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Abstract: Live Fuel Moisture Content (LFMC) contributes to fire danger and behavior, as it affects
fire ignition and propagation. This paper presents a two layered Landsat LFMC product based on
topographically corrected relative Spectral Indices (SI) over a 2000–2011 time series, which can be
integrated into fire behavior simulation models. Nine chaparral sampling sites across three Landsat-5
Thematic Mapper (TM) scenes were used to validate the product over the Western USA. The relations
between field-measured LFMC and Landsat-derived SIs were strong for each individual site but
worsened when pooled together. The Enhanced Vegetation Index (EVI) presented the strongest
correlations (r) and the least Root Mean Square Error (RMSE), followed by the Normalized Difference
Infrared Index (NDII), Normalized Difference Vegetation Index (NDVI) and Visible Atmospherically
Resistant Index (VARI). The relations between LFMC and the SIs for all sites improved after using
their relative values and relative LFMC, increasing r from 0.44 up to 0.69 for relative EVI (relEVI),
the best predictive variable. This relEVI served to estimate the herbaceous and woody LFMC based
on minimum and maximum seasonal LFMC values. The understory herbaceous LFMC on the
woody pixels was extrapolated from the surrounding pixels where the herbaceous vegetation is the
top layer. Running simulations on the Wildfire Analyst (WFA) fire behavior model demonstrated
that this LFMC product alone impacts significantly the fire spatial distribution in terms of burned
probability, with average burned area differences over 21% after 8 h burning since ignition, compared
to commonly carried out simulations based on constant values for each fuel model. The method
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could be applied to Landsat-7 and -8 and Sentinel-2A and -2B after proper sensor inter-calibration
and topographic correction.

Keywords: live fuel moisture content; Landsat-5 TM; fire behavior simulator; fire danger; fire
propagation; data normalization

1. Introduction

Fire disturbances play a key role in vegetation succession, as well as in the ecosystem’s structure
and function [1]. Live and dead biomass constitutes the fuel that burns during a fire, and the fuel
properties describe their state or moisture content, as well as their spatial distribution and impact on
fire spread, intensity and severity [2]. Among these properties, fire ignition and propagation depend
on Live Fuel Moisture Content (LFMC) [3–6]. Fuels with high LFMC take longer to ignite as water
acts as a heat sink, slowing down fire spread and intensity [5,7]. LFMC is defined as the amount of
water in the fuel over its dry weight times 100. This amount of water is calculated as the difference
between the fresh weight and the oven-dried weight at 60–100 ◦C for 24–48 h [5]. More recently,
Matthews [8] suggested to dry samples at 105 ◦C to ensure complete water removal from the samples.
The US National Fire Danger Rating System (NFDRS) distinguishes annual and perennial herbaceous
LFMC depending on how the drying of the live fuel occurs throughout the year [9]. In addition, the
NFDRS also considers the woody LFMC, measuring the moisture of the foliage and of small twigs that
are < 0.6 cm [9].

Climate and plant adaptation strategies to drought play a key role on LFMC, with changes in
the water content of leaves as well as in dry matter [10]. LFMC remote sensing estimates rely on the
spectral changes due to the direct impact of liquid water absorption features and the indirect impact of
pigment and structural changes associated with water content variation [11]. Two different approaches
have been applied to monitor LFMC from remote sensing data: empirical Spectral Indices (SI) [12–14]
and radiative transfer models (RTM) [15–17]. RTM only outperforms empirical models if they are
appropriately parameterized and constrained, which requires accurate structural information [15].
Yebra et al. [11] provide a complete review on these methods and their operational implications.

Fire management tools demand comprehensive spatial and temporal LFMC coverage [18].
Therefore, field sampling only serves to calibrate and validate these remote sensing estimates.
Operational LFMC remote sensing products benefit fire behavior models, as they can improve fire
growth simulations. Most fire simulators generally include a constant LFMC value for each fuel
model, thus missing the spatial LFMC variability across the landscape. The Modeling Dynamic
Fuels with an Index System (MoD-FIS) from the LANDFIRE program (https://www.landfire.gov/;
last accessed 3 April 2020) goes further, detecting the key seasonal changes in herbaceous vegetation
to adjust their dynamic fuel models. However, operational tools such as Wildfire Analyst (WFA,
http://wildfireanalyst.com/ [19]) demands operational spatially and temporally explicit LFMC products
to better estimate fire behavior. Based on BEHAVE surface fire behavior model [2], WFA already digests
current spatial weather data available in real time and allows the inclusion of predefined LFMC layers
as an input. Other software like FlamMap (https://www.firelab.org/project/flammap/; last accessed
3 April 2020) or FARSITE (https://www.firelab.org/project/farsite/; last accessed 3 April 2020) do not
include LFMC as a layer.

A common limitation in fire behavior models is also that they require herbaceous and woody
LFMC, whereas optical remote sensing is only sensitive to the top layer. An alternative is to use
meteorological phenological models like the Growing Season Index (GSI) [20]. The 2016 NFDRS
depends on this index to predict herbaceous and woody LFMC. Despite this, the index requires
extrapolation from meteorological locations to build a spatially comprehensive LFMC map.

https://www.landfire.gov/
http://wildfireanalyst.com/
https://www.firelab.org/project/flammap/
https://www.firelab.org/project/farsite/
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High temporal resolution sensors such as AVHRR [13,21] or MODIS [16,22] or VIIRS, allow the
capturing of daily changes in LFMC. Nevertheless, cloud coverage can reduce their effective temporal
resolution. Besides, spatial heterogeneity of fuels limits their application, due to their low spatial
resolution (≥250 m). Medium spatial resolution (20–30 m) sensors, such as Landsat-5 Thematic Mapper
(TM), enable a better spatial characterization [23], but only once every 16 days until its decommission.
The combination of Landsat-7 and 8, and Sentinel-2A and 2B ensures an overpass every 3 days at
the equator and nearly daily at mid-latitudes at 10–30 m spatial resolution [24]. After proper sensor
inter-calibration, these data open new opportunities to quantify LFMC for fire management applications.
For this end, LFMC signal needs to be discriminated from atmospheric and topographic effects, sun
and sensor geometry, soil background, species composition or other plant characteristics [11].

To compensate for some of these factors, several authors prefer to relate the LFMC dynamics to
Relative Spectral Indices (relSI) [25–28]. The relSI normalize the SI for each pixel based on its values
within a sufficiently large temporal series. The main goal of this study is to propose an operational
spatially dynamic LFMC product including an herbaceous and woody layer ready for integration in
fire behavior models. The product tests different Landsat-5 TM relSI normalized over 10+ year long
time series. Finally, fire simulations with WFA demonstrate how LFMC impacts fire behavior, burned
probability (BP) and fire growth.

2. Methods

2.1. Study Sites and Landsat-5 TM Data

This study selected nine chaparral sites for validation with a long Landsat-5 TM time series
record and concurrent field LFMC sampling data from the National Fuel Moisture Database (NFMD,
http://www.wfas.net/index.php/national-fuel-moisture-database-moisture-drought-103; last accessed
3 April 2020). The LFMC data collection for the NFMC follows standard protocols, as described in
Pollet and Brown [29]. Briefly, LFMC is obtained collecting samples at different heights on the shrubs
and from different individuals [29].

The sites were in California and Oregon, within three Landsat-5 TM scenes across the Western US
covering a wide range of environmental gradients (Figure 1; Table 1). Google Earth (Google Inc., 2013)
visual inspection allowed the picking of sampling sites with no disturbance or rapid growth during the
sampling period, and homogenous shrub cover of at least 1 km2 as location of NFMD sites can be off

by tens or hundreds of meters. Other site requirements were to have at least 20 Landsat-5 TM images
with <10% cloud cover over at least six years that covered as much as possible of the phenological
cycle of the species sampled. This work selected only field sampling dates within ±6 days from image
acquisition to reduce the impact of LFMC temporal variation between NFMD and Landsat-5 TM
acquisition. LFMC data of the selected sites covered the whole fire season, from the beginning of
spring until the end of the fall, although in some cases sampling was extended year-round.

Table 1. Description of the Live Fuel Moisture Content (LFMC) sampling sites and their Landsat-5 TM
scene path and row.

Sites Path Row Latitude
(N) Longitude(W) Sampling Period

(yyyy/mm/dd) Species #
Samples

Clark Motorway,
Malibu 41 36 34.0844 118.8625 2001/01/08 2011/06/22

Big-pod
buckbrush;
Chamise

65

Glendora Rigde 41 36 34.1653 117.8650 2003/01/29 2011/10/28
Hoaryleaf
ceanothus;
Chamise

55

Laurel Canyon, Mt
Olympus 41 36 34.1247 118.3689 2001/04/09 2011/10/28 Chamise 73

Trippet Ranch,
Topanga 41 36 34.0933 118.5978 2001/02/05 2011/10/28 Chamise 69

Peach Motorway 41 36 34.3556 118.5347 2005/04/02 2011/10/28 Chamise 50
Placerita Canyon 41 36 34.3753 118.4389 2001/05/02 2011/10/28 Chamise 72

http://www.wfas.net/index.php/national-fuel-moisture-database-moisture-drought-103
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Table 1. Cont.

Sites Path Row Latitude
(N) Longitude(W) Sampling Period

(yyyy/mm/dd) Species #
Samples

Kinsman 42 34 37.1981 119.4197 2001/09/20 2011/08/23

Whiteleaf
Manzanita;

Big-pod
buckbrush

22

Keeney 42 29 43.9133 117.1783 2000/07/17 2011/08/30 Wyoming Big
sagebrush 39

Shirttail 42 29 44.53 117.4186 2000/07/24 2011/09/16 Wyoming Big
sagebrush 41
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Figure 1. Landsat scenes corresponding to the study sites selected. 
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Figure 1. Landsat scenes corresponding to the study sites selected.

The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) provided
orthorectified Landsat-5 TM surface reflectance data at 30 m spatial resolution through the United
States Geological Survey (USGS) Earth Explorer web site (http://earthexplorer.usgs.gov/; last accessed
3 April 2020). Their radiometric calibration involved the transformation of the digital numbers to
at-sensor radiance, adjustment to top of atmosphere reflectance and atmospheric correction using the
6S radiative transfer model [30]. Landsat-5 TM scenes were clipped to the largest possible window
containing data for the whole time series. In addition, the satellite overpass varies for each image
acquisition. Therefore, a mask gave a -9999 value for all dates to the pixels out of the overpass in
at least one image acquisition in the time series to ensure the same common pixels for all images in
each scene. Further processing involved a topographic correction to reduce the differences in the time
series due to sun illumination conditions and terrain. The Sun-Canopy-Sensor Correction with the C
parameter (SCS+C) normalized reflectance (Ln) for this topographic factor [31] (Equation (1)):

Ln,b = Lb
cosα cosθ+ Cb

cos i + Cb
(1)

where Lb is the reflectance for each Landsat-5 TM band (b); α is the terrain slope; θ is the solar zenith
angle; i is the incidence angle, which is the angle between the normal to the ground and the solar
zenith; and Cb is the quotient between the slope and intercept of the linear regression equation between
Lb and cos i.

This study also tested Civco [32], C-Teillet [33] and smoothed C-Teillet [34] topographic corrections,
but SCS+C worked best (results not shown), improving the relationship between the SI and the field
LFMC when comparing before and after correcting the topographic effect. The SCS+C required
a Digital Elevation Model (DEM) to perform the correction. The National Elevation Dataset delivered

http://earthexplorer.usgs.gov/


Remote Sens. 2020, 12, 1714 5 of 15

the DEM in grid float format at approximately 10 m spatial resolution (https://www.usgs.gov/core-
science-systems/ngp/tnm-delivery/; last accessed 3 April 2020). DEM mosaicking, reprojection to UTM
11 N WGS84 and nearest neighbor resampling to 30 m were necessary to match each Landsat-5 TM
scene. Furthermore, SCS+C applied a different Cb parameter depending on the vegetation structure:
herbaceous, shrub and forest. The 30 m National Land Cover from Fry et al. [35] provided the base
map to reclassify 71–74 and 81 classes as herbaceous; 51–52 as shrubs; 41–43 as forest; and the rest as
non-natural vegetation. Finally, a linear regression equation between Lb and cos i for all pixels in each
of the four reclassified classes calculated Cb for each class.

2.2. Spectral Indices

LFMC prediction from Landsat-5 TM tested four SI previously used to retrieve LFMC (Table 2).
The NDVI relates to LFMC only indirectly through changes in leaf pigments. It has successfully
estimated LFMC, especially for grasslands [13,23]. The NDII predicted LFMC over Mediterranean
environments [14,23,36]. NDII directly relates to LFMC through spectral changes occurring in the
shortwave infrared (SWIR) region (band 5 in Landsat-5 TM), because of variability in the vegetation
water content. The EVI estimated shrub LFMC successfully over chaparral vegetation with AVIRIS
data [14,15,37]. EVI was originally designed for the MODIS sensor based on additional spectral bands
than NDVI. Furthermore, it provides better sensitivity to high biomass while minimizing soil and
atmosphere influences. The VARI estimated LFMC over chaparral [15,22]. VARI is indirectly related to
LFMC through changes in leaf pigments.

Table 2. Spectral Indices (SI) selected to retrieve LFMC.

SI Equation

Normalized Difference Vegetation Index (NDVI) [38] ρNIR−ρR
ρNIR+ρR

(2)

Normalized Difference Infrared Index (NDII) [39] ρNIR−ρSWIR
ρNIR+ρSWIR

(3)

Enhanced Vegetation Index (EVI) [40] G
(

ρNIR−ρR
ρNIR+C1∗ρR−C2∗ρB+L

)
(4)

Visible Atmospherically Resistant Index (VARI) [41] ρG−ρR
ρG+ρR−ρB

(5)

ρB, ρG, ρR, ρNIR and ρSWIR = blue, green, red, near infrared and shortwave infrared reflectance, respectively;
G is a gain factor; C1 and C2 are the coefficients of the aerosol resistance term, and L is a soil-adjustment factor.
These parameters have a value of 2.5, 6, 7.5 and 1, respectively.

Computing the relSI compensated differences among pixels in fractional cover, species composition,
soil background and orientation among other factors in order to predict LFMC [25–28]. relSI is calculated
as the difference between the SI at a specific time and the minimum SI (SImin) in the temporal series for
each pixel, divided by the difference between the maximum SI (SImax) in the temporal series and SImin.
Newnham et al. [27] highlighted the importance of selecting an appropriate time interval and criteria
to obtain the SImin and SImax. According to their findings, the time interval should be long enough to
enable capturing the full range of spectral variation, but short enough to avoid capturing variation
caused by land cover changes. The shortest period for the validation sites in Table 1 was six years,
whereas the longest was eleven. The time frame covered the entire phenological vegetation cycle in all
cases. Furthermore, the LEDAPS Landsat-5 TM product contained a mask that eliminated any cloud
or cloud shadow pixel when searching for SImin and SImax. Finally, a similar normalization process
from SI to relSI converted the field LFMC data to relative LFMC (relLFMC). As a result, minimum and
maximum values by site compensated for differences in sampling methods and species composition
across sites.

2.3. Landsat TM LFMC Product

This research applied an empirical method to estimate LFMC or relLFMC through linear
interpolation from a SI or a relSI. These linear regression models are the traditional approach to relate the

https://www.usgs.gov/core-science-systems/ngp/tnm-delivery/
https://www.usgs.gov/core-science-systems/ngp/tnm-delivery/
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spectral information derived from remotely sensed data and field measured LFMC [13,14,22]. Since the
relEVI best predicted LFMC (see results section), it was the base for the Landsat-5 TM herbaceous and
woody LFMC product. Pixels classified as shrubs or forest included herbaceous and woody LFMC
layers whereas herbaceous pixels included only the herbaceous LFMC layer. To overcome the limitation
of optical remote sensing not measuring the understory layer, a spring metaphor extrapolated the
understory herbaceous values of the woody pixels from the surrounding herbaceous pixels using
the “inpaint_nans” tool (https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans,
last accessed 3 April 2020). This method adjusts a partial differential equation to extrapolate 2-dimesional
data with springs that connect pixels to their neighbors in all directions. The performance of the
method was evaluated by comparing a random extraction of 3000 herbaceous relEVI pixel values from
16 April 2009 to the extrapolated results at these locations.

Information on fuel models based on the Scott and Burgan’s [42] fire behavior fuel models
classification version “LF 2014” with metadata “20161031” at 30 m resolution came from the LANDFIRE
program. Fuel models classes were grouped into herbaceous, shrubs or forests according to their
main fire carrier. The relEVI was understood as relLFMC and converted to absolute LFMC from
the minimum and maximum field measured LFMC sampled in the Jasper Ridge Biological Preserve,
CA(USA) using 30.0% to 197.2 % for herbaceous, 36.4% to 222.1 % for shrubs and 53.4% to 164.7% for
forests [15]. Other scaling would be possible, but Jasper Ridge is preferred since field campaigns in
Spring, Summer and Fall were carried out covering the phenological vegetation cycle, not only for
shrubs, but also for herbaceous vegetation and forest. The nine chaparral sites from the NFMD had
a minimum value of 43.5% and a maximum of 231.0% for shrubs. Hence, using Jasper Ridge data
would introduce a small bias.

2.4. Fire Behavior Modeling with the LFMC Product

A 1000 by 1000 pixels window within the Landsat-5 TM Path 41 and Row 36 was used to test
the differences in fire behavior due to LFMC. This site located Northwest of the city of Los Angeles
includes part of Los Padres National Forest (Upper Left Corner: 119.115W 35.024N; Lower Right
Corner: 118.781W 34.759N). WFA software was used to carry out the fire behavior simulations [19].
WFA provides real-time analysis of wildfire behavior and spread to directly support multi-agency
wildfire incident management [43]. The semi-empirical fire spread model in WFA uses the Rothermel
equations to model surface and crown fire behavior [44]. The model estimated how fires spread under
different LFMC scenarios, keeping equal all other inputs. This is not a common approach in fire risk
analysis, which usually uses stochastic inputs. However, the goal here was to assess the difference in
behavior only due to LFMC.

The simulations calculated fireline intensity, Flame Length (FL) and Rate of Spread (ROS) at
the 30 m pixel level resolution, considering the maximum potential fire behavior in each pixel [45].
In addition, WFA predicted the independent spread of 111,559 fires with a duration of eight hours with
a 90 by 90 m ignition point every three pixels in all directions. The hourly burned area quantified the
impact of each fire simulation on the landscape. After running all the fire simulations, WFA calculated
the output BP that represents the amount of times the fires reached each pixel.

Modeling fire behavior and spread required several spatial-temporal inputs: the DEM already
used for the topographic correction, Scott and Burgan’s fuel models used to generate the LFMC product
described above, a constant moderate wind speed at 20 feet of 11 km/h at a 45º direction from Northeast
to Southwest as well as constant Dead Fuel Moisture Content (DFMC) values of 5%, 7% and 9% for 1,
10 and 100 h fuels, respectively.

Simulations considered four LFMC scenarios: a constant overall median LFMC value of 99% for
herbaceous, 129% for shrubs and 109% for forest from Jasper Ridge field data; a constant overall tenth
percentile LFMC value of 30% for herbaceous, 55% for shrubs and 65% for forest also from Jasper Ridge
field data; and the LFMC product generated with the relEVI from Landsat-5 TM data on 16 April 2009
and 25 October 2009. The median and tenth percentile were calculated considering the minimum and

https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans
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maximum values of all samples collected in Jasper Ridge for each vegetation type [15]. The Landsat-5
TM dates were selected since they would represent two distinct LFMC scenarios, in spring and end
of the summer/beginning of autumn. Note also that according to Rothermel’s surface fire behavior
model, herbaceous LFMC is cured at 30% and woody LFMC enters dormancy at 60% [42,46].

3. Results

The EVI presented the highest r and the lowest RMSE with the field measured LFMC for five out
of the nine validation sites (Table 3). When all sites were considered together, a significant drop in r
and an increase in RMSE was observed, with the highest r value as low as 0.44% and the lowest RMSE
as high as 33.35 % for EVI. The relationship between LFMC and SI for all sites improved after using
relLFMC and relSI, increasing r up to 0.69% and decreasing the RMSE to 19% for relEVI, which was
again the best predictive variable.

Table 3. r and Root Mean Square Error (RMSE) between field measured LFMC/relLFMC and SI/relSI.
All r are statistically significant (P-value < 0.001).

r RMSE (%)

Site Depen.
Var.

Indep.
Var. NDVI NDII EVI VARI NDVI NDII EVI VARI

ClarkMotorway, Malibu LFMC SI 0.85 0.77 0.89 0.65 15.39 18.29 13.07 22.05
Glendora Ridge, Glendora LFMC SI 0.69 0.65 0.80 0.33 19.38 20.30 16.03 25.17

Laurel Canyon LFMC SI 0.81 0.85 0.87 0.48 15.53 13.95 13.11 23.46
Trippet Ranch LFMC SI 0.84 0.72 0.77 0.73 26.33 33.80 31.39 33.57

Peach Motorway LFMC SI 0.87 0.89 0.93 0.79 11.67 10.44 8.72 14.50
Placerita Canyon LFMC SI 0.80 0.84 0.86 0.52 20.24 18.32 17.30 28.91

Kinsman LFMC SI 0.66 0.82 0.82 0.61 17.60 13.28 13.40 18.54
Keeney LFMC SI 0.79 0.64 0.74 0.36 22.02 27.61 24.11 33.58
Shirttail LFMC SI 0.73 0.67 0.69 0.69 24.48 26.53 26.12 26.23
All sites LFMC SI 0.22 0.32 0.44 0.35 36.26 35.16 33.35 34.85
All sites relLFMC SI 0.46 0.52 0.62 0.50 0.24 0.23 0.21 0.23
All sites LFMC relSI 0.49 0.51 0.57 0.49 32.47 32.00 30.51 32.31
All sites relLFMC relSI 0.61 0.66 0.69 0.55 0.21 0.20 0.19 0.22

The relEVI was thus used to predict the herbaceous and woody LFMC from Landsat-5 TM data
on 16th of April and on 25th of October (Figure 2), to analyze fire behavior through WFA simulations.
The extrapolation algorithm to estimate the understory herbaceous LFMC of the woody pixels was
tested over a random set of overstory herbaceous pixels. The comparison between their actual
herbaceous relEVI values and the extrapolated ones yielded r = 0.94 and RMSE = 7.43%.

The average LFMC value based on relEVI for 16th of April 2009 was closer to the constant median
LFMC map (Figure 2), whereas the one for 25th of October 2009 was closer to the constant tenth
percentile LFMC map. These constant LFMC values could be used as a baseline for comparison. It is
evident that this approach cannot capture the spatial variability of LFMC across the landscape as the
relEVI maps do. For example, herbaceous LFMC for 16th of April on the Northern part of Figure 2 was
generally below the median LFMC map, but the Southern part was above it. Instead, herbaceous LFMC
for 25th of October was generally like the tenth percentile LFMC map, except for the Southwestern part
where it was higher. In the case of the woody for 16th of April, the Eastern part was higher than the
median, but the Western part was lower. In contrast, woody LFMC for 25th of October was generally
like the tenth percentile LFMC map, but with randomly distributed patches having higher LFMC
(Figure 2).
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Figure 2. Herbaceous and woody LFMC products from a constant median and tenth percentile LFMC,
and from Landsat-5 TM relEVI data on April 16th and on October 25th of 2009 and estimated fire
behavior for each scenario in terms of ROS and FL.

The LFMC products from Figure 2 caused differences in the fire simulations performed on WFA
(Figures 2–4). All input variables in the simulations were the same except the herbaceous and woody
LFMC layers. Despite this, the differences in fire behavior (both ROS and FL; Figure 2), average burned
area per fire (Figure 3) and BP (Figure 4) were significant and increased with the time since ignition.
Results based on 16th of April and 25th of October LFMC fell in between the minimum value of the
tenth percentile and the maximum of the median LFMC (Figure 3). We observed spatial differences in
terms of ROS and FL among the LFMC products (Figure 1). For instance, the ROS for 16th of April was
higher in the northern part of the study area than in the southern part, whereas this pattern was the
inverse for other scenarios such as 25th of October, suggesting the importance of considering the spatial
variability of LFMC in operational environments. These results are consistent with the BP outputs
(Figure 4), given that the areas with higher BP values also had higher ROS. BP maps derived using
the tenth percentile and relEVI for the 25th of October, showed similar spatial distribution (Figure 4),
although higher BP values where obtained for the former which resulted in an average difference in
burned area greater than 30 ha 8 h after ignition (21% and 36% higher than the burned area for the
relEVI 25th of October and 16th of April, respectively). Differences in the spatial distribution in BP
maps were more evident when comparing the relEVI maps for 16th of April to the constant median
LFMC value.
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4. Discussion

Many other studies have estimated LFMC from optical remote sensing [11], including Landsat-5
TM data [23]. The novelty of the Landsat-5 TM relEVI LFMC product generated in this study is
that it provides an herbaceous and woody layer that can be integrated into fire behavior models like
WFA. This integration produces spatial differences in fire behavior (ROS, FL and fireline intensity)
and subsequently, BP and average burned area, compared to using a constant LFMC value (Figure 4).
The reason to choose Landsat-5 TM data was its long time series, coinciding with field data in the
NFMD for validation. However, the application of this approach to Landsat-7 and -8 and Sentinel-2A
and -2B should be possible in order to generate systematic products at 10–30 m spatial resolution.
Such products will improve those from MODIS-like sensors with >250 m spatial resolution in terms of
operational adoption [18]. Given its higher temporal resolution, MODIS like sensors could also be
used for gap filling [47]. However, such a product would require proper sensor inter-calibration to
determine the spectral band adjustment factors. This should not only be done over pseudo-invariant
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calibration sites, as diverse studies have demonstrated that these cross-sensor adjustment factors are
land cover dependent [48,49]. Besides, the compensation of solar illumination due to the irregular
shape of the terrain of a topographic correction is also necessary.

Correlations between LFMC and SI in Table 3 were much higher at individual sites than when
all sites were considered together. This agrees with Roberts et al. [14] results for the Santa Monica
Mountains, an area enclosed within the Landsat-5 TM scene 41/26 used in this study. Stow et al. [22]
also found a decrease in correlation between LFMC and VARI for San Diego County using MODIS
data, when data from different sampling sites were pooled together. The different species sampled,
time since disturbance, sampling method, time of the year and the variety of environmental factors
affecting the vegetation of each sampling site can explain the significant drop in regression values
when all sites were considered together. In addition, it should be considered that LFMC is a function
of leaf age and leaf chemistry [50,51].

As Roberts et al. [14] pointed out, sampling methodology, site quality and plant functional type
are important factors affecting the relation between the LFMC and the information derived from remote
sensing, and can significantly vary from one site to another. These factors limit reaching a RMSE
below 20% here (Table 3) and also in other studies [11]. For example, the NFMD field collections might
not always be at the exact same location or a sample might not be representative of the surrounding
LFMC within a pixel, as NFMD samples where not collected with the objective to be representative
of a 30 m pixel. Specifically, sites in Table 1 did not contain available information on the sampling
procedure used, the number of individuals sampled, the proportion of twigs/leaves and new/old leaves
sampled, species proportion in the case of mixed shrublands, or the fractional cover for each site.
Additionally, phenological differences among the species and sites could have affected the correlation
values. In fact, SI from two study sites in scene 42/29 (Keeney and Shirttail) showed lower values
than found in the other two scenes used. Roberts et al. [14] found a linear relationship between LFMC
values and different SI when LFMC surpassed 60%. Despite also using a linear model here, a non-linear
relationship worked slightly better for many sites due to the large inter-annual variability that spanned
over 10 years.

Data normalization significantly improved the results as the effect of varying vegetation cover and
type was reduced. These results agree with Stow and Niphadkar [28], who obtained a better coefficient
of determination for models applying relSI to estimate LFMC using MODIS data. A clear improvement
in the correlations was observed in Table 3 when LFMC values were also normalized by site. The long
period of LFMC measurements available for each study site allowed the capture of the full range
of LFMC variation. This suggests that the normalization of field LFMC values reduces the effect of
environmental factors affecting field measured LFMC values and thus, to better capture the LFMC
dynamics of the vegetation. This is a unique aspect of this study, as other studies only normalized SI
but not LFMC [22,23]. The normalization of field measured LFMC values might hamper obtaining the
absolute LFMC value for those pixels where no field measurements are available. Yet, it should still be
possible to detect LFMC anomalies, such as for example when the fuel is cured or dormant.

Out of the four vegetation indices tested, VARI showed the poorest performance. These results
contrast with those obtained by Stow et al. [22], Roberts et al. [14], Dennison et al. [52]
and Casas et al. [15] who found VARI as the best performing index to estimate LFMC in
similar environments. The different spectral and spatial sensor resolutions might explain the
differences between these studies and results presented here with Landsat-5 TM data. Nevertheless,
Roberts et al. [14] found a similar performance between NDVI, EVI, NDII and VARI using AVIRIS data
with a spatial resolution of 20 m. Regarding the effect of the spectral resolution, Casas et al. [15] tested
multiple band combinations with AVIRIS data and showed how LFMC was significantly affected by the
band combination selected. Translated to broadband sensors, this means that the center wavelength and
band-width of the sensors can affect the estimation of LFMC, despite being in the same spectral region.

The NFMD served for validation of the LFMC product over the shrub canopy woody layer,
but the herbaceous and forest canopy woody layer lacks validation here. Nevertheless, a global
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validation from MODIS demonstrated that relEVI is a reliable LFMC estimator [53]. In addition,
many other previous studies have also demonstrated that optical remote sensing predicts herbaceous
LFMC with better accuracy than for shrubs, due to a simpler canopy structure and higher temporal
LFMC variation [17,18,23]. To the contrary, the forest canopy woody layer shares the space with the
understory shrub and herbaceous canopy. Their deeper tree root system reduces the temporal variation
in evergreen forest LFMC. These complexities make the canopy the hardest layer to validate, producing
poorer accuracy than for shrubs [15,18]. Furthermore, sampling the forest canopy is also challenging
due to the canopy height, which requires the use of techniques such as a shot throw-line launcher [54].
Shorter crop trees without understory produce stronger relationships between optical remote sensing
and canopy water content [55,56]. This latter variable relates to LFMC after accounting for specific leaf
area and leaf area index [57]. Another remarkable aspect is that forest canopy LFMC (foliar moisture)
becomes important for crown fire modeling but not for surface fires [58].

Extrapolating to the understory herbaceous LFMC on the woody pixels from the surrounding
herbaceous pixels rendered a strong relationship (r = 0.94) on a random sample, compared to their
actual herbaceous relEVI values. Nevertheless, further testing is needed to demonstrate how the
extrapolation algorithm works over a sample set with larger gaps of herbaceous pixels. Moreover,
the herbaceous LFMC under the woody layer should be slightly higher than when it is the top canopy
layer, and hence sun exposed. This correction factor remains to be explored.

Despite these limitations, a continuous sampling from direct satellite observations assures capture
of the spatial LFMC variability across the landscape. After proper testing on actual fires, this spatially
dynamic information could be integrated into fire behavior models like WFA. This approach should
improve fire behavior estimation and progression over using constant LFMC values for each vegetation
layer or fuel model (Figure 4) as shown in this work. These improvements would reduce errors in fire
event duration, resulting in better real time fire analyses of the fire progression. Furthermore, improved
fire simulations considering the spatial effect of LFMC would help in enhancing the estimation of
important outputs, such as the annual BP and fire behavior for fire risk assessment. Products based
on extrapolation from field or meteorological data alone should help to adjust the systematic relEVI
LFMC from direct satellite observations. The NFMD dataset collects direct LFMC measurements, but
with a limited temporal and spatial coverage. Based on this field data, the minimum and maximum
thresholds to convert relEVI to LFMC could be modified. Meteorological phenological models like
Jolly et al. [20] have the advantage of providing hourly herbaceous and woody LFMC. The limitation
of this method is that it estimates indirectly LFMC from a model and requires a large meteorological
network for an accurate spatial extrapolation. Another complement to optical data is using radar
sensors like Sentinel 1 or the NASA-ISRO Synthetic Aperture Radar (NISAR), the later to be launched
in 2021. Radar is sensitive to the water in whole canopy layer rather than the top layer observed from
optical data [59]. Therefore, it requires untangling between the soil moisture, water in trunks and
branches, herbaceous LFMC and woody LFMC.

5. Conclusions

This study generated spatially dynamic maps of herbaceous and woody LFMC from relEVI
Landsat-5 TM data that could be integrated in fire behavior simulators like WFA. Before this, it would
be beneficial to test it on simulations of actual fires. Since optical remote sensing only detects the
top layer, it requires extrapolating to the understory herbaceous LFMC on the woody pixels from the
surrounding herbaceous pixel. Landsat-5 TM long time series served for validating the LFMC, over the
shrub that is the main fire carrier. The LFMC product alone compared to constant LFMC significantly
impacts the fire spatial distribution in terms of BP and average burned area, when simulating fires
in WFA with the same values for all other input variables in the simulation. Based on this analysis
over Landsat-5 TM, a Landsat-7 and -8 and Sentinel-2A and -2B product seems feasible. This means
a systematic product at 10–30 m spatial resolution that requires proper sensor inter-calibration and
topographic correction. Such a product would benefit from adjustment with field and meteorological
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data and integration with coarser spatial resolution with higher temporal observations like MODIS
and radar sensors like upcoming NISAR.

The evaluation of different SI to estimate LFMC and its dynamics in the Western US concluded
that EVI generally performs the best, followed by NDII, NDVI and VARI. While all SI presented good
relationships for each individual sampling site, there was a significant drop when sites were pooled
together. Normalizing the data improved the results overcoming the effect of varying vegetation cover
and type on the signal recorded by the sensor. In addition, relative LFMC values account for the
dynamics rather than the absolute LFMC variation, which can help to detect LFMC anomalies and
thus, detect when the fuel is cured or dormant.
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