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Abstract: The launch of Sentinel-2A and B satellites has boosted the development of many applications
that could benefit from the fine resolution of the supplied information, both in time and in space.
Crop classification is a necessary task for efficient land management. We evaluated the benefits of
combining Landsat-8 and Sentinel-2A information for irrigated crop classification. We also assessed
the robustness and efficiency of 22 nonparametric classification algorithms for classifying irrigated
crops in a semiarid region in the southeast of Spain. A parcel-based approach was proposed calculating
the mean normalized difference vegetation index (NDVI) of each plot and the standard deviation to
generate a calibration-testing set of data. More than 2000 visited plots for 12 different crops along the
study site were utilized as ground truth. Ensemble classifiers were the most robust algorithms but
not the most efficient because of their low prediction rate. Nearest neighbor methods and support
vector machines have the best balance between robustness and efficiency as methods for classification.
Although the F1 score is close to 90%, some misclassifications were found for spring crops (e.g., barley,
wheat and peas). However, crops with quite similar cycles could be differentiated, such as purple
garlic and white garlic, showing the powerfulness of the developed tool.

Keywords: Sentinel-2A; Landsat-8; crop classification; machine learning; satellite-based remote
sensing; irrigation; land management

1. Introduction

The use of remotely sensed data to perform crop classification is a complex task. However, it is a
useful tool for planning and management of many agriculture’s activities like irrigation, among many
others [1]. Moreover, the precise and time appropriate information on crop type and surface provided
by the remote sensing data are considered the key to forecast the crop production [2]. Therefore,
crop classification is the basis for many environmental and socioeconomic applications [3]. Several
studies have applied machine learning techniques to classify crop types, for instance support vector
machines [4–6], neural network [6–8], maximum likelihood [9], random forest [4,7] or decision trees [6].

Some applications of crop classification using Earth observation (EO) techniques are: (1) monitoring
irrigated land, primarily in semiarid and arid regions [10]; (2) crop monitoring for proper funds
allocation, such as subsidies for the Common Agriculture Policy [11]; (3) detection of seasonal crop
abandonment [12] and (4) changes in cropping patterns along the years [13].Further, there are many
other applications primarily focused on water and land management and governance.
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Different sources of information are currently available from both open access and private sources,
which empower the capabilities of EO techniques for crop classification tasks. The launch of Sentinel-2A
and B satellites has boosted the development of many applications that could benefit from the fine
resolution of the supplied information. However, it is still necessary to analyze the contribution of this
fine information in vegetation classification [14]. Additionally, the interoperability between Sentinel-2A
(MSI) and Landsat-8 (OLI), as the most commonly used remote sensing information sources, must be
evaluated [15]. Some efforts have been made in the evaluation of the Sentinel-2A products capabilities
for vegetation classification [14]. This preliminary analysis concluded that the main bands that
contribute to proper crop classification are located in the red edge and the ones with fewer contributions
in the near infrared. The series of spectral bands of Sentinel-2 in the red-edge and shortwave infrared
(SWIR; Band 5, Band 6, Band 7, Band 10, Band 11 and Band 12) are exceptionally valuable particularly
for the investigation of agriculture and vegetation mapping [14]. It is easy to provide a series of indexes
based on the use of these different bands, which are related to the presence of chlorophyll, useful for
the discrimination and classification of the type of covering present on a territory [16]. Given that
the temporal orbit cycle of Sentinel-2 was especially designed to perform combined observation with
Landsat-8 [17], an increase in the crop monitoring mission became possible. Consequently, one of the
objective of this manuscript is to evaluate the use the multi-temporal Sentinel-2A and Landsat-8 data
to take advantage from their interoperability [15,18] for crop classification.

Accessible and open remote sensing information has led to applications dealing with
multi-temporal data, which restricts the results to the end of the crop season. To analyze the
effect of the number of dates with the aim of early crop classification during the crop season, [19]
evaluated a number of different images along the crop season to determine the earliest crop classification
and the improvement in the overall accuracy for the different dates. These authors concluded that
using the available information up to mid-July could result in high accuracy (86%) in crop classification,
reaching 92% at the end of the season. Additionally, they used the enhanced vegetation index EVI
instead of the normalized difference vegetation index NDVI to avoid environmental distortion.

Vegetation indices (VIs) derived from reflectance data acquired from optical sensors have been
used over a wide range of scenarios to assess variations in the physiological states and biophysical
properties of vegetation [20,21], particularly, the normalized difference vegetation index NDVI [22],
which is one of the most used indices in remote sensing studies [23]. NDVI measurements incorporate
observations of different plants and can be used to present descriptive characteristics of phenological
stages [24].

A great effort has been made in the selection of proper algorithms for crop classification, from the
use of traditional parametric algorithms, such as maximum likelihood, to nonparametric algorithms,
such as neural networks, support vector machines, decision trees and random forest among many
others [3]. Table 1 summarizes some experiences in crop classification with different classification
algorithms, sensors, number of classified crops and locations, which complement those referenced
in [3].
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Table 1. Summary of some studies about crop classification.

Study Location
Number of
Classified

Crops
Sensor Number of

Images
Classification

Algorithm
Overall

Accuracy

[14] Austria and
Germany 7 S2 1 Random Forest 76%

[19] Italy 7 L8 Up to 13

Maximum likelihood,
Euclidean Minimum

Distance (EMD)
Spectral Angle
Mapper (SAM)

85% up to
92%

[25] Turkey

2 crop 3
stages for
each and 6

features

Rapid Eye 1 Support Vector
Machine 85.63%

[26]
12 test sites (4

Europe, 4 Africa, 2
America 2 Asia)

4-6 when
detailed

SPOT 4 and
Landsat-8 Not detailed Random forest 80%

[27] Peru 8 Landsat 7 ETM+ 53 Random forest 81%

[5] Turkey 5 SPOT 5 1 Random forest 85.89%

[28] USA 9 ASTER 2
Neural networks and

support vector
machines

88%

[29] Brazil 5 Landsat-8 2 Random Forest 80%

[30] Germany 8
Landsat-7 and
-8, Sentinel-2A
and RapidEye.

36 in 2015
47 in 2016

Fuzzy c-means
clustering

77.19% up to
89.49%

[31] Spain 15 Landsat-8 and
Sentinel 2 8761 Ensemble Bagged Tree 87% up to

92%

[6] USA 9 ASTER 2 Logistic regression
(LR) 86%

This study evaluates the contribution of Sentinel-2A information to crop classification over the
use of Landsat-8 images in a semiarid region located in the Southeast of Spain. For the same area and
data, a classification by using only Landsat-8 images, only Sentinel-2A and both sources of information
was evaluated. We also compared 22 classification algorithms, all of them nonparametric, to determine
which one is the most robust and efficient. Additionally, we analyzed the interoperability between
Sentinel-2A and Landsat-8 and its influence on the classification results.

2. Materials and Methods

2.1. Overview of the Methodology

To assess the potential of Landsat-8 and Sentinel-2A information for the improvement of crop
classification we followed the classical main steps (Figure 1) for crop classification tasks described
by [3]:

� Data collection. This step covers the selection of remotely sensed and ground truth data. In this
study, we selected Landsat-8 and Sentinel-2A images that cover the case study area during 2016.
Concerning the data preprocessing, we did not perform any atmospheric correction as we used
reflectance at the top of the atmosphere (ToA) to calculate VIs. Crop classification is based on
the temporal pattern of VIs and not on its absolute value. Data collection step also comprises
collecting the ground truth data from the field visits, which greatly influences the accuracy of the
classification procedure.

� Data preparation, which consistsofgenerating VIs, combining VIs from different sources of
information (Sentinel-2A and Landsat-8, in this case) and performing statistics of the VIs for each



Remote Sens. 2020, 12, 1735 4 of 19

ground truth plot. In this case, selected VI was NDVI, because it is the most widespread used
VI and very accurate in the monitoring of the crop phenology. To combine NDVI values from
different sources (Sentinel-2A and Landsat-8) a comparison of the mean values of NDVI [32]
for each plot and each source of information (after removing border effect and other artifacts)
was made. Then, Landsat-8 NDVI values were corrected using the obtained linear relationship
between both sources of information. To train the classification algorithm, a wide database of
ground truth data was acquired, being one of the main strengths of this study. To ensure high
quality input data, ground truth was selected to consider plots with more than 1 ha, eliminate
border effect (using a buffer of 30 m) and calculating the mean and standard deviation of the
VI for each plot. These values represent the pattern of the vegetation in the plot and, therefore,
return the information to perform crop classification.

� Classification process, which was carried out using field visits during 2016 of 2032 plots for 12
crops. We calibrated and evaluated the performance of 22 nonparametric algorithms.

� Quality assessment and selection of the best classification algorithm. With the 30% of the ground
truth data, a quality assessment was done based in the generation of the confusion matrix and
classical performance indicators of the overall accuracy, producer’s accuracy, user’s accuracy and
the F1 score [33]. The evaluation of selection of the best classification algorithm was performed
based on these performance indicators.Remote Sens. 2020, x,  FOR PEER REVIEW  5 of 22 
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2.2. The Case Study

The proposed methodology was carried out in the hydrological unit (H.U.) 08.129 (Figure 2) with
a total surface area of 7200 km2. This extension can be considered a wide area that can provide trustful
results compared with other studies performed in smaller areas [34–38]. The H.U. is located in the
south of the north temperate zone, although it presents a continental nature due to its mean elevation
(700 ma.s.l.) and distance from sea. Farmland is the most common type of land use in the aquifer.
The most limiting factor for farming is the weather. This area is classified as semiarid (aridity index
(AI) 0.26) [39]. Annual reference evapotranspiration values (ETo) are from 1165 mm year−1 in the
central area of the aquifer to more than 1300 mm year−1 in the northwest and southeast. Agro-climatic
stations showed precipitation values from 336 to 413 mm year−1 with a maximum value of 82 mm
in summertime. The analysis of thermal characteristics shows variations from 19.3 to 20.8 ◦C for
annual mean daily maximum temperature and from 6.3 to 6.6 ◦C for annual mean daily minimum
temperatures [40]. These constraints determine the following four groups of crops with different
culture systems [41]: (1) cold weather crops that are sown in the autumn or early winter and are
harvested at the end of spring or at the beginning of summer;(2) warm season crops for which the
growing cycle develops in the summer;(3) rain-fed crops that are limited by the rainfall regimes and
(4) irrigated crops. As an example, the crop distribution in 2012 included 14.2% wheat, 14.0% barley,
7.1% maize, 5.8% woody crops, 5.6% opium, 4.9% garlic, 4.4% alfalfa and 3.9% onion, garlic, pea,
double crops and other vegetables [42]. The size of the irrigated farms is also important. Farms
with more than 100 ha of irrigated area account for 32% of the total area. A significant portion of
the total water is consumed by large farms, which are generally equipped with high performance
irrigation systems. In addition, collective irrigated farms that were created by public initiative and
organized into Water Users Associations (WUAs) are included within the group of farms with a surface
area of more than 100 ha. The main irrigation methods include permanent solid set systems (39.2%),
center pivot systems (37.8%), drip irrigation systems (17.7%), surface irrigation systems (3.6%) and
portable sprinkler systems (1.7%) [43]. After significant efforts were made during the modernization
process, farmers demanded management systems and tools to obtain the potential water and energy
use efficiency that can be provided by these irrigation systems. In this sense, irrigation has become
essential for rural development and maintenance.

2.3. Ground Truth Data

The field visits to obtain the ground truth were performed by the Confederación Hidrográfica del
Júcar, Spain (www.chj.es) during the irrigation season of 2016. They visited 6341 plots that covered
28,963 ha. After the spatial analysis of the plots, which eliminated plots with a size area less than 1 ha,
the number of used plots was reduced to 3111 (24,208 ha). Finally, after the selection of the crops of
interest for this study (Table 2), the number of utilized plots was 2032, representing an area of 17,281 ha,
which covers 15% of the irrigated area in the Mancha Oriental Aquifer. The preparation of ground
truth data was conducted using QGIS software.

A selection of the main crops (12) established in the area was analyzed. The double crops were
not included, although they are relatively abundant, because the field visits were performed for each
plot only once a year. These are easily detectable plots due to the special pattern of the NDVI during
the irrigation season. Thus, it will not have a negative effect on the results.

To illustrate the NDVI pattern of some studied crops during the period march–July, wepresented
in Figure 3 the NDVI temporal behavior of six crops from the selected twelve.

www.chj.es
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Figure 2. Plot visited for obtaining the ground truth. On the top-right, it is show the case study located in Spain. To the left, all the visited plots distributed across
the area (green plots). At the bottom-right part, it is shown several plots after spatial analysis is implemented (buffer 30 m and eliminating plot with S < 1 ha;
CRS-EPSG: 25830).
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Table 2. Crop selected for the case study and number of visited plots for each crop.

Crops Number of Visited Plots

Cereals

Barley, C1 431
Maize, C2 246
Wheat, C3 395

Industrial crops

Poppy, C7 125
Sunflower, C8 41

Deciduous tress

Almond tree, C10 103
Vineyard, C11 130

Horticultural crops

Onion, C4 124
Purple garlic, C5 95
White garlic, C6 100

Perennials (rangegrass)

Alfalfa, C9 144

Legumes

Peas, C12 98
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2.4. Remote Sensing Information and Processing

Using a parcel-based approach [44], the average NDVI value and standard deviation for each plot
were calculated. Only plots larger than 1 ha were utilized to ensure that there was a sufficient number
of pixels inside each plot (3 pixels × 3 pixels for Landsat-8). To select pixels that were completely inside
the plot and thus avoid a border effect, a buffer of 30 m inside the plot was implemented. With all the
pixels inside the plot that fulfill these conditions, average and standard deviation values of the NDVI
were obtained. To determine the threshold value of standard deviation an analysis of these values for
two representative dates (May 6th and August 1st) was analyzed. Standard deviation values of all the
plots for both dates were sorted and plotted. The values reached the asymptote for an approximate
value of 0.1 in both cases, establishing this value as threshold. The observed variations at the plot level
could be explained by the fact that the farmer did not grow the whole plot due to the effect of some
pest or weed or because of improper management. These plots were eliminated to ensure a proper
ground truth.

The images detailed in Table 3 were utilized in this case study. Additionally, Table 3 shows the
percentage of cloud cover of each image. Cloud cover is a key aspect to consider when assessing crop
classification with satellite-based remote sensing techniques [45]. The criteria for selecting a maximum
cloud cover percentage is heterogeneous, from 10% [46] to a case in which cloud cover percentage was
not considered [47]. Among those criteria, we found references that considered 20% [19], 25% [29,48]
and even 60% [13]. In this context of nonstandardized criteria, we selected 40%, which resulted in the
elimination of only three images from the set. This is a key issue that should be investigated in areas
where cloud cover is more intense (humid or sub-humid regions). To avoid this effect, SAR (Synthetic
Aperture Radar) information can contribute in areas were the presence of clouds limits the applicability
of the proposed methodology [49].

Table 3. Percentage of cloud cover for Sentinel-2A and Landsat-8 images on each sampling day through
the growing season.

Sentinel-2A
* Landsat-8 Sentinel-2A * Landsat-8

Date R051 R094 Path/Row:
199/33

Path/Row:
200/33 Date R051 R094 Path/Row:

199/33
Path/Row:

200/33

5-Mar 3.78 1.38 18-Jul 0.04
12-Mar 6.37 0.41 27-Jul 2.58
25-Mar 27.15 30-Jul 0.00
1-Apr. 3.86 2-Aug 0.01
6-Apr 3-Aug 0.56

14-Apr. 0.68 9-Aug 0.00
24-Apr. 0.00 12-Aug 0.01 9.02
1-May 0.00 19-Aug 0.00 0.05

24-May 31.97 7.21 1-Sep 4.29
31-May 6.47 4-Sep 0.04
9-Jun 0.80 11-Sep 32.31

13-Jun 0.01 13-Sep 12.15
20-Jun 1.84 21-Sep 0.03
25-Jun 2.44 1-Oct 3.12
2-Jul 0.07 6-Oct 6.86
3-Jul 0.62 8-Oct 36.88
10-Jul 0.02 11-Oct 0.01
11-Jul 0.67 15-Oct 0.26

* The required tiles to cover the case study are T30SWJ and T30SXJ.
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2.5. Analysis of Interoperability between Landsat-8 and Sentinel 2

Although all images were utilized to carry out crop classification, to perform the interoperability
analysis between Landsat-8 and Sentinel-2A, only three dates when both satellites covered the case
study in the same day were utilized (24 May, 12 August and 31 October). The first date was coincided
with maximum vegetation cover of the spring crops, the second date with maximum vegetation cover
of summer crops and the last date with senescence of summer crops and orchards. The area included
bare soils and crop cover to evaluate the widest range of NDVI values. Figure 4 shows the difference
between the NDVI Landsat-8 and Sentinel-2A for the three dates analyzed for a spring crop (two pivots
on the east) and a summer crop (two pivots on the west) as an example. On 24 May the spring crops
was close to full cover, on 12 August the summer crop was also at this stage, and on 31 October all
the pivots were without crops. It can be seen that the difference in NDVI values among both sources
of information (Landsat-8 and Sentinel-2A) were higher (blue color) when vegetation is in the low
development stage or not vegetating than when the crop was close to full cover. Thus, both sources
could be interoperable in the case of the high presence of vegetation, but there is a mismatch among
NDVI values of both satellites when there is low crop cover.
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Figure 4. Difference between Landsat-8 and Sentinel-2A NDVI values for 4 pivots in three dates
(24 May, 12 August and 31 October). The two pivots on the East side had a spring crop, and the two on
the west side had a summer crop.

To perform the analysis of interoperability, a grid of points separated 30 m in the analyzed area
was generated. In each point of this mesh, the Landsat-8 NDVI value was calculated. In the case of
Sentinel-2A, the bands of the nine neighboring pixels were averaged and the NDVI value was calculated
from these mean bands. Once the data to evaluate the interoperability between the two sources was
obtained, a statistical analysis was performed by calculating the coefficient of determination (R2),
the root mean square error (RMSE), and the relative error (RE). The normality and homoscedasticity of
the residuals were also analyzed. A calibration equation for the area was obtained to interoperate with
both sources of data.

The results of the comparison between NDVI values of Landsat-8 and Sentinel-2A for the three
dates (24 May, 12 August and 31 October) and the area analyzed (Figure 4) are shown in Figure 5.
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(a) May 24th, (b) August 12th, (c) October 31st and (d) the whole data set.

There is an underestimation of NDVI values obtained with Sentinel-2A compared with those
obtained with Landsat-8 for all the dates and the whole data set. However, the dispersion of the data is
low, which means that there is a good correlation between both sources of data (Table 4).

Table 4. Main statistics of the relationship between the NDVI values obtained with Landsat-8
and Sentinel-2A.

Data Size R2 RMSE RE

2934 0.998 0.05 12.18
2934 0.999 0.06 11.70
2942 0.971 0.06 23.46
8810 0.996 0.06 14.30

The difference between both sources of data fits a normal distribution and the residuals are
homoscedastic. The main statistics of the relations between both datasets are shown in Table 4.

With these results, it can be concluded that a linear calibration can be obtained to ensure the
interoperability between both sources of data. We decided to correct Landsat-8 values to fit Sentinel-2A
NDVI values with the Equation (1).

NDVI-S2 = −0.085 + 1.0759·NDVI-L8, (1)
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2.6. Classification Methods

A set of 22 classification algorithms was evaluated comprising of decision trees, discriminant
analysis, support vector machines, nearest neighbor and ensemble classifiers. These algorithms are the
most frequent algorithms used in the literature review summarized in the Introduction Section. Table 5
describes the main characteristics of each method. The Classification Learner application of Matlab®

was utilized with the aim of calibrating and validating the different algorithms. The Classification
Learner app, can be found in the latest versions of the Statistics and Machine Learning toolbox of Matlab.
This application enables automated training for the set of supervised machine learning classifiers
incorporated in the toolbox. Besides, trained classifiers can be exported to the Matlab workspace. With
Matlab software, the app supports a total of 22 classifier types, organized in five major classification
algorithms: decision trees, discriminant analysis, support vector machines, nearest neighbor and
ensemble classifiers. Additionally, the Classification Learner app offers built-in validation schemes
that point out the predictive accuracy of the trained model. The objective of this manuscript was to
define the best performing classifier group in crop classification. Thus, the default hyperparameters for
each classifier were utilized. In future works, refinement of these hyperparameters will be performed.
A detailed description of each of the classifier groups can be found in the basic literature treating about
machine learning algorithms.

Table 5. Classification algorithms evaluated.

Group Method Main Characteristics

Decision trees
M1 Complex tree Different number of leaves and maximum number of splits (up to 100,

20 and 4 respectively)M2 Medium tree
M3 Simple tree

Discriminant
analysis

M4 Linear discriminant Both are parametric methods, with differences in the determination of
the boundaries (linear and quadratic respectively)M5 Quadratic discriminant

Support Vector
Machines

M6 Linear SVM Linear kernel
M7 Quadratic SVM Quadratic kernel
M8 Cubic SVM Cubic kernel
M9 Fine Gaussian SVM Gaussian kernel with fine kernel scale (n0.5/4)
M10 Medium Gaussian SVM Gaussian kernel with medium kernel scale (n0.5)
M11 Coarse Gaussian SVM Gaussian kernel with coarse kernel scale (n0.5/4)

Nearest
Neighbor

M12 Fine KNN Euclidean distance metric. The number of neighbors is set to 1
M13 Medium KNN Euclidean distance metric. The number of neighbors is set to 10
M14 Coarse KNN Euclidean distance metric. The number of neighbors is set to 100
M15 Cosine KNN Cosine distance metric. The number of neighbors is set to 10.
M16 Cubic KNN Cubic distance metric. The number of neighbors is set to 10.
M17 Weighted KNN Distance weight. The number of neighbors is set to 10

Ensemble
classifiers

M18 Boosted Trees AdaBoost ensemble method with decision trees
M19 Bagged Trees Ensemble method with decision trees
M20 Subspace Discriminant Subspace, with discriminant learners
M21 Subspace KNN Subspace ensemble method, with nearest neighbor learners
M22 RUSBoost Trees RUSBoost ensemble method, with decision tree learners

The input information for each of the classification algorithms are the NDVI values for each
available date (Table 3) and the output information is a label corresponding to each crop type.
Cross-validation with 5 folds was carried out for each algorithm in the calibration process to avoid
overfitting problems.

2.7. Evaluation of Classification Accuracy

A confusion matrix and classical performance indicators of the overall accuracy, producer’s
accuracy and user’s accuracy were obtained. The kappa statistic, which is traditionally used to test
the classification accuracy, presents several limitations in accuracy testing [50]. Additionally, the
different number of plots for each crop can make kappa values misinterpret the obtained results. Thus,
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weighted F1 score statistic was used for classification algorithm selection [51] and this accuracy metrics
was calculated using a Python library called Scikit-Learn. Once the most accurate algorithm for each
dataset has been selected, the remainder indicators, together with the confusion matrix, were analyzed
to determine the efficiency in the classification for each crop and group of crops.

3. Results

3.1. Evaluation of Classification Methods for Crop Classification

An analysis of the available images that cover the case study for Landsat-8 and Sentinel-2A was
performed. The results of using only Landsat-8 information, only Sentinel-2A information and a
combination of both sources of information were obtained for the evaluated classification methods.
A comparison between the 22 classification methods with the different combinations of available
information is shown in Table 6.

Table 6. F1 score statistic of the different classification methods with the available information.

Decision Trees Discriminant
Analysis Support Vector Machine

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

L8 0.74 0.69 0.55 0.69 0.77 0.80 0.85 0.85 0.78 0.83 0.71
S2 0.77 0.75 0.58 0.73 0.78 0.83 0.86 0.86 0.78 0.84 0.79

L8 and S2 0.76 0.74 0.58 0.76 0.66 0.84 0.88 0.87 0.77 0.85 0.79
L8 and S2 corrected 0.76 0.74 0.58 0.76 0.66 0.84 0.88 0.88 0.77 0.85 0.79

Nearest Neighbor Classifiers Ensemble Classifiers

M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22

L8 0.85 0.79 0.67 0.79 0.76 0.85 0.74 0.85 0.69 0.86 0.71
S2 0.87 0.83 0.72 0.82 0.83 0.87 0.77 0.83 0.73 0.87 0.72

L8 and S2 0.88 0.82 0.68 0.81 0.81 0.86 0.78 0.86 0.74 0.89 0.74
L8 and S2 corrected 0.88 0.82 0.68 0.81 0.81 0.86 0.78 0.85 0.74 0.89 0.72

The method with the highestF1 score value for all of the instances of available information was
the subspace ensemble method, with nearest neighbor learners (M21). Sentinel-2A information slightly
improved the F1 score value of the classification compared with using only Landsat-8 information
(from 0.86 to 0.87). The use of Sentinel-2A or Landsat-8 independently returned almost the same
results. Additionally, ensuring interoperability between both sources of information did not provide
a remarkable improvement in the classification results. This fact might be due to the similarities
between Landsat-8 and Sentinel-2A for high NDVI values, as stated in the interoperability analysis
above performed. Additionally, to perform a proper crop classification, only NDVI patterns were
requested while absolute NDVI values were not required. Thus, improving NDVI values with the
interoperability procedure did not contribute to improve crop classification.

Among the groups of classification methods, decision tress, discriminant analysis, support vector
machines, nearest neighbor classifiers and ensemble classifiers, the second-best classification method
for combined information from Landsat-8 and Sentinel-2A was the support vector machine with
quadratic kernel (M7) with a F1 score = 0.88, and the fine KNN (k-nearest neighbor), (M12) with F1
score = 0.88. Decision trees, which are commonly used in classification, returned poor results, with
a F1 score = 0.76 for the best method (complex tree). The discriminant analysis was not adequate
for classification issues resulting in F1 score values ranging between 0.76 and 0.66. The comparison
between the prediction speed (expressed in observation per second) and the classification (F1 Score) is
illustrated in Figure 6.
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3.2. Selection and Evaluation of the Best Method for Crop Classification

To select the best classification method, one should consider the maximum efficiency (maximum
F1 score) or a combination of high prediction speed and high accuracy (not the highest) shown in
Figure 6. Thus, the subspace ensemble method with nearest neighbor learners (M21) as the most
accurate method and the nearest neighbor classifier with fine KNN (M12) as the best agreement or
combination between accuracy and prediction speed were evaluated. It is important to mention, that
definitely the classifier with the highest accuracy (M21 in this case) had the highest priority to be
selected as the best method for crop classification. To evaluate the results of the methods, the confusion
matrix and the producer’s and user’s accuracies (PA and UA) were calculated (Tables 7 and 8).

Table 7. Confusion matrix of the subspace ensemble method with nearest neighbor learners (M21) for
L8 and Sentinel-2A information.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 UA

C1 107 0 13 0 0 4 0 0 0 0 0 6 82.3
C2 1 71 0 1 0 0 0 1 0 0 0 0 95.9
C3 14 0 103 0 1 0 1 0 0 0 0 0 86.6
C4 0 0 0 35 2 0 0 0 0 0 1 0 92.1
C5 0 0 0 0 27 1 0 0 0 0 0 1 93.1
C6 0 0 0 0 1 28 0 0 1 0 0 0 93.3
C7 0 0 0 0 0 0 38 0 0 0 0 0 100.0
C8 0 0 0 4 0 0 0 9 0 0 0 0 69.2
C9 1 1 1 0 0 0 0 0 41 0 0 0 93.2
C10 0 0 0 0 0 0 0 0 0 30 1 0 96.8
C11 1 0 0 1 0 0 0 0 0 2 35 0 89.7
C12 7 0 2 0 0 0 0 0 0 0 0 21 70.0
PA 81.7 98.6 86.6 85.4 87.1 84.8 97.4 90.0 97.6 93.8 94.6 75.0
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Table 8. Confusion matrix of the nearest neighbor classifier with the fine KNN method (M12).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 UA

C1 108 0 16 0 0 2 0 0 0 0 0 4 82.3
C2 1 71 0 1 0 0 0 1 0 0 0 0 95.9
C3 12 0 104 0 1 0 2 0 0 0 0 0 86.6
C4 1 0 0 34 1 0 0 1 0 0 1 0 92.1
C5 1 0 0 0 25 1 0 0 0 0 0 2 93.1
C6 0 1 0 0 0 28 0 0 1 0 0 0 93.3
C7 0 0 0 0 0 0 38 0 0 0 0 0 100.0
C8 0 0 0 5 0 0 0 8 0 0 0 0 69.2
C9 0 1 1 0 0 1 0 0 41 0 0 0 93.2
C10 1 0 0 0 0 0 0 0 0 28 2 0 96.8
C11 1 0 1 1 0 0 0 0 0 2 34 0 89.7
C12 6 0 2 0 0 1 0 0 0 1 0 20 70.0
PA 81.7 98.6 86.6 85.4 87.1 84.8 97.4 90.0 97.6 93.8 94.6 75.0

Crops with UA of 100% means that all the testing plots with this crop were properly classified,
which in this case was poppy. Crops with a UA higher than 95% were almond trees (96.8%), with
confusion with vineyard and maize (95.9%) and confusion with onion and sunflower (there was one
plot of barley that it was probably due to mistakes in the field data). Purple garlic (UA = 93.1%) was
differentiated from white garlic (93.3) even when their phenological cycle was close. Purple garlic
plots were classified in one plot as white garlic and in another plot as peas. Barley (UA = 82.3%) was
confused with wheat for 13 plots, white garlic for four plots, and peas for six plots, with these crops
having similar cycles.

When analyzing the results of the M12 classification method, which has a relatively high prediction
speed with a high accuracy, the UA and PA were almost the same as M21. Only slight changes in
onion, sunflower, vineyard, peas (one plot misclassified), purple garlic and almond trees (two plots
misclassified) were observed. Additionally, some other plots were better classified, such as barley and
wheat (one plot improved). Thus, the combined analysis of F1 score value and the confusion matrix
was determinant to select the most appropriate algorithm.

In the case of sunflower, there were only 41 plots for ground truth, being one of the crops with a
lower number of plots visited. This fact led to a worse calibration and testing of the algorithms, with
UA values of 69.2% (the lowest value). Additionally, this crop had different types of management
depending upon the farmer. Sowing dates can range from early April to late July, which could lead to
a misclassification. The 2016 irrigation season presented a cold spring in the area, which delayed the
sowing date of the onion. This fact could have led the algorithm to confuse the sunflower with the
onion primarily because of the similarities in the initial stages of these crops. This fact would also
justify the high PA value for onion (90%), because the main problem detected is that some onion plots
were classified as sunflower. Additionally, sunflower is not usually managed to produce the maximum
yield to reduce irrigation and fertilization costs, making the development of the sunflower closer to
that of the onion.

Another crop with a low number of visited plots was peas, with 98 visited plots and a UA = 70%.
For peas, the objectivized yield and growing cycles are heterogeneous. We could find proteaginous
peas with quite different cycles than the green peas grown for industry. This heterogeneity of growing
cycles and the climatological conditions of 2016, which presented severe frost in spring, justify the
confusion between peas, barley and wheat.

It deserves highlighting the high UA for poppy (100%), which presents a similar cycle to barley
and wheat. This could be due to the fact that is a crop totally controlled by the pharmacy industry and
they homogenize the varieties, cycles, and management, leading to the proper classification. Maize
and almonds have a UA higher than 95% without any tendency towards misclassification, probably
due to mistakes during the field visits works.
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4. Discussion

In this paper, we aimed to test a total of 22 nonparametric classification algorithms, organized in
five major classification algorithms: decision trees, discriminant analysis, support vector machines,
nearest neighbor and ensemble classifiers. Results showed that among these 22 classifiers the subspace
ensemble method with nearest neighbor learners (M21) and the nearest neighbor classifier with fine
KNN (M12) were the best performing methods based on two criteria: high accuracy of the F1 score
and high prediction speed. However, as mentioned previously in the Results Section, accuracy was the
most important criteria. Indeed previous research has indicated that the integration of two or more
classifiers, which is the case of (M21), improve the classification accuracy compared to the use of a
single classifier [31,52,53]. Focusing on the results of the other classifiers, we noticed that the decision
trees compared to the rest of the algorithms did not provide the most accurate results (the average
F1 score value obtained for decision trees in our analysis was equal to 0.68, while the best classifier
obtained a F1 score equal to 0.87), but did provide the highest prediction speed ((22000, 20000 and
20000 observation/second respectively for M2, M1 and M3 compared with the best classifier (M21) that
resulted in 710 observations/second). In the literature, decision trees classifiers has been widely used
in classification process [3] for the just reason that it is known as the speediest classifiers that can be
trained [54].According to [53,55], SVM has been considered as a powerful technique for classification
tasks, but unexpectedly in this work the coarse Gaussian SVM classifiers (M11) performed less than
ensemble classifiers such as (M1, M19 and M21).

Generally the use of only Sentinel-2A data provideda slightly higher F1 score than the use of
Landsat-8, and, the difference is barely noticeable ranging between 1% and 3%. However for some
classifier we observed that the classification with Sentinel-2A data yielded better results (F1 score equal
or higher than 4%) than with Landsat-8, such as, (M2, M4, M1, M13, M14, M16 and M20). Regarding the
synergic data use, this methodology brought only slight improvement when the following classifiers
were tested (M1, M4, M6, M7, M8, M10, M12, M18, M19, M20, M21 and M22), but for the rest of them
we observed an F1 score equal (M3 and M11) or even lower (M1, M2, M5, M9, M13, M14, M15, M16
and M17) than the results obtained with only usingSentinel-2A data. Thus, with Sentinel-2A data the
majority of the classifiers presented a slightly higher F1 score and when we used both data sources
we did not notice any outstanding improvement in the classification results. Consequently, it can be
concluded that it is not worthy to include Landsat-8 data especially sinceSentinel-2A has higher spatial
and temporal resolution.

Additionally, this study evaluated the interoperability between Sentinel-2A and Landsat-8 through
the use of ToA NDVI values. Atmospheric corrections are not necessary in this application, avoiding
an intensive workload. Indeed, in the work conducted by [31], the classification was performed
using Sentinel-2 (Level-1C) and Landsat-8 (Level-1T) and the results showed an overall accuracy
ranging between 87% and 92%, when classifying crops individually (15 classes) and when crops were
grouped based on phenology, prior to classification (seven classes), respectively. Additionally, for the
classification process developed by [14], the authors used Sentinel 2 (ToA) product. We obtained
adequate interoperability results. This suitability can be explained by the fact that the NDVI normalizes
the information obtained from both sensors by reducing the divergence between their spectral bands.
However, underestimation of NDVI values was observed when Sentinel-2A was compared with
Landsat-8. First of all, at the beginning of the crop cycles when NDVI values are low (at the start of
the growing season the soil was not yet covered by the vegetation), but also when NDVI values were
high (when the vegetation cover reach the maximum). This matter could have a greater impact on
other applications, such as the estimation of water volumes from NDVI values but for classification
application, we just need the tendency of the NDVI values along time.

5. Conclusions

The combined use of Sentinel-2A and Landsat-8 information did not greatly improve crop
classification results compared with using only Landsat-8or only Sentinel-2A. Incorporating
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interoperability between Landsat-8 and Sentinel-2A information only slightly improved classification.
However, in areas where cloud cover is more frequent, having a higher temporal resolution would
lead to a better performance of Sentinel-2A over Landsat-8. In addition, the higher spatial resolution
of Sentinel-2A compared with Landsat-8 permits classifying smaller plots because the buffer to be
utilized would be 10 m instead of 30 m, as is used for Landsat-8 to avoid a border effect.

Between the classification algorithms utilized, the most robust algorithm was the subspace
ensemble method, with nearest neighbor learners (M21) followed by (M12) the nearest neighbor
classifier with fine KNN as the method with the best balance between accuracy and processing
time. F1 score values can give a general overview of method performance, but it is necessary to
evaluate the confusion matrix with an agronomic perspective to conclude the best method to perform
crop classification.

The main conclusion was obtained with the spring crops, the crop cycles of which are close in
time and of which variability was dependent on the sowing date and climatic conditions. Woody crops
and summer crops were easier to distinguish in semiarid regions because of their difference in the
growing cycles.

The use of optical remotes sensing data can be limited by the presence of clouds that introduce
missing values in the dataset affecting the capturing of the seasonality of the vegetation cover. For this
reason, for future studies we will focus on merging radar with optical data especially with the
availability of Sentinel 1 data, which have the same spatial resolution of Sentinel 2. Indeed, several
studies ensures that the synergic use of optical and radar data improve the classification OA [56–58].
Similarly the use of the data of this work along with radar data can be used to extract valuable
phenological parameters to map the crop type behavior of the study area as performed in [59].
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