remote sensing @\py

Article

Landslide Susceptibility Mapping: Machine and
Ensemble Learning Based on Remote Sensing
Big Data

Bahareh Kalantar 1*©, Naonori Ueda 1, Vahideh Saeidi 2, Kourosh Ahmadi 3,
Alfian Abdul Halin 4 and Farzin Shabani 5

1 RIKEN Center for Advanced Intelligence Project, Goal-Oriented Technology Research Group,

Disaster Resilience Science Team, Tokyo 103-0027, Japan; naonori.ueda@riken.jp

Department of Mapping and Surveying, Darya Tarsim Consulting Engineers Co. Ltd.,

Tehran 15119-43943, Iran; saeidi@daryatarsim.com

Department of Forestry, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University,
Tehran 15119-43943, Iran; kourosh.ahmadi@modares.ac.ir

Department. of Multimedia, Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia, Serdang, Selangor 45000, Malaysia; alfian@ieee.org

Global Ecology and ARC Centre of Excellence for Australian Biodiversity and Heritage,

College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia;
farzin.shabani@flinders.edu.au

*  Correspondence: bahareh.kalantar@riken.jp; Tel.: +81-362-252-482

check for
Received: 15 April 2020; Accepted: 26 May 2020; Published: 28 May 2020 updates

Abstract: Predicting landslide occurrences can be difficult. However, failure to do so can be
catastrophic, causing unwanted tragedies such as property damage, community displacement,
and human casualties. Research into landslide susceptibility mapping (LSM) attempts to alleviate
such catastrophes through the identification of landslide prone areas. Computational modelling
techniques have been successful in related disaster scenarios, which motivate this work to explore
such modelling for LSM. In this research, the potential of supervised machine learning and ensemble
learning is investigated. Firstly, the Flexible Discriminant Analysis (FDA) supervised learning
algorithm is trained for LSM and compared against other algorithms that have been widely used
for the same purpose, namely Generalized Logistic Models (GLM), Boosted Regression Trees (BRT
or GBM), and Random Forest (RF). Next, an ensemble model consisting of all four algorithms is
implemented to examine possible performance improvements. The dataset used to train and test all
the algorithms consists of a landslide inventory map of 227 landslide locations. From these sources,
13 conditioning factors are extracted to be used in the models. Experimental evaluations are made
based on True Skill Statistic (TSS), the Receiver Operation characteristic (ROC) curve and kappa
index. The results show that the best TSS (0.6986), ROC (0.904) and kappa (0.6915) were obtained
by the ensemble model. FDA on its own seems effective at modelling landslide susceptibility from
multiple data sources, with performance comparable to GLM. However, it slightly underperforms
when compared to GBM (BRT) and RFE. RF seems most capable compared to GBM, GLM, and FDA,
when dealing with all conditioning factors.

Keywords: big data; landslide susceptibility; flexible discriminant analysis; random forest;
ensemble model

1. Introduction

The use of advanced remote sensing technologies has allowed high-dimensional multiresolution
datasets to be conveniently accessible to researchers. Data of the earth’s surface can be acquired from
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satellite imagery that comes in various spectral, spatial, and temporal resolutions. Such images are not
obtainable through unmanned aerial vehicle-mounted cameras. Such data are used to generate maps
explaining the topography, land cover, lithology, etc., from which geospatial information can be extracted.
This facilitates critical tasks and applications such as earth observation and management [1]. Nowadays,
the sheer amount of remotely sensed data puts it into the category of big data. Sedona et al. [2] assert that
remote sensing data needs robust processing and sense-making where (traditional) machine learning
(ML) algorithms might be preferred over deep learning methods. This is because the latter necessitates
massive amounts of training examples that involve millions of model parameters, whereas a properly
formulated ML task can involve a lot less data. The work done by Shirzadi et al. [3] has also proven that,
despite the deep learning trend, less complex ML can still work in a broad range of applications.

One critical application that has been on the rise, which has also benefitted from the availability of
remote sensing big data, is landslide susceptibility mapping (LSM). LSM is a critical natural hazard
mitigation strategy that accommodates for large scale destruction and losses [4]. There are several
landslide predisposing factors that are grouped into human and environmental factors. These triggering
factors are topographic, hydrological, lithological, land cover and manmade (e.g. construction and
excavation) [3,5]. Data pertaining to terrain surface and human activities can be obtained via remote
sensing methods, whose analytics are able to identify problems before the disaster strikes. Nowadays,
more remotely sensed data can be acquired such as satellite imagery, aerial photogrametry, etc. [6],
which can potentially make LSM more effective.

Recently, machine learning algorithms, together with strategies to apply them (either as a single
classifier or via ensemble methods), have been extensively studied. Many ML algorithms are publicly
available (written mostly in the Python and R languages), allowing models to be rapidly developed [3].
This trend has allowed remote sensing big data to be effectively used, analyzed and modelled. The main
concern though is which algorithm to apply, and, when dealing with big data, which variables/features
to select (dimensionality reduction) based on objectivity and bias [7,8].

Related Studies

LSM and the evaluation of landslide conditioning factors play a major role in landslide
mitigation [8]. Ma et al. [9] categorized LSM models into inventory-based, knowledge-driven methods,
data-driven methods and physically-based models. Pradhan et al. [10] further categorized data-driven
methods into two models: (i) bivariate and (ii) multivariate (which is based on correlations among
regional conditioning factors, as mentioned by Dou et al. [7]). Widely used bivariate models in LSM are
Frequency Ratio [11,12], Weight of Evidence [10,13], Statistical Index [7,10] and Information Value [14].
Common multivariate statistical techniques include Logistic Regression [7,10,12,15-17] and Decision
Trees [10]. Lately, machine learning (ML) algorithms such as Random Forest [13,18,19], Support Vector
Machine [13,17,20], Artificial Neural Networks [11,17] and Naive Bayes Classifiers [21,22] have also
been used more in comparison to bivariate and multivariate models. ML algorithms have also been
shown to be practical in LSM, which includes spatial prediction [23].

Supervised ML algorithms can be trained using data to create a model for the prediction of specific
phenomena [24]. For example, Generalized Linear Models (GLM) and Generalized Additive Models
(GAM) were reported by [13] and [25], respectively, where improved landslide susceptibility modelling
was obtained by taking advantage of the linear and nonlinear relationships of the predictor variables.
In other research [26], Boosted Regression Tree (BRT) and GLM were applied, along with Random
Forest and CART (Classification and Regression Tree), to identify landslide prone areas. Their findings
suggested that RF and GBM (BRT) performed well for LSM, and highlighted that GLM was also
adequately competitive with other modern machine learning algorithms. Landslide conditioning
factors, as well as a variety of conditioning factors, have shown to play significant roles in LSM.
However, despite all the research, there is no standard guideline for factor selection to determine
landslide prone zones [18]. This inspired researchers such as [18] to investigate the importance of
factors through machine learning. Their results managed to decrease the input space down to only
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12 conditioning factors (CF) for landslide occurrences in Shangnan County, China. The study in [4]
also showed the benefit of reduced CFs. They finally used only 14 CFs to accurately identify landslide
prone areas. They further discovered that when all factors were optimized and redundant variables
removed, the accuracy of each model moderately improved. They noted, however, that their Random
Forest classifier was insensitive to the presence of redundant data, signifying its potential robustness
for LSM. Several other ML algorithms were also shown to be promising for LSM [8], namely SVM and
K-means clustering. Interestingly, this work showed that landslide susceptibility prediction seems
feasible with acceptable modeling efficiency, even when using unsupervised K-means. In addition,
Flexible Discriminant Analysis (FDA) has shown promise for classification tasks other than LSM [27-29].
Solberg [30] asserts that FDA is a less computer-intensive algorithm to classify non-Gaussian features,
requiring no advanced parameter specifications. For this reason, we aim to use FDA to map landslide
prone zones and evaluate its results with other ML algorithms (i.e., GLM, GBM and RF) to verify FDA
abilities in LSM application.

Besides training just one learning algorithm, an ensemble of algorithms (i.e., ensemble models)
can be used to decrease noise and avoid overfitting [31]. Kordestani et al. [32] reported improved
classification for flood susceptibility and groundwater potential mapping using ensemble models.
Pham et al. [33] also employed an ensemble technique through a combination of Bagging, Dagging,
AdaBoost, MultiBoost, Random SubSpace and Rotation Forest for landslide susceptibility mapping.
They asserted that ensemble models show significant improvement over their nonensemble counterparts.
Fang et al. [34] integrated the convolutional neural network (CNN) with three ML algorithms (i.e.,
SVM, RE and LR) to identify landslide susceptibility zones in China. Their hybrid models were trained
on 16 conditioning factors with an impressive 8.72% improvement in overall accuracy. For this reason,
we are motivated to investigate ensemble models. Specifically, we will combine FDA, GLM, GBM
(BRT) and RF to examine the degree of improvement in LSM.

In this study, 13 conditioning factors (altitude, slope, aspect, cross sectional curvature,
profile curvature, plan curvature, longitudinal curvature, channel network base, convergence index,
distance to fault, distance to river, valley depth, and lithology (geology) map) were prepared by
analyzing and determining the most significant factors using variance-inflated factor (VIF). FDA was
compared against GLM, GBM (BRT), and RF (some of the most extensively deployed models) in the R
package. The tasks are (i) to create LSM, and (ii) to classify the maps into five categories indicating
landslide probability proneness (i.e., very low, low, moderate, high, very high). Lastly, an ensemble
model consisting of the four aforementioned models along with FDA, GLM, GBM (BRT) and RF was
applied to the dataset, and all results were evaluated against statistical indices such as True Skill
Statistic (TSS), Receiver Operation characteristic (ROC) curve, and kappa index.

Specifically, our research aims to answer four questions: (1) Is FDA appropriate when dealing
with big data, multiscale datasets and landslide susceptibility mapping? (2) Is ensemble modeling
weighted by the True Skill Statistics (TSS) criteria which are applicable for landslide susceptibility
mapping in comparison with individual machine learning methods? (3) Which conditioning factors
are the most/least influential for the identification of landslide susceptible zones in the study area?
(4) How well does FDA perform against selected commonly used algorithm in LSM (i.e., RE, GBM
(BRT), and GLM modeling)? The remainder of this paper is organized as follows. Section 2 outlines
the geographical location of the study area and describes the inventory data and conditioning factors.
Section 3 presents a generic overview of the methodological framework and detailed information
about image processing, data derivation, FDA, GLM, GBM (BRT), and RF classification, and evaluation
metrics. Section 4 describes the results, and Section 5 discusses the experimental findings. Section 6
provides the conclusions.
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2. Study Area and Materials

2.1. Study Area

The Sajadrood catchment was selected as the study area, which is in the Mazandaran province
of Iran. This location was selected as repeated landslides have occurred here [16]. As illustrated in
Figure 2, Sajadrood has an area of 118.8 km? with a population of 26,809 (2006 census). It is situated
between the north latitudes of 36°9” and 36°10” and east longitudes of 52°30” and 52°40’. The land
is mostly covered by dense forest towards higher altitudes, as well as orchards, agriculture, and
paddy fields in lower altitudes in the north. According to the Iranian Meteorological Organization,
temperatures vary from 2 °C in February to 38 °C in August, with humid weather. Throughout the
year, Sajadrood experiences heavy rainfall, with an annual average of 680 mm. The geology of the
area is predominately covered by sandstone, followed by silty marl, mudstone, limy marl and marly
limestone, which are extended over the region [16]. Historical reports on landslide events reveal that
rotational slides mostly happened in the area. For the most part, the landslide occurrence around
villages and roads indicates that human activities are one of the triggering factors [4,16]. Additionally,
the topography (altitude) and the geological characteristics of the study area induce more susceptibility
to the hazard [16].
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Figure 2. General location of the study area: (a) Iran; (b) location map; (c) digital elevation model
(DEM) of the study sites including landslide inventory data.

2.2. Landslide Inventory Data Preparation

Similar to [18,35,36], field survey data, aerial photogrammetry, existing reports, and Landsat 8
imagery for the interpretation of historical events were used to prepare and update the landslide
inventory map. In the study area, 227 landslides were identified as an inventory map. The inventory
map is divided into the training and testing datasets. Specifically, 159 points (70% of the inventory
locations) were allocated for training, whereas the remaining 68 points (30%) were used for testing.
Landslide susceptibility mapping is a binary classification task where landslide indices are separated
into the two classes: (i) landslide and (ii) nonlandslide. For this study, we randomly generated 10-sets
for the nonlandslide class (227 points per set) using “create random point” in ArcGIS, and then we
proceeded to divide each set from the landslide and nonlandslide classes (for a total of 454 points) for
training and testing. At this stage, the selection of training and test points was completely random
involving no human intervention. Defining landslide and nonlandslide pixels is a necessary part of
the training process. The learning algorithm needs to receive data regarding both regions to develop
the landslide model.

We applied the split-sample cross-validation approach (Figure 3), as per James et al. [37]. Basically,
the initial dataset is randomly split into two partitions: the first (training) partition comprises 70% of the
dataset, whereas the second (test) partition comprises 30%. A first split-sample iteration is made, the
model parameters and evaluation metrics (assuming that several are measured, but it could also be only
one) are stored, and a new split-sample iteration is made. The parameters and metrics from the second
iteration are stored in the same place, and the iterations are repeated a total number of R-times. Hence,
single iterations are similar to the single iterations in k-fold cross-validation, but the two approaches
differ in terms of the number of runs that are made, i.e., only k in total for k-fold (unless the whole
procedure itself is repeated multiple times), but R-iterations for repeated split-sample cross-validation
(with R > k). Repeated split samples generate estimates of model parameters and evaluation metrics
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which can be used to assess the model stability and assess uncertainty around the model parameters
and evaluation metrics. In this sense, it is a more informative approach. One main limitation, however,
is the computing cost, as running repeated models (e.g., 100) for large data can be compute intensive.
With cross-validation, a more refined resampling procedure for split-sampling can be developed (e.g.,
using stratification) to reduce autocorrelation or to test the model’s extrapolation ability.

Repeated split-sample
cross-validation —
approach
K=10

Y random ,‘_\

Train 70%

Test 30% yf 174

Model prediction ‘
X1, X2,

X3, X4

Figure 3. Procedure for split-sample cross-validation approach to evaluate a predictive model,
illustrated for k = 10. k is the fixed number of partitions, f represents the model function used to fit
the landslide modeling, yf is the vector of fitted values from the model fitted on all partitions except
partition, and pi is the vector of predictions made with model on partition i. Jf is the vector of mean
yf across all models (fori = 1 to k). yp is the final vector of predictions made by appending the k
ypi vectors, which can then be compared to the vector of initial observations y through the chosen
evaluation metric.

2.3. Landslide Conditioning Factors

Based on existing and relevant literature, as well as data availability, we selected and classified
13 conditioning factors, namely lithology (geology) map, altitude, slope, aspect, cross sectional curvature,
profile curvature, plan curvature, longitudinal curvature, channel network base, convergence index,
distance to fault, distance to river, and valley depth. Our dataset has high dimensionality and
comes from various sources with different spatial and temporal resolutions. To avoid complexity
during modeling with such big data, we resampled the dataset to 10 m resolution. The selection and
classification of the conditioning factors are explained as follows:

1. Lithology (Geology): We used a 1:25,000-scale lithology (geology) map of the study area, which was
obtained from the Geological Survey of Iran using satellite imagery. The dominant lithological
units (e.g., sandstone and silty marl, mudstone, marly limestone and so on) in the area were
classified into 9 classes, as per Figure 4a. Lithology (geology) was chosen, as it can be indicative of
soil characteristics. These characteristics can be diverse and may influence erosion, ground stability
and slide occurrence [17,35]. Table 1 shows the lithology (geology) of the Sajadrood catchment.

2. Elevation and Topographical Data: We used a 1:25,000-scale topographic map of Sajarood to generate
a 10 m Digital Elevation Model (DEM). The topographic map was provided by the National
Cartographic Center of Iran from the aerial photogrametry. Since DEM derivatives can be utilized
for geomorphological studies [38], first and second order DEM derivatives such as altitude,
slope, aspect, cross sectional curvature, profile curvature, plan curvature, longitudinal curvature,
convergence index, channel network base, and valley depth [39] can be very useful. We extracted
them using SAGA GIS.
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3. Altitude: This CF can be very influential in landslide predictions [17,40]. In this work, altitude is
derived from the study area’s DEM, ranging from 66 meters (in the northern part) to 1534 meters
(in the southern part) (Figure 4b).

4. Slope and Aspect: Both these CFs were generated from the study area’s DEM. For this study,
the slope map was extracted to a maximum slope of 48° (Figure 4c). Aspect, which relates to
meteorological and morphological characteristics, represents the horizontal direction of mountain
slope faces [41]. The aspect map (Figure 4d) was divided into nine separate categories: (i) north,
(ii) northeast, (iii) northwest, (iv) flat, (v) south, (vi) southeast, (vii) east, (viii) west and (ix)
southwest. These two CFs were chosen, since slope directly influences the soil strength, and
consequently, the landslide [42].

5. Curvatures: Plan and profile curvatures are the descending flow acceleration (erosion/deposition
rate) and the flow velocity variation of a slope, respectively [17]. Cross-sectional curvature, on
the other hand, measures curvature perpendicular to the down slope direction to detect concave
features such as channels (intersecting with the plan of slope normal and perpendicular to
aspect direction). Longitudinal curvature calculates the curvature in the down slope direction
(intersecting curvature with the plan of slope normal and aspect direction) [38,43]. For this
research, plan curvature, profile curvature, cross-sectional curvature, and longitudinal curvature
(Figure 4e-h) were manually classified into three categories: concave, flat, and convex shaped
curvatures. More details and formulas regarding to curvatures are provided by Ehsani and
Malekian [38], and Alkhasawneh et al [43].

6.  The Convergence Index: As another DEM derivative, the convergence index provides assessment of
slope curvature (Figure 4i). This index describes the mean of the slope directions of neighboring
pixels from the direction of the central pixel [39], which effectively indicates whether a pixel is
convergent or divergent.

7. Channel Network Base and Valley depth: Valleys and channels are considered as geomorphologic
and hydrologic attributes [44]. The channel network base (Figure 4j) and valley depth (Figure 3)
appear to influence landslides and debris flows distribution [45]. The channel network base uses
elevation, flow direction, and divergence to calculate the network (http://www.saga-gis.org/saga_
tool_doc/2.2.0/ta_channels_0.html). Valley depth contributes to drainage, that leads the way for
the landslide. Therefore, it is based on the vertical distance to the depth contour lines (convergent)
seen from the mountain ridges [44—46]. This can be estimated by subtracting the base level of the
channel network from the DEM [47].

8.  Distance to Fault and Distance to River: From the topographic map, distance to fault and distance
to river are generated based on the Euclidean distance function in ArcGIS (Figure 41,m).
These distances were chosen as landslides occurrence is most probable along the fault and
river, due to erosion and ground instability [5,17,21].

Table 1. Characteristics of the Sajadrood Catchment.

Symbol Lithology (Geology)
Js Shale with Intercalations of Conglomerate, Sandstone, Radiolarite, limestone and Volcanics
Mmsl Marl, Calcareous Sandstone, Sandy Limestone, and minor Conglomerate
Kzlm Pale—Red Marl, Gypsiferous Marl and Limestone
Pic Polymictic Conglomerate and Sandstone
Q Low Level Piedment Fan and Vally Terrace Deposits
Plcm Marl, Shale, Sandstone and Conglomerate
TRey= PeEm Marl and Gypsiferous Marl Locally Gypsiferous Mudstone
Pesl Sandstone, Calcareous Shale and Mudstone

Kolm Hyporite Bearing Limestone
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Figure 4. Landslide conditioning factors for LSM; (a) Lithology (Geology), (b) Altitude, (c) Slope,
(d) Aspect, (e) Plan Curvature, (f) Profile Curvature, (g) Cross Sectional Curvature, (h) Longitudinal
Curvature, (i) Convergence Index, (j) Channel Network Base, (k) Valley Depth, (1) Distance to Fault,
(m) Distance to River.

3. Methodology

3.1. Overview

Figure 5 is a flowchart of the workflow in this work. The pixel values of the 13 conditioning factors
were extracted into the landslide location points of ArcGIS 9.3, which was then imported into our
R-language (version 3.0.2) for implementation. These served as training and test data for the principal
and confirmatory models (FDA, GLM, GBM (BRT) and RF). Subsequently, the calculated coefficients of
the landslide conditioning factors were converted into text format for the statistical Variance Inflation
Factor analysis. Next, the four ML models and their ensembles were trained to map and classify
landslide susceptible zones into five probability classes: (i) very low, (ii) low, (iii) moderate, (iv) high,
and (v) very high. Finally, validations were carried out based on the metrics: (i) Receiver Operating
Characteristics (ROC) curve, (ii) True Skill Statistics, and (iii) Cohen’s kappa statistics.

3.2. Landslide Conditioning Factor Analysis

The conditioning factors analyses were done prior to modeling the machine learning algorithms [48].
Hence, both VIF and Pearson’s coefficients were applied to identify any multicollinearity between the
conditioning factors. As LSM deals with huge geospatial datasets, we decreased the dimensionality and
multicollinearity by removing highly correlated factors using the USDM package version 1.1 [49].

3.2.1. Variance Inflation Factor (VIF)

VIF is a common factor analysis method for landslide detection. It measures the degree of

intercorrelation between the predictive variables [48] through the following Equation (1):
1

VIF = T-Rr2 1)

where R/ represent the multi correlation coefficient between an individual factor and other conditioning

factors. In the current study, as per the standards of established previous works [50,51], VIFs greater than

5 or 10 indicate multicollinearity; therefore, that particular variable should be removed. Table 2 shows

the factor analysis results via VIE. Seemingly, no values were greater than 5 for any conditioning factor.
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Figure 5. Framework of the proposed methodology.

Table 2. The Estimated Variance Information Factor (VIF) for Landslide Conditioning Factors.

Conditioning Factors VIF
Lithology 2.26334
Altitude 1.321653
Longitudinal Curvature 1.531395
Profile Curvature 1.463843
Plan Curvature 1.463843
Distance to River 1.600335
Slope 1.391226
Valley Depth 1.695373
Aspect 1.024332

Channel Network Base Level 2.31
Convergence Index 1.834950
Cross Sectional Curvature 2.240171
Distance to Fault 2.514229

3.2.2. Pearson Correlations

Pearson’s correlation coefficients (Equation (2)) is a measurement of correlation between two
quantitative variables, or in our case, two conditioning factors. Highly correlated variables indicate
linear dependence where they have the same effect on the response variable. Therefore, one of the
variables can be removed from the model [50]. Independent variables with an r correlation value of
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more than 0.70 should be removed [52]. In this work, the correlation between all independent variables
yielded values less than 0.7.

- -X Y,-Y
I'xy = Z — . — )
i=1 Zk 1( X) ZZ:1< Yz' - Y>2

X; and Y; represent the respective value of X and Y for the i—th conditioning factor. X and Y
are the mean of X and Y, respectively. As mentioned, values greater than 0.7 indicate a high level
of collinearity between variables/factors. The correlation between independent variables (Figure 6)
showed that all variables were less than 0.7 and entered the model.

= [} = > 3
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Figure 6. Pearson’s correlations between landslide conditioning factors.

3.3. Machine Learning Algorithms

This section briefly addresses the supervised ML used for LSM, namely FDA, GLM, GBM (BRT),
and RF, and ensemble models as well.

3.3.1. Flexible Discriminant Analysis (FDA)

Flexible discriminant analysis (FDA) combines nonparametric regression models with nonlinear
discriminant analysis, along with classification methods, into one framework [53]. FDA is more
flexible for nonlinear classification tasks, since the clusters in FDA are smoother and softer due to the
nonlinear transformation being applied [27]. FDA works well at classifying non-Gaussian features [30].
The FDA model in this research uses multivariate adaptive regression splines (MARS) which adaptively
transform the predictors x into the new space h(x). The nonlinear discriminant analysis is then
performed in the new space [53]. In this work, for a | class of landslide events, the vector of canonical
variates has a maximum of K = | — 1 components [27]. The fitted centroid for the j—th class in in this
space (of the canonical variates) is calculated as:

= n(x)
- A, 3
giz_:o N ®)

Subsequently, the discrimination rule (weights) assigns an observation x to class j, which minimizes
the following objective function:

o(x, ) =|[P(n()) - )| @
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where D is the diagonal matrix of the sample class proportions that convert optimally scaled fits to
discriminant analysis variables.

3.3.2. Generalized Linear Models (GLM)

The work in [13] demonstrated the effectiveness of Statistical Generalized Linear Models (GLM)
for landslide susceptibility predictions. GLM is suitable for numeric variables because of its regression
nature; however, it is sensitive to insignificant and correlated variables, which might degrade its
performance [54]. GLM is an extension of the common regression structure for non-normal distributions,
making it suitable for nonlinear and simple relationships between Gaussian and non-Gaussian
distributed variables [41,54]. The model is explained by Equation (5).

Pr

- 1 + eCO+C1X1 ----- +CnXy (5)

where Pr is the estimation probability of landslide occurrence, Cy is the intercept, and # is the number
of independent variables. Terms Cjand X; (for i = 1 to n) represent the slope coefficients and the
independent variables, respectively [23].

3.3.3. Generalized Boosted Regression Models (GBM) or Boosted Regression Trees (BRT)

Generalized Boosted Regression Models (GBM or BRT) combine statistics and machine learning
to improve the performance of a single model (simple tree) for nonlinear classification tasks [28,42].
According to [32], GBM (BRT) prioritizes the importance of the conditioning factors during modeling.
This makes it insensitive to outliers, and missing data can be modified to increase model accuracy
through regression trees models and boosting algorithms [41,42]. The boosting step basically fits a
sequential parameterized function to the gradient of the loss function in order to iteratively construct
additive regression models [45]. Three hyperparameters exist, i.e., (i) shrinkage, which manages
model complexity, (ii) learning rate, which controls the contribution of each tree to the entire model’s
construction, and (iii) bag fraction, which determines how many trees are needed to obtain the best
fit [42]. The GBM (BRT) [32,55] algorithm is described as follows:

Initializing weights of W; = 1/n,
from m = 1 to iteration classifier of Cy,; ,
Fitting C,, to the weighted data,

Calculating misclassification rate of 1y, ,

1-rm
m

Computing the classifier weight of amlog( ) with ay, as the coef ficient value,
Recalculating weights o f w; = w; explaml (y; # Cim)]
Finally, a majority vote is obtained by:

M
Sing = 2 A Coa(X) 6)
m—1

3.3.4. Random Forest (RF)

The Random Forest (RF) algorithm is a statistical technique with the ability to control a large
number of highly correlated variables [13,18]. It is a decision tree-based, ensemble, parametric classifier
that makes no assumptions regarding the data distribution, even when dealing with different types of
input scales, variables, or even large datasets [56]. Li and Wang [54] and Chehata et al. [56] assert that
RF is not sensitive to multicollinearity and redundant variables, and that RF measures the significance
of variables and inputs as reliable indicators. Specifically, RF applies the Gini index to the significance
of variables for its selections and decisions [57]. RF models also do not overfit the training data
due to their independent random trees, and handle outliers, missing values, and noisy variables
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effectively [41,56]. Therefore, we selected RF as one of our benchmarks to evaluate the performance of
the newly applied FDA.

3.3.5. Ensemble of FDA, GBM (BRT), GLM, and RF

Selecting an algorithm from a set of available algorithms (for modeling) can be done based
on certain evaluation criteria [58]. However, although passing some criteria, the model may not
necessarily be the best for the forecasting task. Some models may be more sensitive than the model
bias, which may also reduce the ability to transfer it [32,59]. One solution to avoid such problems is to
use ensembles [60]. Ensemble modeling avoids selecting the single best model, which eliminates (or at
least limits) model selection bias. Moreover, this kind of modeling provides a relative measure of the
importance of each predictor among all candidate models [61].

In the present study, an analytical option for ensemble modeling and model averaging is to build
predictions based on all (or a subset) of the models. This can be weighted by their weight of evidence or
by their statistical performance. Researchers have proposed using predictive performance metrics that
have been long used in modeling, such as the Area Under the Curve (AUC) of the ROC plot (AUC) [62]
or the True Skill Statistics (TSS) [63], to weight the different models. In this study, TSS criteria were
used to weight the models. These ensemble predictions can be obtained very simply, by calculating a
weighted average of the predictions from all models. Models with a low weight of evidence basically
have no predictive power, whereas models with similar weights will contribute similarly, allowing
concurrent predictors to contribute equally. The weighted average prediction is thus expressed by the
formula:

ﬁ = i wiPi (7)

where w;P; is the weighted prediction (probability) from model i. The idea of the weight basically
entails a weighted variance or standard deviation, and associated confidence intervals can also be easily
estimated, providing a useful estimation of the uncertainty associated with the different candidate
models. Finally, open source tool R was utilized to apply all models for this study.

3.4. Model Validation

To statistically evaluate the overall predictive accuracy of the models, True Skill Statistic
(TSS), Receiver Operation characteristic (ROC) curve, and kappa index were calculated. The TSS
metric performs a comparison between correct predictions, predictions from random guessing, to
hypothetically perfect predictions. TSS can be calculated as:

TSS = sensitivity + specificity — 1 8)

Based on Equation (8), the resultant range of TSS is from —1 to +1. Perfect agreement is obtained
when TSS = +1, whereas TSS < 0 indicates performance that is no better than random [63,64].

The area under the Receiver Operating Characteristic (ROC) curve, termed the AUC, is a
quantitative measurement to evaluate predictive performance [10]. It can also be a representation
of the success rate (prediction rate) and how well the model fits the data [42]. The curve is plotted
with the x-axis representing the false positive rate (sensitivity) and the 100-specificity on the y-axis.
The range for AUC is between 0 and 1. In landslide-based research, [11,65] state that AUC > 0.7 is
considered acceptable.

Cohen’s kappa statistic quantitatively measures the agreement between predicted and observed
values, and reveals the degree of reliability of LSM [22]. Similar to AUC, kappa values also range from
0 to 1, where Kappa = 1 indicates the best model and 0 indicates otherwise [4].
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4. Results

FDA, GLM, GBM (BRT), and RF, together with their ensemble models, were trained on the
13 landslide conditioning factors. Table 3 and Figure 7 show the weights and contribution of each
factor during classification. Overall, distance to river made the largest contribution, followed by lithology,
which was ranked as the second or third most important factor by all classifiers. The weights of other
factors were less than 0.01, and varied from one algorithm to another. A weighting value of zero
was obtained by the channel network base level in FDA, BRT, and GLM, while using RF method,
the importance of this factor was 0.023 for LSM application. The RF model was more consistent for
factor prioritization within all the conditioning factors.

Table 3. Factor Importance Using Four Machine Learning Algorithms.

Conditioning Factors FDA GBM(BRT) GLM RF
Lithology 0.03313 0.01437 0.03793 0.01674
Altitude 0.03125 0.00496 0.02332 0.0107
Longitudinal Curvature 0.01239 0.00954 0.0283 0.0058
Profile Curvature 0.0036 0.00546 0.00661 0.00457
Plan Curvature 0.00169 0.0042 0.00966 0.00451
Distance to River 0.83677 0.76437 0.79594 0.51263
Slope 0.01063 0.01501 0.02247 0.00693
Valley Depth 0.00213 0.00743 0.00456 0.00939
Aspect 0.00209 0.00375 0.00148 0.00435
Channel Network Base Level 0 0 0 0.02343
Convergence Index 0.00277 0.00334 0.00123 0.00226
Cross Sectional Curvature 0.00148 0.00192 0.00066 0.00235
Distance to Fault 0.1301 0.00572 0.00373 0.00528
) FDA 1 GBM(BRT)
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Figure 7. Factor importance for (a) FDA, (b) GBM (BRT), (c¢) GLM, and (d) RF (Bar plots are in
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We evaluated the model’s prediction capabilities using TSS, ROC, and Kappa. Table 4 shows
the accuracies of the four models and their ensemble based on the 13 conditioning factors against
validation indices. Each algorithm was run 10 times for sensitivity analyses, and the test errors
were averaged. Accordingly, all models performed adequately, and the validation was satisfactory.
Comparing the four ML models, RF had the best ROC, i.e., 0.8919 followed by BRT, at 0.8842. Though the
differences between ROC between FDA and GLM were reported to be insignificant (at 0.8641 and
0.8604, respectively), in terms of TSS and the kappa index, FDA performed slightly better than GLM.
Therefore, comparing the four models, the minimum TSS and kappa values belonged to GLM, while the
maximum TSS and Kappa were obtained by RF. The best TSS (0.698), ROC (0.904), and kappa (0.691)
belonged to the ensemble model.

Table 4. Validation Results for the 4 Models and Their Ensembles Using 13 Landslide Conditioning Factors.

FDA GBM (BRT) GLM RF Ensemble
Dataset
avg S.d avg S.d avg S.d avg S.d avg S.d
TSS 0.614  0.0682  0.6551 0.0636  0.6096  0.0704 0.6869  0.0674  0.6986  0.0207
ROC 0.860  0.0343 0.8842 0.0309 0.8641 0.0357 0.8919  0.0300 0.9043  0.0148

Kappa 0.614 0.0688  0.6538  0.0641 0.6086 0.0710 0.6867  0.0676  0.6915  0.0204
Sensitivity ~ 80.00 0.074 84.44 0.061 71.11 0.072 86.66 0.063 86.44 0.022
Specificity =~ 82.22 0.065 80.00 0.053 84.44 0.073 84.44 0.061 84.22 0.024

Figure 8 shows the LSM classifications from the four models and their ensemble. The different
colors represent the different probability risk classes, i.e., (i) very low, (ii) low, (iii) moderate, (iv) high,
and (v) very high. The final landslide susceptibility maps show the regions that are classified into
the five classes. Specifically, the values for each class are as follows: very low (<0.2), low (0.2-0.4),
moderate (0.4-0.6), high (0.6-0.8), and very high (>0.8). All the models generated consistent general
probability distributions in the five classes.
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Figure 8. Landslide susceptibility maps by (a) FDA, (b) GLM, (c¢) GBM (BRT), (d) RF and (e) their
ensemble models.

Table 5 shows the presence (coverage) of each probability class. Accordingly, all models classified
most of the study area as very low risk for landslide events. More specifically, GLM, FDA, Ensemble,
GBM (BRT), and RF mainly voted for very low probability with values of 56.1%, 59%, 64.4%, 69.51%,
and 71.5%, respectively. FDA and GLM were more similar in voting percentages of the five classified
probabilities within the region. While GBM (BRT) classified 15.06% of the area as a very high susceptible
zone, other methods categorized it (very high zone) with a lower coverage (from 9.67% to 5.9%).
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Table 5. The Ratio and Area of Each Susceptibility Class.

Models
Susceptibility FDA GLM GBM (BRT) RF Ensemble
% Area (ha) % Area (ha) % Area (ha) % Area (ha) % Area (ha)
Very Low 59 7408 56.14 7011 69.51 8680 71.51 8930 64.42 8044
Low 115 1436.5 12.19 1523 4.63 579 6.57 821 9.96 1244
Moderate 10.7 1343 11.71 1463 4.32 540 6.04 755 7.25 906
High 129 1616 12.5 1561 6.45 806 6.18 772 8.97 1121
Very High 5.9 683 743 928.5 15.06 1881.5 9.67 1208.5 9.38 11715
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5. Discussion

In this study, the ML models and their ensemble were applied to remote sensing data to calculate
and predict the probability of landslide events in the Sajadrood catchment. The extensive use of
remote sensing techniques has made data and information from the ground surface and landslide
conditioning factors (e.g., topography and geology), and their recent situations, available for our
perusal. For example, the 30 m Landsat8-derived information regarding the current positions of
landslides in the region helped us prepare the inventory map, which was the basis for training and
validating the learning algorithms used in this study.

Using available datasets from the study area, 13 conditioning factors were resampled in the same
resolution and then classified. Prior to model training, VIF and Pearson correlation factor analyses
were applied to test the presence of multicollinearity in the datasets. The factor analyses step concluded
that no high intercorrelation existed between the datasets, making it possible for no predictors to be
removed from the dataset. Next, the training samples from the inventory maps and corresponding
pixels of the conditioning factors were extracted and fed into the four-machine learning (ML) models
and their ensemble. Finally, the probability maps were categorized into five classes.

The regression coefficients resulting from the four ML models suggest that the most important
causal factor for landslides is distance to river, which shows a direct connection with landslide
occurrence. This is consistent with several previous studies, i.e., [35,45,50]. Our regression results,
however, indicate different weights for the conditioning factors within every algorithm; the major
agreement about Channel Network Base Level importance was defined as being the least influential
factor for LSM. Although the role of the Channel Network Base Level was not the same direction as
it was in [45],, it reassured us that every conditioning factor plays a significant/insignificant role in
specific topographies and study areas. The different and varied rankings among the models were the
consequence of different regression procedures within the algorithms. Each of the ML algorithms used
a special regression method, such as MARS (FDA), the linear regression (GLM), the Gini index in
decision tree regression (RF), and the regression tree (BRT). Apparently, FDA, GLM, and BRT showed
closer regression results (compared with RF) which can be interpreted as being comparable in nature
in their modeling. RF, on the other hand, is free of any assumptions on the distribution of the variables,
particularly with large inputs of different types and scales. At this point, the proposed FDA regression
model demonstrated parallel performance with the GLM and BRT models (the two confirmed models
in LSM) in the management of all types of conditioning factors. We observed that the lithology factor
was the second most important conditioning factor in landslide phenomena; a similar pattern was
presented by other researchers [26,35], emphasizing the importance and the role of lithology and soil
types in landslide occurrence.

Validation of the four models showed that RF was the most reliable method, exhibiting the best
prediction rate. The least certain algorithm was GLM. This underlines the robustness of RF and the
sensitivity of GLM to the presence of correlated and redundant variables. Moreover, the results might
also be due to the presence of both linear and nonlinear relationships between the various geospatial
variables that RF could reliably consider. Our findings further indicate that the FDA model was
adequate for LSM, as it was compatible with RE, GBM (BRT), and slightly better than GLM, as shown in
Figure 9. The similar pattern, distribution, and percentages of each susceptibility class in the proposed
FDA, compared with the commonly used GLM in landslide prediction, seemingly testifies to the
applicability of FDA for LSM (Table 5). Figure 9 presents the accuracy and reliability of the four ML
models based on ROC and kappa indexes. The GLM model created district boundaries between the
probability classes and did not properly represent natural phenomena such as landslides, which is in
agreement with [54]. The authors of that paper state that the presence of correlated variables decreases
the precision and certainty of GLM. A close comparison between FDA and BRT revealed that FDA
does not require the setting of parameters prior to modeling, whereas BRT necessities trial and error
for (some) parameter specifications. For this reason, the use of FDA is more straightforward, especially
when dealing with remotely sensed big data. Regarding four models and their ensemble, the ensemble
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model outperformed others. This suggests that accuracy improvements can be achieved using an
ensemble model. With respect to the fusion and combination concept in both the ensemble and hybrid
models, our finding was in agreement with [34], where the integration of the models could lead to
better performance for LSM. Evidently, the higher efficiency and performance are the result of the
ensemble model. It considerably improves the accuracy and certainty of the predictions by suppressing
the weaknesses and disadvantages of each individual model, and by taking advantage of the responses
of the combined models [17,66,67].

0.75-
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<
o _ ——
o 0.65 GBM
§ —* GLM
RF
0.60 -
0.55-
0.825 0.850 0.875 0.900 0.925
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Figure 9. ROC and Kappa tests for ML algorithms.

The classification results illustrate low and very low probabilities of landslide occurrence in the
southern parts of the study area. These parts are higher in altitude, more densely forested and more
characterized by limestone, and have minor streams and rivers. In this context, the training seed
might be affected by specific conditions in that part of the study area, which might be the result of
inaccurate landslide inventory maps at the highest altitudes, inaccessible places (in terms of field
surveys and reports) and dense forests (in cases of aerial photogrammetry). Another reason for this
result could be the presence of root of vegetation (forest land cover). By looking at the LSM results and
the distribution of landslides throughout the study area, we found that distance to river was a major
landslide inducing factor.

6. Conclusions

To mitigate the tragedy, property losses, and human casualties caused by landslides, precise
landslide susceptibility mapping (LSM) is necessary. This study provides insights into LSM modeling
based on the FDA algorithm, which, in turn, is based on 13 conditioning factors. The factor analysis results
emphasize the influence of river erosion on landslides. Therefore, risk mitigation recommendations can
be enforced, such as soil strengthening (through roots vegetation, bricks, stones, blocks or concrete),
defining a safe distance for construction projects (i.e., to be further from rivers), and landslide maintenance
easement (to decrease the socio-economical loss). LSM in this context can therefore be used as a guideline
for these recommendations, where it could be useful for decision makers.

As per conditioning factors analyses and their importance, simultaneously using different
regression algorithms seem to be more reliable, as the majority votes could decide on which factors
were significant in the region. Regarding the algorithmic modeling part, our findings suggest that the
ensemble model was more robustly effective than the single algorithmic models, i.e., RF, GBM (BRT),
FDA, and GLM. The single models also required more tweaking. For instance, redundant data had
to be removed in GLM to decrease sensitivity to the presence of correlated variables. This involved
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multicollinearity analyses of the datasets to assess the significance of the variables and reduce large
quantity data before modeling. The RF algorithm was better able to handle noisy data and correlated
variables. The application of the FDA algorithm to LSM was a success, and its ability to manage
enormous datasets seems viable. Consequently, we intend to perform further investigations using FDA
for LSM by applying other conditioning factors (e.g., distance to road, land use, etc.). Also, we intend
to include factor optimization in other study areas with different terrains and geological characteristics.
In future works, we plan to improve the accuracy and certainty of the FDA model and develop hybrid
models, since the latter (e.g., ML algorithm integration with a convolutional neural network) seem to
give good results. Further investigations will be on the basis of other ensemble techniques and their
combinations with FDA to fully understand the advantages and limitations of this technique.
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