining these data with
soil data to establish a spatial correlation model is an area of future study.
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Figure 10. Cotton seedling images. The red numbers are the IDs of the ROI. Blue numbers are the
manual count and green numbers are the estimated number of seedlings in the ROIs. (a,c) are the
correct estimation of two and one seedlings respectively. (b,d) are the incorrect estimation of two and
one seedlings respectively.

The density and uniformity of the cotton seedlings in the 1200 ROIs were calculated to evaluate
the performance of the developed models. Figure 11 shows the fit between the manual count (true
values) and the estimated number of seedlings in all ROIs. It can be seen that the estimated density and
uniformity are highly correlated with the manual measured values with limited errors (MAPE = 9.0%,
9.1% and 6.8% for density, mean seedling spacing and standard deviation, respectively). All data points
were close to the 1:1 line indicating a good fit between true values and estimated values. To explore
the potential reason for the errors, Figure 12 shows three examples of mean spacing and standard
deviation. In Figure 12a, the seedling spacing was uniform but some of them overlapped, which
resulted in a smaller mean seedling spacing than that of Figure 12c, where the cotton seedlings had
uniform spacing and no overlap. The seedling spacing in Figure 12b was not uniform, leading to
a higher standard deviation than that of the seedlings in Figure 12a,c. It can be found from Table 1 that
most published studies estimated the stand count at a plot level (18 plots in [11], 6 plots in [9], 90 plots
in [8], 40 images in [12] and 30 plots in [19]), which may not provide sufficient site-specific information
for precision decision making and further field operations. This study provided a potential approach
to estimate the cotton stand at a meter-level scale that has potential to be used in practice.
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and ‘c’ were three example positions having different mean seedling spacing and standard deviation.

4. Discussion

The use of narrow-band spectral images in this study addressed inherent problems with RGB and
multispectral images for identification of small cotton seedlings. These problems were demonstrated
in exploratory research, where two RGB cameras, two multispectral cameras and the pushbroom
hyperspectral camera used in this study were compared. Figure 13 shows four frames of RGB images
taken using consumer-grade cameras, a GoPro HERO Black 5 (GoPro, San Mateo, CA, USA) and
a Canon PowerShot SX410 (Canon INC., Tokyo, Japan), at 15 days after planting in a cotton field.
The GoPro camera had a resolution of 12 M pixels and resulted in GSD of 0.52 cm/pixel at the height of
15 m AGL (Figure 13a), while the image (Figure 13b) from the Canon camera had a GSD of 0.45 cm/pixel.
Figure 13c,d are RGB images using the same two cameras at 0.3 m AGL, where the crops were clear and
the color of the cotton seedlings was distinguishable from the soil. However, crop color was affected
by soil reflectance and was distorted when the proportion of soil in the image was high [20]. Images
were also blurred because of the focus issues on the small seedlings [12].

UAV-based multispectral cameras may provide useful spectral information for crop identification,
however, their resolution is usually low. We tested a well-calibrated multispectral camera Micasense
RedEdge-M for cotton seedling evaluation. The manufacturer recommended that this camera be
operated at a minimum of 30 m AGL to reduce the impact of misalignment of the five separate sensors.
Figure 14a,b shows two image frames collected at 15 days after planting at an altitude of 30 m AGL,
resulting in 2 cm/pixel spatial resolution. However, the PVC pipe squares and cotton seedlings in the
images exhibited blurred edges. The limitations of misalignment and spatial resolution in multispectral
cameras are challenges to their application in evaluation of cotton seedling emergence.

A customized multispectral camera (XNiteCanonElph130, LDP LLC, Carlstadt, NJ, USA) that
was modified by replacing the filter of the green channel of the RGB camera (12 M pixels, Canon Elpp
130, Canon INC., Tokyo, Japan) with a near-infrared filter was tested the same day that hyperspectral
images were collected (1 June 2018).

However, half of the images were not focused on the seedling due to the small size of the cotton
seedlings, resulting in blurred images, shown as Figure 14c. In addition, the NDVI dynamic range of
the images was small due to the broad spectral bands in that camera [23].
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to detect crop biotic and abiotic stresses in early stages [62]. Secondly, different vegetation indices 
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Figure 13. RGB images taken 15 days after planting in the test field. (a,b) are images flying at 15
m AGL. (c,d) are images taken at 0.30 m from the ground. The cotton seedlings in (a) could not be
seen clearly due to image color distortion. The red text marks the number of seedlings counted in
the field. The color of cotton seedlings in (b) is very close to the color of soil, creating a challenge for
seedling segmentation.

Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 22 

 

 

Figure 13. RGB images taken 15 days after planting in the test field. (a) and (b) are images flying at 15 
m AGL. (c) and (d) are images taken at 0.30 m from the ground. The cotton seedlings in (a) could not 
be seen clearly due to image color distortion. The red text marks the number of seedlings counted in 
the field. The color of cotton seedlings in (b) is very close to the color of soil, creating a challenge for 
seedling segmentation. 

However, half of the images were not focused on the seedling due to the small size of the cotton 
seedlings, resulting in blurred images, shown as Figure 14c. In addition, the NDVI dynamic range of 
the images was small due to the broad spectral bands in that camera [23]. 

 

Figure 14. PVC pipe squares and seedlings in multispectral images taken at 15 days after planting in 
the test field at 30 m AGL with Micasense RedEdge-M (a–b, shown as RGB channels) and (c) at 15 m 
AGL with XNiteCanonElph130. Images show that misalignment and low resolution make it 
challenging to evaluate seedling vigor and stand count using multispectral images. The yellow text 
in (a–b) shows the number of cotton seedlings which were counted visually in field. 

The results of this study showed that high-resolution narrow-band spectral images had potential 
to solve the problems of blurred images, color distortion and small dynamic range in VI values. The 
studies of [59–61] also showed that narrow-band spectral images can help to distinguish crops from 
complex backgrounds and weeds. Compared to visual and multispectral images, hyperspectral 
images could provide unique advantages for studying crops in their early stages. First, hyperspectral 
images include more spectral details to identify subtle differences in vegetation, which may be used 
to detect crop biotic and abiotic stresses in early stages [62]. Secondly, different vegetation indices 
calculated from a large number of spectral bands can be used for detecting more advanced 

Figure 14. PVC pipe squares and seedlings in multispectral images taken at 15 days after planting
in the test field at 30 m AGL with Micasense RedEdge-M (a,b, shown as RGB channels) and (c) at
15 m AGL with XNiteCanonElph130. Images show that misalignment and low resolution make it
challenging to evaluate seedling vigor and stand count using multispectral images. The yellow text in
(a,b) shows the number of cotton seedlings which were counted visually in field.

The results of this study showed that high-resolution narrow-band spectral images had potential
to solve the problems of blurred images, color distortion and small dynamic range in VI values.
The studies of [59–61] also showed that narrow-band spectral images can help to distinguish crops from
complex backgrounds and weeds. Compared to visual and multispectral images, hyperspectral images
could provide unique advantages for studying crops in their early stages. First, hyperspectral images
include more spectral details to identify subtle differences in vegetation, which may be used to detect
crop biotic and abiotic stresses in early stages [62]. Secondly, different vegetation indices calculated
from a large number of spectral bands can be used for detecting more advanced physiological and
chemical traits of plants, such as crop vigor [45,63,64], chlorophyll content [65] and nutrition status [66].
Future study may focus on evaluating the vigor of cotton seedlings and the environmental factors (e.g.,
soil, weather) affecting cotton emergence. Studies have shown that environmental factors related to
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soil (e.g., soil texture, soil temperature, soil water content, and air quality within the soil) can affect
seedling emergence date, growth rate (e.g., biomass dry matter, and size) and vigor (e.g., leaf area
index, chlorophyll, nitrogen and carotenoid concentrations of seedling leaves), and ultimately crop
yield [67,68]. However, seedling vigor has generally been studied in greenhouse settings or small field
plots using visual observation, mainly due to the lack of effective automated tools.

Using UAV-based hyperspectral imagers may allow evaluate seedling vigor at the field scale and
investigation of the effects of environmental factors such as spatial variability of soil characteristics and
water availability. As shown in Figure 15, the reflectance spectra of the segmented cotton seedlings
and soil next to them extracted from the processed images were different at different locations within
the field. Figure 15a shows a map of soil ECa of the research field. A lower ECa indicates a higher sand
content in the soil based on laboratory analysis (data not shown), which usually has a lower water
holding capacity. The soil at location #5 had a higher sand content than the soil at the #4 and #6 locations,
and the reflectance spectrum of the cotton seedlings at #5 was noticeably different than the spectra at
#4 and #6. The soil having different soil texture and water content showed different color (Figure 15c)
and spectral reflectance (Figure 15b), which may cause challenges for separating plants and soil using
a fixed threshold. Other methods, e.g., multiple endmember spectral mixture analysis (MESMA) [69],
may improve the classification (or segmentation) of plants from soil. However, the spectral reflectance
of different soil textures has not been established in this study. We may explore this potential in the
future studies. This study focused on evaluation of crop stand density and uniformity to evaluate
crop growth in early stages. However, the hyperspectral vegetation indices could be used to quantify
seedling vigor [70–72]. This study evaluated the feasibility of using a UAV-based hyperspectral imager
to quantify cotton emergence, focusing on developing a better method for processing images collected
with a UAV-based pushbroom camera, and precisely identifying individual cotton seedlings from
a cluster, which is important to assess their vegetative characteristics in the future studies.
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Due to the 20 min flight time limitation imposed by the UAV batteries, we only collected data 
on one third of the field, an area which had significant spatial variability in soil texture. More UAV 
battery sets would be required for a large field experiment. Future studies based on the methods 
developed in this paper will include investigation of relationships between seedling performance and 
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Figure 15. (a) Soil ECa map marked with flight paths and ground reference points. The triangles and
rectangles have the same meaning as in Figure 2. (b) Spectral reflectance of the cotton seedlings and
soil at the selected locations #4, #5 and #6 in the research field as shown in (a). (c) An RGB image
taken at 15 m AGL in location #1 of (a) showing soil color differences due to different soil texture and
water content.

Due to the 20 min flight time limitation imposed by the UAV batteries, we only collected data
on one third of the field, an area which had significant spatial variability in soil texture. More UAV
battery sets would be required for a large field experiment. Future studies based on the methods
developed in this paper will include investigation of relationships between seedling performance and
ECa, soil moisture, plant development and yield. The algorithms developed in this study could be
automated to stitch the line-scan images, segment cotton seedlings and determine cotton stand count.
However, full automation of the data processing and analysis was not tested in this study. There is
a high potential to develop a framework to make the overall procedures of cotton seedling evaluation
automatic, which would benefit end-users (farmers and researchers). Time cost in data collection in
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this study was about 1 h per 0.06 km2, 7 h for stitching of 2500 raw images, and less than 0.5 h for
seedling segmentation and stand count.

5. Conclusions

A methodology for evaluating cotton stand count, density and uniformity using UAV-based
high-resolution narrow-band spectral images from a pushbroom hyperspectral camera was established.
The proposed pushbroom hyperspectral image alignment and stitching method, including feature
detection and matching, removal of false matches, calculation of the geometric transformation matrix,
and dynamic panorama and spectral band stitching, provided an effective processing method for
the application of pushbroom hyperspectral images. Spectral information was used for cotton stand
segmentation and a Hough transform was used for row identification and weed removal. Eleven ROI
features were extracted and AdaBoost was used to estimate the cotton stand count. Results show the
feasibility of assessment of cotton emergence by estimation of density, mean seedling spacing and
seedling spacing standard deviation using UAV-based high-resolution narrow-band spectral images.
In addition to the applications demonstrated in this study, the proposed UAV-based hyperspectral
image processing method in this study has broader application prospects than RGB or multispectral
images, and these will be explored in future studies.
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