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Abstract: The Tibetan Plateau has been undergoing accelerated warming over recent decades, and is
considered an indicator for broader global warming phenomena. However, our understanding of
warming rates with elevation in complex mountain regions is incomplete. The most serious concern
is the lack of high-quality near-surface air temperature (Tair) datasets in these areas. To address this
knowledge gap, we developed an automated mapping framework for the estimation of seamless
daily minimum and maximum Land Surface Temperatures (LSTs) for the Tibetan Plateau from the
existing MODIS LST products for a long period of time (i.e., 2002—present). Specific machine learning
methods were developed and linked with target-oriented validation and then applied to convert LST
to Tair. Spatial variables in retrieving Tair, such as solar radiation and vegetation indices, were used
in estimation of Tair, whereas MODIS LST products were mainly focused on temporal variation in
surface air temperature. We validated our process using independent Tair products, revealing more
reliable estimates on Tair; the R?> and RMSE at monthly scales generally fell in the range of 0.9-0.95
and 1-2 °C. Using these continuous and consistent Tair datasets, we found temperature increases
in the elevation range between 2000-3000 m and 4000-5000 m, whereas the elevation interval at
6000-7000 m exhibits a cooling trend. The developed datasets, findings and methodology contribute
to global studies on accelerated warming.

Keywords: near-surface air temperature; MODIS LST; machine learning; Tibetan Plateau

1. Introduction

The Tibetan Plateau (TP) is named "the third pole of the Earth", and is the highest and largest
plateau in the world [1]. The TP exerts profound dynamic and thermal influences on the regional and
global climate [2,3]. For global warming, the TP is considered an early warning sign. Over the period of
1984-2009, TP has undergone serious warming, with a warming rate of 0.46 °C per decade™!, which is
almost 1.5 times the rate of global warming [4,5]. Accelerated warming on the TP has intensified
permafrost degradation, snow melt and glacier retreat [6]. Presently, the status of TP warming is
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evaluated through the analysis of Tair at meteorological stations. However, most meteorological
stations are located in the eastern TP below 3800 m. Because of sparse high-elevation meteorological
observations in central and northwest TP, there is a possibility that we may not capture the greatest
warming rate over some regions [7]. In addition to limited coverage by in situ measurements, Tair at
TP suffers from extreme local variability due to factors such as topography and exposure [8]. Therefore,
improved Tair estimations by developing high-resolution products considering the rugged terrain in
the TP is a crucial step for understanding the accelerated warming occurring there.

Remotely sensed Land Surface Temperature (LST) is a crucial parameter in the modelling of the
surface energy balance at regional and global scales [9-11]. LST also provides the possibility of getting
high spatial-temporal daily Tair datasets (Tair). Since the late 1980s, a variety of long-time series LST
products from Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Along-Track
Scanning Radiometer (AATSR), Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), Multi-Functional Transport Satellite (MTSAT), and Geostationary Operational Environment
Satellite have been published [12]. MODIS Terra/Aqua sensors provide close temporal proximity of
overpasses, with four LST datasets per day. Many studies have focused on using various combinations
of the four MODIS LST datasets to estimate Tair [13-15]. Studies have also investigated how to combine
the four LST datasets to create composite daily minimum and maximum LST values that supplement
the existing Terra/Aqua LST products and reduce areas of missing data. Crosson and Al-Hamdan [16]
increased the data coverage of MODIS LST in the United States by 24% and 30% for daily minimum
and maximum LST, respectively. Li and Zhou [17] developed a hybrid gap-filling method that merged
datasets from existing LST products to fill gaps while integrating with a spatio-temporal gap-filling
method to fill the rest of MODIS daily LST gaps, finally creating LSTs dataset over the urban and
surrounding areas of United States. However, to the best of our knowledge, no attempt has been
made to explore an automated mapping framework for the estimation of daily seamless minimum and
maximum LSTs from the four MODIS LST products.

LST is not equivalent to Tair, and their relationship is complex from a theoretical and empirical
perspective [14]. Hence, itis difficult to estimate surface air temperature solely using LST, and additional
auxiliary factors are used to estimate the Tair in mountainous regions using three representative
methods. (1) A semi-empirical method which builds a linear relationship between MODIS LST and a
vegetation index, such that Tair can be extrapolated by allowing the regression line to intersect with
the vegetation index of full cover [18,19]. (2) A spatio-temporal regression method is used, such as a
geographically and temporally weighted regression (GWTR) or a regression-kriging method, both of
which consider the relationship between Tair and other variables such as MODIS LST and topographical
layers [20,21]. (3) Machine learning models predict Tair from multiple data sources including LST,
whilst considering spatio-temporal autocorrelation of Tair [15,22]. In general, each method has been
proven to be successful in estimating Tair, but they still have shortcomings in large-scale complex
mountainous areas with limited weather stations. For example, the Temperature-Vegetation Index
(TVX) method is not appropriate for estimating Tair in regions with low vegetation cover [23]. Statistical
models fail to capture the nonlinear behaviour of the climate system in mountainous area. Machine
learning models, such as Random Forest, Cubist and Support Vector Machine (SVM), have proven
to be flexible in areas with complex terrains like the TP for estimating Tair from LST and additional
variables [23]. But they require more datasets for model training. The problem is that training datasets
is usually insufficient in such complex mountainous areas. In addition, machine learning models
often fail to capture the extreme low and high values of Tair [24,25]. Furthermore, the estimated
performance of machine learning models risks spatio-temporal overfitting, which partly depends on
different validation strategies [26]. Thus, further investigated is required to identify the accuracy and
performance of machine learning models in the absence of sufficient field observations in the complex
mountainous areas of TP.

Other environmental datasets, such as vegetation indices, snow cover, albedo, soil type and
water bodies, are highly related to Tair. LST with such auxiliary information enables the estimation of
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Tair within mountainous areas using machine learning models. It is well known that the variation
of incoming solar radiation has a strong relationship with the spatial temporal dynamic of Tair [27].
In previous studies, solar zenith and sunshine duration were used as substitutes for mountainous
solar radiation for Tair estimation [15]. In this study, we will incorporate truly mountainous solar
radiation datasets as one of the covariates for Tair estimation [28]. We assumed that solar radiation and
biophysical factors would be related to spatial variability in Tair, whereas we predicted that MODIS
LST would be more strongly related to temporal variation in Tair.

The objectives of this study were to (1) create seamless 1000 m daily MODIS LST datasets using
a hybrid method; (2) predict Tair using LST and remotely sensed indices with machine learning;
(3) compare the performance of different machine learning methods for estimating maximum, minimum
and mean air temperature accordingly; and (4) explore elevation-dependent warming over the TP
using decadal temperature datasets.

2. Materials and Methods

2.1. Study Area and All Climate Data

The TP is located at 26—40 N and 73-105 E degree. It has irregular topography with elevations
varying between approximately 498 and 7198 m a.s.l. (above sea level) and generally increasing from
northwest to southeast (Figure 1). As elevation increases, the landscape transitions from forests to
alpine grassland and then bare rock, and finally to snow and ice [29]. The highest Himalayan mountains
are on the southern edge of the TP, while the Kunlun Mountains are another high mountain chain on
the northwest boundary. The headwater areas of major rivers in Asia lie in the south-eastern part of TP
(Hengduan Mountains). Typical alpine permafrost lies in Bayan Har Mountains. The Qaidam Basin is
the largest basin in the TP.
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Figure 1. Location of TP, distribution of 130 weather stations and A’rou station.

In this study, daily observations of Tmax, Tmin, Tmean, and sunshine duration (2000-2016)
from 130 available China Meteorological Administration (CMA) stations were used; the altitude of
these stations ranged from 1600 to 4800 m a.s.l. To keep consistency between MODIS LST pixels
and ground observations, a relatively homogeneous LST validation site named A’rou was chosen,
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which was located on the northeast edge of the TP with an elevation of 3032 m a.s.l. The in situ
LST was derived from the upwelling and downwelling longwave radiation fluxes from A’rou station
using a radiation transfer equation. As different emissivity sources provide different accuracies in
LST calculation, in this study, we used ASTER-derived emissivity, derived from clear-sky pixels of
ASTER images from 2000 to 2008 covering the study area. The monthly mean Tair observation data
over the TP in 1981-2010, used in this study as reference data, are from the China Meteorological Data
Service Centre (http://data.cma.cn/site/index. html). Another dataset is from the China Meteorological
Forcing Dataset (CMFD) for the period of 19792018, developed through the fusion of remote sensing
products, reanalysing datasets and in situ station data with a spatial resolution of 0.1° and a temporal
resolution of three hours. Due to its continuous temporal coverage and consistent quality, the CMFD
is one of the most widely-used climate datasets for China [30]. In addition, TerraClimate is a
global gridded dataset of meteorological and water balance variables at 2.5 arc-minute resolution
(4000 m) from 1958 to 2020 [31]. TerraClimate updates with a monthly time step and is available at
https://climate.northwestknowledge net/ TERRACLIMATE. The input datasets used in this study are
listed on Table 1.

Table 1. Overview of datasets across the TP.

Data Source Temporal Resolution Spatial Resolution
DEM 2000 30 m
Weather Sites 2003-2013, daily
LST Site 2007-2011, 10-min
MOD11A1/MYD11A1 2002—Current, daily 1000 m
MODO09GA 2000-2020, daily 1000 m
CMFD 1979-2018, 3-hour 0.1 degree
TerraClimate 1958-2018, monthly 0.025 degree

2.2. Methodology

The spatio-temporal patterns of Tair in mountainous areas were quite complex due to the influence
of landscape-scale physiographic factors. To address these problems, we developed a modelling
framework for Tair (Figure 2). The first step was to apply a hybrid method (combine serval methods,
i.e., daily merging and spatio-temporal gap-filling) to create seamless remotely sensed LST datasets.
The second step was to calculate a set of predictors including LST datasets, mountainous solar radiation,
biophysical factors and topography indices for surface air temperature modelling over the TP from
2003 to 2013. The calculations of the above two steps were all conducted in the Google Earth Engine
(GEE) environment. Those predictors were then integrated as explanatory variables for machine
learning models, while the in situ measurements were used as the response variables. To avoid the
spatial-overfitting of machine learning models, target-oriented validation strategies were used. In the
third step, the cross validation (CV) data was split into 10 folds using spatial ID and Year ID as splitting
criteria to predict unknown points in time and unknown locations. Then, the best model for each month
was used for final tuning with 10-fold Leave Location and Time Out-Cross Validation (LLTO-CV),
allowing us to provide accurate monthly spatial maps of Tair over the TP. The final step was to evaluate
the climate change in TP with monthly Tair datasets by comparison with other temperature products.
More details are presented in the following subsections.
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Figure 2. Flowchart of steps for calculation of near-surface temperature over TP.

2.2.1. Step 1: Hybrid Model to Estimate Daily Seamless MODIS LST and Validation

The development of globally complete spatial-temporal daily LST images still faces many
challenges. Considering the advantages of MODIS LST including 1000 m spatial resolution with high
temporal resolution and the computing efficiency of different gap-filling methods, we used a three-step
hybrid method to build daily LST. The first step was the daily merging method, which involved
using values from the other three times on the same day to fill the missing values for a given time.
For example, we estimated T2 from T1, T3 and T4 and obtained four time series of T2 (LSTday), and then
composited them to get the merged LST on a daily basis. The details of this step were presented by
Li and Zhou [17]. The benefit of the daily merging method of four observations is that it increases the
spatial and temporal extent of the daily LST coverage. The second step was to use a spatio-temporal
gap-filling method by estimating missing values with values of their neighbouring cells and days.
Existing spatio-temporal gap-filling methods are all sensitive to parameter configurations. However,
when applied at a global scale, a set of universal key parameters is difficult to select. In this study, we used
a new spatio-temporal gap-filling algorithm instead of traditional gap-filling packages or software,
as this method is computationally efficient and is promising for large scale applications. Especially,
we chose 10,000 m as the searching radius of bicubic interpolation and 30 days as the given window
for moving the average temporal interpolation. The third step was to use the Whittaker smoother
to remove the outliers introduced by spatio-temporal filled LSTs. We noted that the hybrid method
depended heavily on daily merging LSTs. Therefore, the daily merging LSTs were treated as good
LSTs and the remaining gaps left after the daily merging were filled by Whittaker smoother values.

Validation of the land surface temperature used the radiation transfer equation below:

Ry = Rsi - Reo +Ry5 - Rlo (1)
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where Rg;, Rso, Ryj, Ry, are incoming shortwave radiation (w-m~2), outgoing shortwave radiation
(w-m™2), incoming longwave radiation (w-m~2), outgoing longwave radiation (w-m~2) respectively,
Ry, with the net radiation. In Equation (1), Ry, is a direct function of land surface temperature. For a
surface with emissivity € (unitless), the outgoing long-wave flux is composed of both reflected and
emitted parts.

Rio = (1 — €) X Rjj + € X 0 x T* 2)

where o is Stefan-Boltzmann constant (5.67 X 1078 W m™2 K™#) and Ts is land surface temperature.
If Ry; and Ry, were obtained from radiometric network, the accuracy of the land surface temperature
would be dependent on emissivity .

2.2.2. Step 2: Remotely Sensed Indices, DEM Derivatives and Mountainous Solar Radiation

Due to the limited data availability from the TP, the model accuracy largely relies on the input
datasets. If it is insufficiently trained, a robust correlation cannot be expected, that is, the more sufficient
the samples, the better the spatial prediction accuracy [32]. MODIS Terra/Aqua LST products (MOD11A1
and MYD11A1l) were obtained from NASA (https:/Ipdaac.usgs.gov/products/myd11alv006/,
https://lpdaac.usgs.gov/products/mod11alv006/). The MODIS Terra overpass times are around
local time 10:30 AM (T1) in descending mode and 10:30 PM (T2) in ascending mode. The MODIS
Aqua overpass time is around 1:30 PM (T3) in ascending mode and 1:30 AM (T4) in descending
mode. Time-variant biophysical factors, such as Normalized Difference Vegetation Index (NDVI),
Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI), Normalized Difference Snow
Index (NDSI), and Soil Adjusted Vegetation Index (SAVI), derived from MODIS surface reflectance
bands, and which have the same spatial and temporal resolution as LST, were incorporated as training
inputs for machine learning models. This study also produced incoming mountainous solar radiation
dataset as a predictor of air temperature distribution in the TP, and provided a web app tool based
on GEE for user access (https://geogismx.users.earthengine.app/view/tpmsr). In fact, the incoming
mountainous solar radiation in TP was used the first time in this study, as previously such dataset did
not exist or was not used as a variable in estimating air temperature over the TP. Therefore, with the
availability of these topographical variables, weather datasets and biophysical indices for the TP,
we were able to achieve a more reliable estimate on Tair in high mountainous area.

2.2.3. Step 3: Regression Models and Target-Oriented Validation

In this study, we adopted three commonly used regression techniques to reproduce Tair. From the
literature review, it was suggested that the differences in land surface properties, solar radiation,
topography and many other factors could influence the relationships between MODIS LST and Tair.
Therefore, the linear regression model is unlikely to be able to handle the complicated relationship
between Tair and the abovementioned variables under different conditions. In contrast, advanced
machine learning models, such as Random Forest, Cubist and XGBoost, can take account of the
nonlinear and complicated relationship between the predictor and response variables in a mountainous
study area like the TP.

Random Forest (RF), also known as random decision forest, is an advanced ensemble machine
learning technique which can be used to develop predictive models for both regression and classification
purposes [33]. The ensemble technique is an algorithm that integrates outputs from multiple learning
models to generate better predictions. In the case of RF, it achieves this goal by obtaining outputs
from a whole forest of random decision trees. Decision trees are also a popular regression method,
but they tend to overfit on training data and usually have high variance, even if utilizing different
training and testing sets from a same dataset [34]. Nevertheless, decision trees can be used as an
underlying foundation in ensemble methods to produce more accurate predictions. The RF first creates
an ensemble of decision trees through a process of bagging (bootstrap aggregating). Randomised
subsets of the predictors are assigned to each tree to generate predictions. The average of the predictions
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from the ensemble of the trees is treated as the final outcome [35]. Thus, the RF succeeds in reducing
the variance by creating a majority-votes model. In recent years, RF has been frequently used in remote
sensing-related research [36,37].

Extreme Gradient Boosting (XGBoost) is a scalable and efficient implementation of the gradient
boosting framework [38]. It is also an ensemble technique that can build a final predictive model based
on a larger number of underlying models. The most commonly used underlying model is a regression
tree, different to RE. Another difference is that XGBoost repeatedly trains trees or the residuals of the
previous predictors, while RF trains many independent trees and then averages them. In the present
study, we adopted DART (Dropouts meet multiple Additive Regression Trees), an ensemble model of
boosted regression trees, which is capable of overcoming the issue of “over-specialization” [39].

Cubist regression is a commercial, rule-based regression method that was developed based
on a combination of the ideas of Quinlan [40]. For this reason, it lacks algorithmic documentation.
After Cubist regression was introduced into R by Kuhn, it has been widely used in remote sensing
studies. Unlike CART-based regression trees (e.g., RF) that have a final model, Cubist produces
rule-based multivariate regression models, which means that a set of rules is associated with sets of
multivariate regression. Then, an actual prediction model will be chosen based on the rule that best fits
the predictors. Since Cubist generates rule-based results, it is more straightforward and interpretable
than RE. Cubist has much shorter run times than CART-based regression trees.

K-fold Cross Validation is popular for estimations of the performance of the model with a view
towards data that has not been used for model training. The validation dataset is randomly split into k
folds during standard random k-fold Cross Validation. However, the problem of dependencies caused
by the nature of spatial-temporal data was ignored, producing overly-optimistic model performance
because of spatial-temporal overfitting [26,41,42]. To be more specific, many prediction models use
auxiliary predictor variables which vary in space but notin time (e.g. elevation, location, and biophysical
characters). However, temporally static variables that focus on describing the spatial characteristics of
the climate stations are prone to enabling machine learning algorithms to disguise the real relationships
between predictors and responses, and lead to spatial over-fitting. For example, the performance
differences between K-fold random Cross Validation (lower RMSE) and Leave-Location-Out Cross
Validation (higher RMSE) in the literature strongly suggest that spatio-temporal prediction models fail
in the prediction beyond the location of training stations, but can very well predict the unknown time
of the training stations.

As we aim to predict air temperature in unknown locations, we perform a target-oriented
validation which validates the model with a view towards spatial mapping. To this end, we repeatedly
leave the complete time series of one or more data loggers out, and use them as test data during CV.
This study will use the following two steps to identify and avoid overfitting.

1. To compare Machine Learning methods with different validation strategies using 10-fold
Leave-Location-Time-Out (LLTO), Leave-Location-Out (LLO) and Leave-Time-Out (LTO).

2. Using the best fitting model with suitable validation strategies to estimate monthly Tair products
based on 10-fold LLTO Cross-Validation.

2.2.4. Step 4: Creating Near-Surface Air Temperature Products and Elevation-Dependent
Warming Analysis

The controversy over the elevation-dependent nature of warming in the TP is mainly due to a
lack of high-altitude meteorological data from the region [43]. In this paper, to obtain more reliable
Tair products for elevation-dependent warming analyses, we produced 11 variables to build the actual
nonlinear relationship with response, and tested three machine learning models with three different
validation methods. According to the performance measurement of RMSE and R?, RF was finally
selected as the best model for Tair product generation. By comparing the accuracy of the three Tair
products, the most accurate monthly mean air temperature during the period from 2003 to 2013 was
selected to analyse the temperature change over TP.
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Due to the wide spatial domain of the TP, temperature variations are inconsistent in different
regions. Therefore, in this study, all the pixels in the three 1000 m elevation intervals were extracted
and the time series of temperature changes in each elevation range were computed from the mean
of the pixels. Specifically, we explore the relationship between temperature trends and elevations of
2000-3000 m, and 4000-5000 m and 6000-7000 m a.s.l., respectively. Among the analysis of temperature
trends, the Seasonal Mann—-Kendall statistical test and Seasonal Sen’s slope test [44] were employed to
test the significances of trend and the magnitude of trend in the seasonal mean temperatures.

3. Results

3.1. Evaluation of Spatio-Temporal Composite LST

Figure 3 shows the percentages of all available days per year for which maximum LST and
minimum LST before and after using daily merging method. Overall, the percentage of MODIS
LST data availability over TP is over 80%, while after daily merging, it is over 99%. For example,
daily merging of the four observations increases most of LST data coverage by about 30% and 20%
for LST day and LST night, respectively. In addition, a comparison of Figure 3a,c shows that the LST
day value availability is intrinsically lower than that in LST night. For the central part of TP, the data
coverage of the observed LST day is around 70%, while the data coverage LST night availability is
about 80%. For the eastern part of TP, the available percentages for the observed LST day and night are
about 45% and 60%, respectively. After merging daily LSTs from the four overpasses, LST coverage
can increase to over 99% in central TP, and about 80% in eastern TP. However, it still fails to fill the
gaps in the boundary of southern TP (see in Figure 3b,d). Therefore, an additional step is to use
spatio-temporal gapfilling to fill the remaining missing values for the whole region.

LST Day Validating Percentage (%)

(b)

75°€ 80'E 85'E 90°E 95°€ 100°E 105°€

LST Night Validating Percentage (%)

75°€ 80'E 85°E 90°E 95°E 100°€ 105°€

Figure 3. The percentages of available data in the two pairs of maps. (a) shows the percentage of days
for the given year for which LST day (i.e., 1:30 pm on Aqua (T2)) values are available at each pixel
of the TP domain. (b) shows the percentage of daily merged T2 for the given year for which daily
merged T2 values are available. (c) shows the percentage of days for the given year for which LST
night (i.e., 1:30 am on Aqua (T4)) values are available at each pixel of the TP domain. (d) shows the
percentage of daily merged T4 for the given year for which daily merged T4 values are available.
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To evaluate the accuracy of MODIS spatio-temporal composite LST, a ground measurement
comparison at the A'rou station for 2008 was conducted for both maximum LST and minimum
LST observations. The ground measurements at the nearest collection times matching with MODIS
maximum and minimum LSTs were used. The annual comparisons are shown in the left panel of
Figure 4. The scatterplots of the comparisons are given in the right panel of this figure. For the
maximum LST comparison, the RMSE and R? over A'rou station were 5.44 °C and 0.76. For the
minimum LST comparison, the RMSE and R? were 5.14 °C and 0.77. It should be noted that the
minimum LST results were slightly better than for the maximum LST due to the stable weather
conditions at night. From the annual results comparison, we can see that during the winter/spring
when the freeze/thaw transition happens frequently, the differences of maximum LST or minimum LST
with in situ measurements were greater than in other seasons.
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Figure 4. LST maximum and minimum temperature validation with in situ LST measurements in
A’rou station. (a) and (b) show annual daytime comparison at A’rou site. (c¢) and (d) show annual
nighttime comparison at A’rou site.

3.2. Model Performance and Variable Importance

Figure 5 shows that model performances differed from the different temperature products and
the target-oriented validation methods. All the 27 models used in this study appeared to have strong
relationships (R > 0.75 and RMSE < 2.6 °C) at the monthly scale. For the three methods used,
it can be clearly seen that Cubist regression always showed higher accuracy than XGBoost and RF,
but RF was the most robust one with less outliers (not shown on Figure 5, R? < 1th percentiles and
R? > 99th percentiles). In terms of the model performance for three temperature products, the Tmean
had the highest accuracy and conversely, the Tmax had the lowest. From Tmax to Tmin to Tmean,
the model performance increased, and the differences between RF, Cubist, XGBoost were getting
smaller. Additionally, the model performance of LTO-CV was much better than that of LLO-CV and
LLTO-CV. The changes of R? for different temperature products across 12 months was not obvious,
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but the RMSE showed apparent seasonal variation, i.e., higher in winter and lower in summer. Notably,
the RMSE in August (the median RMSE is about 1.0 °C) were much lower compared to other months.
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Figure 5. (a) and (b) show the R* and RMSE for maximum (Tmax), minimum (Tmin) and mean
(Tmean) air temperatures using rf, cubist and xgbDART methods based on LLTO-CV, LTO-CV, LLO-CV.
The boundaries of box mark the 25th and 75th percentiles; the horizontal black lines within the box
indicate the median; the upper and lower whiskers mark the 90th and 10th percentiles.

Variable importance for each Tmax, Tmin, and Tmean was determined by different Machine
Learning methods based on LLTO-CV (Figure 6). For all properties in all plots, LSTnight explained most
of the variable importance. LSTday was identified as being of major importance to the RF and XGBoost,
but LSTday within the Cubist variable importance plots had limited influence on Tmax and Tmean,
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and its importance even dropped to zero in relation to Tmin. Meanwhile, the importance of elevation
demonstrated by Cubist became progressively weaker from Tmax to Tmean, and Tmin. In contrast,
RF and XGBoost identified elevation as a decisive factor in for temperature estimates. More specifically,
elevation occupied the third or the fourth place in terms of importance in the plots of Random Forest,
and always ranked in the top three within XGBoost plots. However, for the subplots using XGBoost,
there was no clear influence for other variables except LSTday, LSTnight and elevation, where their
total importance was higher than 95%. Unlike the XGBoost, other indices in the variable ranking plots
demonstrated by Random Forest were also good predictors, while both LSTday and LSTnight showed
great ability to improve the air temperature estimates. Therefore, these results revealed that RF had
greater explanatory capability for temperature estimates than the other two machine learning methods.
Modelled solar radiation, which was a predictor of Tair in complex terrain, also had good explanatory
power, i.e., in the top five, within RE. The ranking results of other remotely sensed indices such as EVI
and NDSI were as expected; vegetation had a close relationship with temperature, and snow cover
change reflected by NDSI was an important indicatod of a warming/cooling climate.
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Figure 6. Tmean, Tmin, and Tmax temperature residuals showed varying temporal sensitivity to
physiographic drivers. Each variable was scaled to a total of 100%.

3.3. Spatial Distribution of Surface Air Temperature

As the monthly time step is more important for many long-term natural resource models, here,
we focused on the spatio-temporal characteristics of monthly Tmean in 2003-2013 over the TP using
both the station network and our modelling product. Spatially, the range of Tmean was from —15 °C to
20 °C across the TP (Figure 7). The warmest month was July and the coldest was January. Monthly
Tmax and Tmin (see in Supplementary Materials Figure S2, Figure S3) generally followed similar
spatial patterns; the northwest TP was the coldest area, gradually increasing toward the southeast,
showing a stepped distribution. As areas in the south and east of the plateau are covered with lush
vegetation and strongly influenced by the monsoon, they are amongst the hottest parts of the plateau.
Meanwhile, the south eastern part of the plateau was the warmest, followed by the Qaidam Basin in
the northeast, because of its relatively low altitude. In addition, we derived the seasonal mean and
annual mean temperatures from the monthly mean temperature over the TP (see in Supplementary
Materials Figure S1), with results similar to those of Zhang and Zhang [15].



Remote Sens. 2020, 12, 1722 12 of 20

25

38°N -
36°N
34N
32N
30°N
26N

20

38°N
36°N
34°N
32°N
30°N
28°N

' ;,,f*)" 2 bl{\‘;‘ﬁf

¥

T T T T T T T
75°E 80°E 85°E 90°E 95°E 100°E 75°E 80°E 85°E 90°E 95°E 100°E

-15

Figure 7. Monthly Tmean based on RF model in 2003-2013.
3.4. Comparison with Other Tibetan Plateau Temperature Products

The solar elevation angle in May is relatively high, and daytime ventilation and atmospheric
mixing are generally great. In contrast, the lower solar elevation angle, longer night-time and more
frequent radiative cooling in December result in colder air drainage and temperature inversions [45].
Thus, we used Tmean in May to compare the difference between our temperature product and others.
Figure 8 shows the R? using different monthly air temperature products for May and December
over the eastern plateau, with a dense concentration of climate stations. The Random Forest method
resulted in R? values of 0.84 and 0.97 for May (Figure 8a) and December (Figure 8b) respectively.
The monthly Tmean based on TerraClimate products had R? values of 0.79 for May and 0.91 for
December. In contrast, CMFD showed a lower performance with R? of 0.55 for May and 0.78 for
December. Thus, the accuracy of our product was better than other temperature products over the
eastern TP.

The spatial maps of Tmean for May and December based on different products are shown in
Figure 9a. The density plots from every pixel of those spatial maps are provided for comparison
(Figure 9b). In May, a normal distribution of single peaks appeared; however, in December, a normal
distribution of double peaks was observed. The mean values of the density curves in May were about
the same, but the variance was different. In comparison, the difference was notable in the case of
December, where mean temperatures from TerraClimate were much lower than those from our product.
The density of mean temperature in December was in the range of —30 °C to —5 °C. However, according
to Zhang, Zhang [15], the mean temperature in winter in the TP is mostly above —12 °C. This difference
is partially due to the different models applied. In terms of Tmean generated from Random Forest,
it tended to be warmer than the others. For the method applied in TerraClimate, the Tair in various
regions of the world always has a positive relationship with elevation. According to the research of
Cai and You [46], Tair in TP in the spring has a negative elevation dependency, while that in summer
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has a positive one. Based on the above conclusion, it is possible to understand the reason that Tair in
May showed no obvious differences between the three products.
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Figure 8. Comparison of monthly Tmean in May (a) and December (b) derived from Random Forest,
TerraClimate and CMFD with the observed mean temperature of 1980-2010 from in situ measurements.
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Figure 9. (a) Spatial average maps and (b) histograms of Tmean in 20032013 at Central TP for May

and December.
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3.5. Elevation-Dependent Warming
Mean Tair products with the highest accuracy were used to explore the evidence of

elevation-dependent warming over TP based on three representative elevation zones: 6000-7000 m,
4000-5000 m, and 2000-3000 m. As shown on Figure 10, in the period from 2003 to 2007, temperature
increased in the elevation zones of 2000-3000 m and 4000-5000 m, while temperature decreased at
6000-7000 m. According to the seasonal Mann-Kendall test, only the temperature data in 6000-7000 m
(p value = 0.003) showed a significant cooling trend, while the 2000-3000 m (0.37) and 4000-5000 m
(0.11) data did not pass the test. In the period from 2003 to 2013, we found that a cooling trend was
observed over 6000 m, but that the trends at 2000-3000 m and 4000-5000 m were not significant.
Furthermore, when the seasonal Sen’s slope test was used, we found that the magnitude of the trend
at 6000-7000 m (slope = —0.09) showed a negative tendency, while 2000-3000 m (slope = 0.02) and

4000-5000 m (0.04) both showed positive trends.
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Figure 10. Tmean variation at three elevation zones from January 2003 to December 2013. The number
of pixels within 1000 m elevation interval was extracted and each temperature change was computed

from the mean of the pixels.

4. Discussion
In this study, we investigated the usefulness of a hybrid methodology to provide continuous
remote-sensed LST for modelling Tair. The application of this methodology over the TP provides
thorough datasets in data-sparse areas with high elevations by daily MODIS Terra/Aqua LST merging
and spatio-temporal gap-filling. It is noteworthy that the missing pixels in the daily LST images after
processing by the hybrid method still exist along the south-eastern boundary of the TP, where cloud-days
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are much more frequent than clear-sky days. Key map and figure results were illustrated in a web
application (Hybrid MODIS LST Composite Online Tool, https://geogismx.users.earthengine.app/view/
hybrid-modis-composite-Ist). This web tool gives us instant access to the global-scale LST data archive
and cloud computation capabilities of the GEE. Moreover, with this app link, the user can even acquire
results from mobile devices, and does not need to install any software and third-party packages,
as opposed to desktop applications. Other prospects for the application of this tool include obtaining
high-resolution LSTs which would dynamically capture the urban heat island phenomenon at a fine
scale. However, Leihy and Duffy [25] found great uncertainty in gap-fill predictions for missing LSTs at
high elevation sites. For spatially- and temporally-neighboring predictions, further research needs to
consider advanced spatio-temporal gap filling methods that account for the use of unique parameters
for the pixel-specific gap patterns to fill in the missing values [47], especially in mountainous area.

The daily daytime and nighttime LST estimates from this study have good correlation (R? = 0.75)
comparable to those of Ouyang and Chen [12],although they only used clear-sky AATSR products
at the A'rou station for validation. However, due to the difficulty of obtaining representative LST
data from ground LST measurements in TP, validation of LST at only one site (A’rou) cannot be
deemed representative of the whole TP. Therefore, with the Hybrid MODIS LST online composite tools,
more in situ LST measurements, if available, could be used for validations in the future. Additionally,
the spatio-temporal model validation strategies in this study do not rely on random k-fold cross
validation. Instead, stricter validation strategies such as LTO, LLO, and LLTO are used for comparisons.
However, the aim of this study is to assess the error in both time and space; LLTO CV is finally
used for the final target-oriented CV. According to Meyer and Reudenbach [26], Forward Feature
Selection (FFS) in conjunction with LLTO makes it possible to remove variables that lead to overfitting.
For example, the terrain related variables may contribute to overfitting, as these “static variables” are
overrepresented in the predictor datasets. Considering the fact that the process of training a large
number of datasets was time consuming for the FFS, and that it did not show strong evidence in
improving model performance, FFS was not adopted in this study. However, care must be taken
when choosing the variables for training. We avoided an overly-optimistic approach to temperature
prediction by using the target-oriented validation (in this case LLTO); nonetheless, the temperature
products still contained errors coming from the characteristics of machine learning algorithms which
were not able to predict extreme values (i.e., very low and very high temperatures). Further work is
needed to improve these spatio-temporal models to capture extreme or abnormal temperature in both
spatial and temporal domains.

Although in situ observation data below 4000 m clearly show a significant warming trend in the
TP, the rate of warming at high-elevation mountains is still unknown. As far as we know, the gridded
Tair products in the world are commonly interpolated by spatio-temporal interpolation based on
meteorological stations, even in areas like TP with sparse networks of weather stations. In other words,
unknown Tair at other locations (such as high mountainous areas and valley areas) is estimated by what
we know from locations. The key to the success and applicability of common spatio-temporal
interpolation is the underlying assumption employed in describing the relationships and the
way in which these relationships are characterised [32]. The underlying assumption of common
spatio-temporal interpolation to estimate unknown Tair is that the values of target Tair are spatially
autocorrelated. Locations which are closer would have more similar Tair values than locations which
are further apart. Therefore, geographical variables such as elevation and distance are used to capture
and represent spatio-temporal correlations through geostatistical methods (such as Kriging, IDW).
However, geographical variables are consistently static, do not generally capture the temporal dynamics
of the spatial pattern of the Tair, and cannot represent the effects of biophysical characteristics [48].
LST was used as a proxy for Tair, and has been successfully applied to estimate Tair for various regions
of the world due to its ability to describe the surface-atmosphere energy exchange process. In this
study, we used not just widely used auxiliary datasets (i.e., LST, locations, elevation, solar radiation and
remotely sensed indices) to explicitly represent topographical and biophysical factors on Tair, but also
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adopted machine learning algorithms to handle the nonlinearity and highly correlated variables.
Therefore, the proposed methods are technologically interoperable and scientifically rigorous for
estimating Tair in mountainous areas. Improved satellite-based temperature Tair products may provide
evidence of elevation-dependent warming. The validation results (Figure 8) indicate that the monthly
gridded temperature maps show a potential to provide long-term Tair over TP compared to other
independent coarse products. Such a product is of great necessity for data-scarce areas, and is therefore,
critical for climate change research. As shown in Figure 10, before 2007, temperatures increased in the
elevation zones of 2000-3000 m and 4000-5000 m, and decreased over 6000 m. This finding is consistent
with findings in other research [49]. However, this result is debatable, because the period of analysis
is extremely short. During the long period of 2003 to 2013, we found that the cooling trend over
6000 m was detected by seasonal Mann-Kendall test, and the warming patterns between 2000-3000 m
and 4000-5000m were not obvious. This phenomenon was also observed by [29]. For instance,
an increase in temperature was observed in parts of mountainous regions at around 4500-5500 m,
whereas other mountainous regions observed limited temperature increases. However, according
to previous landscape-scale research on Tair in mountainous environments [50], it is suggested that
significant variations in temperature are occurring at elevation intervals of less than 1000 m. Minimum
air temperature, with its strong sensitivity to cold-air drainage, is likely to vary at scales less than 200 m.
It is believed that future improvements need to combine the distinct microclimates in high-mountain
regions with high-resolution satellite-based datasets.

Unlike plain zones, which are relatively homogenous, mountain areas suffer from local variability,
thus making it extremely difficult to ensure that the model simulation is perfect. Notwithstanding these
limitations, the factors used for model simulation in this study have been shown to reflect temperature
changes well. We found the predictor of NDSI to have a higher importance ranking than some other
indices. As TP is one of the most sensitive areas to snow feedback on Earth, the shortened or prolonged
snow cover duration in TP will influence the surface air temperature. You and Min [51] gave a further
explanation that the rapid warming in TP is line with the decreasing snow cover, and hypothesised
that changes in snow/ice cover expose the soil to wind or increase the snow line position and alter the
absorption of solar radiation, leading to changes in surface temperature. Meanwhile, incoming solar
radiation also plays a relatively important role in Tair estimations. Additionally, our results (Figure 5)
show the model performance in estimating Tmin with night-time LST is better than Tmax using
daytime LST. This difference can be partially explained by the fact that night-time LST is more stable
than daytime LST. It is also of note that the model simulations are influenced by other climate factors
and human activities, such as wind, relative humidity, cloud cover and land use change. However,
these factors were not employed due to limited observations. Therefore, further studies considering
more informative indices are needed to improve the simulations. For example, cloud cover over the
TP shows a significant increasing trend; the supporting evidence for this is that there is a significant
amount of atmospheric brown cloud generated by fossil fuel consumption and biomass burning over
the Indian subcontinent and Asia which is transported to the TP by atmospheric circulation [52]. As we
know, the presence of clouds interferes with the estimation of Tair in mountainous areas. That is
probably part of the reason why the accuracy of the estimated Tair from the end of summer to the
end of spring in the following year was not good (Figure 5). The most straightforward effect of cloud
cover is that MODIS daily LST datasets suffer from a large number of missing values because of clouds
and other atmospheric conditions (see in Figure 3a,c). Therefore, we adopted a hybrid approach
(combining several methods) to fill the gaps in high spatio-temporal LST datasets before using them
to estimate Tair. However, due to the lack of the cloud cover information, there is still a deviation
between the gap-filled LST and the real LST on cloudy days. Another indirect effect of cloud cover is
the estimation of other predictors (i.e., incoming solar radiation in TP). Instead of using a cloud-based
model, a sunshine-based model was adopted to simulate incoming solar radiation under the influence
of clouds. Therefore, if appropriate atmospheric parameters for the study area, such as cloud cover,
atmospheric transmissivity and atmospheric turbidity can be obtained, the final modelling results
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would be better. In addition, factors like wind and relative humidity data also contribute to estimations
of Tair. For example, weakening of the zonal wind speed was also shown to significantly raise the
temperature in the Qaidam Basin [53].

5. Conclusions

In this study, we built an online tool based on a MODIS LST “hybrid” methodology to generate
continuous daily maximum and minimum land surface temperature datasets in locations without
observations, and to provide the required remotely sensed inputs to air temperature prediction
models. Changes in received solar energy among mountains inevitably affect the earth’s energy
budget. We integrate mountain solar radiation and diverse remotely sensed vegetation indices to
provide reliable temperature products for the TP. By comparing the performance of different machine
learning techniques, we found that the RF model performed best in predicting Tmax, Tmin, and Tmean.
The methodology that we have developed could be useful for improving temperature datasets in
mountainous regions around the globe, thereby also improving climatic, environmental, hydrological
and ecological models.
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2003 and 2013.
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