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Abstract: Detection of bio-deterioration and moisture is one of the most important tasks for
comprehensive diagnostic measurements of buildings and structures. Any undesirable change
in the material properties caused by the action of biological agents contributes to gradual aesthetic
and physical damage to buildings. Very often, such surface changes can lead to structural defects
or poor maintenance. In this paper, radiometric analysis of point clouds is proposed for moisture
and biofilm detection in building walls. Recent studies show that remote terrestrial laser scanning
(TLS) technology is very useful for registering and evaluating the technical state of the deterioration
of building walls caused by moisture and microorganisms. Two different types of TLS, time-of-flight
and phase-shift scanners, were used in the study. The potential of TLS radiometric data for
detecting moisture and biofilm on wall surfaces was tested on two buildings. The main aim of
the research is to compare two types of scanners in the context of their use in the detection of moisture
and microorganisms.
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1. Introduction

Recently, terrestrial laser scanning (TLS) technology has become one of the most popular
methods for object acquisition in civil engineering [1-4]. TLS provides rapid capture of point
clouds in high resolution for 3D object modelling (e.g., buildings [5,6], structures [7,8], geotechnical
objects [9,10]). It can also be used for the technical assessment of the surface condition of building
walls [11-13]. Thus, TLS has proved to be an efficient and useful device for diagnostic measurements of
buildings and structures. Apart from capturing geometric information (xyz) with millimeter accuracy,
TLS collects texture information provided by a digital camera (red, green, blue (RGB)) and radiometric
information provided by the TLS sensor. The radiometric information of a laser beam can be
successfully applied in the detection of surface changes, such as moisture and bio-deterioration [14,15]
or cracks and cavities [16,17]. Digital photographs taken by TLS provide additional help in assessing
the degradation of a building wall.

Long-lasting moisture (usually due to a lack of proper maintenance) greatly affects the structural
safety of buildings, especially old and historic ones [18]. Additionally, very often the moistened surface
of a building wall is the primary factor triggering the growth of microorganisms that form biofilms,
covering the wall [19,20]. The most common microorganisms appearing on the surfaces of building
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walls are bacteria, cyanobacteria, algae, fungi, mold, lichens and mosses [21]. Such colonization of
microorganisms usually causes aesthetic and physical damage to buildings and structures [22]. It has
been estimated that about 25% of building deterioration is a result of microorganism activity [23].
Therefore, remote detection of factors that cause degradation of wall surfaces is extremely important
for complex building diagnostics. Detection, registration and monitoring of surface changes, such as
moisture movement [24] and biofilm growth, are important and urgent research problems. In this
research, the authors propose the use of commercially available geodetic TLS to detect changes in
the physiochemical properties of a scanned surface. The acquired radiometric information of point
clouds was analyzed. Registering wall moisture and wall colonization by microorganisms via TLS
has several advantages. TLS is a remote, active, nondestructive technique that is not sensitive to
ambient lighting used for diagnostic measurements of buildings. It should be noted that traditional
photographic techniques require good lighting. The traditional photographic techniques only provide
a digital image; TLS provides three-dimensional point clouds characterized by very high resolution.
Therefore, very good validation is enabled and measurements of the circumference of moisture area,
length and width of a biofilm are possible. TLS is capable of conducting measurements from a distance
of up to several hundred meters; traditional optic cameras are not able to take a clear picture from
such a long distance. Using a thermal camera to determine the bio-deterioration of buildings is also
possible [25]. In contrast to scanners, this is a passive measurement method, highly dependent on
environmental conditions [26]. So far, authors have conducted multiple research programs dedicated
to the use of the radiometric information of point clouds for the assessment of saturation and moisture
movement in building materials and walls [27,28]. In these studies, the authors used time-of-flight
(TOF) scanners produced by different manufacturers. It should be noted that manufacturers of TLS
mainly use two principles for distance measurement. In addition to TOF, phase-shift (PS) distance
measurement is also very popular. The use of different types of rangefinders might be affected by
the absorption and dispersion of the laser beam on the target. Thus, the final value of the intensity
can be registered in slightly different ranges by the PS and TOF scanners. The greater sensitivity of a
TLS sensor provides more information about changes in the physiochemical properties of the scanned
surface, such as saturation, discoloration and roughness. Basically, a more sensitive TLS sensor makes
it easier to detect building defects, using the intensity of point cloud analysis, especially through
the algorithm for automatic data classification, compared to a less sensitive TLS sensor.

The main aim of this paper was to compare TOF and PS scanners in the context of the collected
intensity data for moisture and bio-deterioration detection in a building wall. The investigation pointed
out the advantages and disadvantages of both measuring technologies in this field. Leica ScanStation
C10 (TOF) and Z + F 5010X6 IMAGER (PS) scanners were used in the investigation. The potential
of radiometric information of point clouds for moisture and biofilm detection in building walls was
tested on two types of buildings.

2. Theoretical Background of Laser Measurements

A terrestrial laser scanner is based on the active emission of a laser beam, which spreads through
the air to reach a target that scatters it. Part of the scattered energy returns to the TLS detector. The TLS
conducts simultaneous measurements of distance, vertical angle and horizontal angle, which are
carried outin a fully automated manner. Based on this information, the instrument’s software calculates
point coordinates (x,y,z). Additionally, the TLS registers the radiometry information of the laser beam
reflected by the target (so-called intensity). The relationship between the emitted and received TLS
signal power is described by the following laser equation [29]:
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where Py is the received signal power, P is the transmitted signal power, a is the angle of incidence,
p is the reflectance of a material, 144, and nsys are the atmospheric and system transmission factors,
and R is the range.

The parameters that affect the power of the registered laser beam can be split into three groups.
The first group includes the parameters that are constant during the measurement (Pg, 7sys), or their
inconsiderable changes do not influence the power of the registered laser beam (1744,) [30]. The second
group includes the parameters (@, R) that can be corrected through the adequate standardization of
datasets [31]. The third group consists of a material’s reflectance (p) of the scanned surface. It should
be noted that the reflectance of a material strongly depends on its physicochemical properties, such as
color, roughness and saturation [32-35]. A change in these factors causes an increase or decrease in
the recorded intensity value. Thus, an appropriate analysis of the intensity value of the point clouds
enables the detection of a change in the moisture of a building wall, growth of microorganisms, or other
changes in the surface.

It should be noted that one of the technical factors that may affect the sensitivity of the registration
of the laser beam radiometry is the applied TLS distance measurement principle. The most common
distance measurement principles between the TLS and the target are time-of-flight (TOF) and phase-shift
(PS). In order to estimate distances, TOF rangefinders measure the time between the emission and receipt
of a short, powerful laser pulse [36,37]. PS laser distance measurement is based on the phase difference
between sent and received waveforms [38,39]. TLSs based on time-of-flight are widely used for
long-range measurements. These scanners are characterized by a range of up to several kilometers.
TLSs using phase-shift are characterized by a much shorter measurement range. Currently, PS-based
measurements can reach a range above 300 meters. On the other hand, PS scanners acquire data with
much higher speed and accuracy than TOF scanners.

3. Object Descriptions and Sampling by TLSs

For effective comparison of the discussed TLSs, two buildings with biological corrosion were
scanned during the research program. The first object of the research was a small outbuilding made of
cellular concrete and plastered with cement plaster. The lower part of the building facade was covered
by biofilm (see Figure 1a). The second object of the study was a brickwork building. One wall of this
building was covered by biofilm in the form of a long damp patch (see Figure 1b). The formation of
a biofilm was caused by long-term water leakage from a damaged gutter. The scanning process of
the buildings was conducted using both described scanners. The measurements were conducted from
distances of 6 m and 17 m. During the measurements, the locations of both TLSs, in relation to the tested
wall, were similar. The measurements were taken by using special flat professional targets located next
to the buildings. Thanks to this, during the post-processing of the point clouds acquired by the two
scanners, these could be transformed to one coordinate system, based on adjustment points (targets).
Additionally, during the measurements, parts of the walls were intentionally flooded by tap water in
order to simulate moisture in both buildings. These tested areas were named area 1 and area 3 for
the first and second building, respectively. This procedure enabled us to see a change in the recorded
intensity values of the laser beam caused by a change in the saturation of the building wall.

Figure 1. Tested external walls of the buildings: (a) object 1, (b) object 2.
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4. Results and Data Post-Processing

Dedicated software suites (Cyclone v.9.0, Z+F LaserControl v9.1 and CloudCompare v. 2.10.2) were
used for the post-processing of the acquired datasets. Firstly, datasets were standardized to eliminate
the effect of the incidence angle and distance changes on the value of intensity. Two approaches
for the correction of laser scanning intensity data can be found in the literature: data-driven
and model-driven correction [40,41]. In this investigation, model-driven correction was used. Finally,
the intensity values were corrected using the following formula [42,43]:

RV 1
Inorm = Imw(ﬁef) (m) (2)

where I, is the raw intensity value, 1o is the normalized intensity value, R is the range between
the sensor position and target, R,y is the user-specified reference distance, and « is the incidence angle.

The point clouds collected by two scanners were registered in one local coordinate system.
The spatial registration errors were always less than one millimeter. Such pre-prepared datasets were
exported to *.ptx files and further analyzed in the context of saturation change analysis and biological
corrosion change analysis of the walls.

4.1. Analysis of Wall Saturation and Its Changes

Datasets captured by the two types of TLSs (TOF and PS) were compared. Point clouds for
area 1 and area 3 in two states of saturation were analyzed and compared. Tested area 1 was a
homogeneous area made of cement plaster. Tested area 3 was a section of a red brick wall. The intensity
value of a scanned surface is directly associated with the reflectance of a material (see Equation
(1)). Increased saturation of a building wall brings a higher absorption of the laser beam, which
consequently decreases the intensity value. This phenomenon can be clearly seen in Figure 2, which
shows tested area 1 with two states of saturation. The border between the area saturated by air
humidity and the area intentionally saturated by tap water is very sharp (see Figure 2d). In the visual
assessment, for the dataset acquired by the Z+F IMAGER 5016 scanner, this effect is slightly clearer
than for the dataset acquired by the Leica ScanStation C10 scanner. For a more detailed analysis,
the full set of available datasets for area 1, used to create the histograms, is presented in Figure 3.

Leica ScanStation C10 Intensity ) Z+F IMAGER 5016 Intensity

i : ' 0.555
ﬂ) : t“=’_‘ R I b) N

Testedareal | Tested area 1

0.808

Simulated moisture Saturated by air humidity

0211 } f 0.155
0.7m 0.7m

Figure 2. Value of intensity, recorded by terrestrial laser scanners (TLSs), for the external wall in
different states of saturation (a) Saturated by air humidity sample measured via Leica ScanStation C10
scanner, (b) Saturated by air humidity sample measured via Z+F IMAGER 5016 scanner, (c) Simulated
moisture sample measured via Leica ScanStation C10 scanner, (d) Simulated moisture sample measured
via Z+F IMAGER 5016 scanner.
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Figure 3. Registered intensity of the cement plaster in two states of saturation, area 1.

The results of area 1 are characterized by two separate peaks, which represent different saturation
states for the two scanners. The difference between the average intensity for the area saturated by air
humidity and the area intentionally saturated by tap water is equal to 0.13015 and 0.25952 for the Leica
ScanStation C10 and Z+F IMAGER 5016 scanners, respectively. In this case, the sensitivity of the Z+F
IMAGER 5016 is almost double that of the Leica ScanStation C10. A greater range of intensity values
for the tested area facilitates the detection of surface changes by the TLS.

The next example concerns changes in the intensity value of point clouds for red brick wall
surfaces caused by different moisture levels. The results of the measurements of area 3 are shown in
Figure 4. The analysis was performed with the help of a cross-section due to a heterogeneous surface
(Figure 5).

Leica ScanStation C10 Z+F IMAGER 5016 Intensity
3 = - - 0.470

Saturated by air humidity

Simulated moistur

0.108

0.35m 0.35m

Figure 4. Intensity, recorded by TLSs, for the external brick wall saturated by air humidity and fully
saturated, area 3.



Remote Sens. 2020, 12, 1708 60f 12

Y
X
a)" i * Leica ScanStation C10

0.40 « Saturated by air humidity » Simulated moisture
= . i
oy 0.25 s abi iy i
€ 7T pstesemegea s Sty asstemtgdeeemt Sauon, patmarneniiul Tugwnre ol
£ 0.10 PR - . PR I N - N " 1 PR L N
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
X [m]
b) Z+F IMAGER 5016
0.40 » Saturated by air humidity *Simulated moisture
— -.--...p.,..cr-‘nh‘..-..--it‘ Sy u--:",._,,_.“,“ﬂ._ e U T L 'l-.ﬁ“"..:.l.;'.I.. : ..“l,-.'ll'x‘.:.h PO X T
Z 025 vl U T P —_ Sl .
§ S ptersegaenste Bl ‘.l.‘l 3 TS T — . . o, i
c 0.10 L : L L L L L
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

X [m]

Figure 5. Intensity data profile of a brick wall with two states of saturation: data captured by (a)
the Leica ScanStation C10 scanner; (b) the Z+F IMAGER 5016 scanner.

The profile presented in Figure 5 is an example of the variations in the intensity values, depending
on the two states of saturation of the red brick wall. One can see that the difference between the intensity
value for saturation by air humidity and intentional saturation by tap water of the Z+F IMAGER 5016
scanner is significantly greater than that of the Leica ScanStation C10 scanner. The different intensity
values obtained by the TOF and PS scanners may be affected by the wavelength of the laser beam,
the power of the TLS emitter and the sensitivity of the TLS detector. Thus, similar to the previous
example, changing the moisture of the building wall had a greater effect on the radiometric information
of the point cloud obtained by the Z+F IMAGER 5016 than the Leica ScanStation C10. The radiometric
value of the laser beam was much higher on mortar joints than on the red brick for the point clouds
obtained with the Leica ScanStation C10; it is the opposite for the Z+F IMAGER 5016.

4.2. Analysis of Wall Biological Corrosion and Its Change

Biofilm covering the surface of a building wall is a common symptom of technical deterioration
usually caused by a lack of proper maintenance or the deterioration of insulating materials.
Thus, the detection of biological corrosion of a wall is a very important issue in the complex diagnostic
measurement of buildings and structures. In this section, datasets captured by the TOF and PS
scanners, focusing on detection of wall biological corrosion, were compared. The intensity values
of point clouds for area 2 and area 4, captured via two scanners, were analyzed. Microorganism
colonization of the wall surface caused a change in the reflection properties of this surface. Such a
change affects the absorption and dispersion of the laser beam, which finally affects the power of
the reflected and registered laser beam by the TLS sensor. This phenomenon can be clearly seen in
area 2 and area 4. Based on the analysis of the point clouds by intensity value, manual classification
was performed. In the area where a biofilm occurs, the intensity changes. Therefore, we attempted to
digitally identify areas with biological degradation.

The first example was a wall covered with cement plaster (area 2). Biological corrosion was
visible on the bottom part of the wall. By analyzing the RGB point cloud (Figure 6a), one can notice
a different degree of the biological corrosion process. It was decided to segment the point clouds
into four groups: areas with high biological corrosion (HBC), medium biological corrosion (MBC),
low biological corrosion (LBC) and without biological corrosion (WBC).
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Figure 6. Point clouds of the mortar wall with biological corrosion, area 2, (a) RGB point cloud, (b) point
cloud captured by Leica ScanStation scanner, (c) segmented point cloud captured by Leica ScanStation
scanner, (d) point cloud captured by Z+F Imager 5016 scanner, (e) segmented point cloud captured
captured by Z+F Imager 5016 scanner

The full sets of available data were treated statistically and divided into four groups. As a result
of this process, histograms were created (Figure 7). The mapping results for the segmentations are
presented in Figure 6¢,e.
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Figure 7. Distribution of the intensity value, area 2.
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Comparing the segmentation results by intensity value for both TLSs, one can see that the area
with HBC has the lowest intensity value. The WBC area is characterized by the highest intensity
value. Thus, the results prove that the increased surface degradation caused by microorganisms
simultaneously causes greater absorption of the laser beam. It should be noted that the sensitivity
to changes in the wall surface is different for the Leica ScanStation and Z+F Imager 5016 scanners;
for instance, the range intensity value for the HBC area is 0.0864 and 0.3343 for the two scanners,
respectively (a four-fold difference). A similar situation occurs for the MBC area. A slightly smaller
difference between the two scanners (0.0400 and 0.0700) can be seen for the LBC area. The range of
intensity values for the WBC area does not differ significantly (0.2380 and 0.2895). In this case, the Z+F
Imager 5016 is more likely to detect different degrees of biological corrosion in the building wall than
the Leica ScanStation.

The next example concerns the red brick wall with high biological corrosion caused by a damaged
gutter. By analyzing the point cloud, we decided to segment the point clouds into three groups: brick
area, mortar joint area and area with high biological corrosion (HBC). The results of this segmentation
are presented in Figure 8. The classified intensity value distribution is presented in Figure 9.

RGB point cloud

Intensity point cloud Segmented point cloud
Intensity

(=}
i
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.g B Brick
-
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M
g o
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= B HBC
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=
2B B Brick
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o
o I HsC
N
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Figure 8. Intensity value, recorded by TLSs, for the external brick wall with biofilm, area 4, (a) RGB
point cloud, (b) point cloud captured by Leica ScanStation scanner, (c) segmented point cloud captured
by Leica ScanStation scanner, (d) point cloud captured by Z+F Imager 5016 scanner, (e) segmented
point cloud captured by Z+F Imager 5016 scanner
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Figure 9. Distribution of intensity value, area 4.

By comparing the results of the point cloud segmentation between the two scanners (Figure 8c,e),
one can see that the Z+F IMAER 5016 scanner more clearly highlighted the HBC in comparison
to the Leica ScanStation C10 scanner. On the other hand, the mortar joint area was much better
highlighted, based on the dataset captured, by the Leica ScanStation C10 than the Z+F IMAER 5016.
Red brick and mortar joints have different physicochemical properties, especially regarding roughness
and color. These factors strongly affected the registered intensity value by the scanners. The TLS laser
spot size may also affect the intensity registration of a distinct border between two surfaces, especially
narrow stripes such as mortar joints. For better insight into the datasets, an additional profile was
prepared (Figure 10).

® Leica ScanStation C10 oZ+F IMAGER 5016
= 045 :
Z B Ry e ", g, WO
Z 030 K ik M%'Nﬂw:‘ . I",""% G !ﬁ"’
B g e g BN gt s i S
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Figure 10. Intensity data profile of the brick wall with biofilm captured by Leica ScanStation C10
and Z+F IMAGER 5016 scanners.

By analyzing the histogram, one can see that the HBC area is characterized by the lowest intensity
value for both scanners. The recorded range of intensity values for the HBC area is 0.0254 and 0.1187
for the Leica ScanStation and Z+F Imager 5016, respectively (a four-fold difference). The achieved
results are similar to the previous example. The Z+F Imager 5016 is more sensitive in the detection of
biological corrosion in a building wall than the Leica ScanStation. The values of the recorded intensity
for the red brick and mortar joint have the reverse order for the two scanners. Thus, the sensitivity of
the laser beam to changes in the scanned surface is slightly different for both scanners.

The profile presented in Figure 10 shows the distribution of the intensity values of the point cloud
for part of a red brick wall with biofilm. It is clearly visible that, in the area where biofilm occurs,
the intensity value decreases significantly for the data obtained with the Z+F IMAGER 5016 scanner.
With the Leica ScanStation C10 scanner, the decrease in intensity is barely noticeable. The change in
intensity value of the mortar joint is more noticeable for the data obtained with the Leica ScanStation
C10 than the Z+F IMAGER 5016; the direction of change in value for the mortar joint is the opposite.
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5. Discussion

TLS, apart from geometrical information, can provide information about the physicochemical
properties of scanned surfaces (and their changes) based on an analysis of laser beam radiometry.
Therefore, TLS is a good solution for the comprehensive diagnosis of architectural structures. In this
study, we proposed the harnessing of TLS for the remote sensing and detection of saturation of building
walls and microorganism colonization of a wall. Such changes usually cause serious maintenance
problems and structural health issues in a building or structure.

The conducted research proves that changes in the physicochemical properties of a building wall
(e.g., moisture and colonization of microorganisms) strongly affect the variation in the intensity values
of point clouds captured by TLS. The saturation of building walls and biological corrosion can be
successfully detected by TLS. As a result of testing two types of scanners (PS and TOF), it turned
out that the phase-shift scanner was characterized by much higher sensitivity in recording changes
in wall moisture and biofilm detection than the time-of-flight scanner. On the other hand, the Leica
ScanStation C10 scanner registered the borders between bricks and mortar joints in the brick wall in a
much clearer manner than the Z+F IMAGER scanner. It should be noted that more detailed radiometric
data can influence the efficient segmentation and classification of point clouds. Keeping in mind that
PS scanners can capture data faster and usually with higher accuracy than TOF scanners, it can be
assumed that the PS scanner is better suited for the complex diagnosis of buildings and structures.
Its limitation is its range of measurement, which is currently around 300 m. Nevertheless, this range is
quite sufficient for various diagnostics of buildings and structures.

The remote detection of changes on the surface of a building wall by TLS is a great improvement
in diagnostic and inventory measurements for building information modelling (BIM). Full information
about the technical condition of a building is extremely important for BIM. Point cloud radiometric
analysis helps to improve the performance of detecting moisture movement and the growth of
microorganisms on a building wall. Detecting such changes is of fundamental importance for
monitoring the technical state of historical buildings. The proposed radiometric point cloud analysis
can be used by building managers, monument conservators, security professionals, and specialists
dealing with repair service valuation.

A detailed automatic or semi-automatic methodology for the post-processing of point clouds to
detect the bio-deterioration of buildings should be developed and tested in the future.

6. Conclusions

The conducted research program allows us to draw the following conclusions:

The phase-shift scanner is characterized by much higher sensitivity in recording changes in wall
moisture and biofilm detection than the time-of-flight scanner.

The PS scanner is better suited for complex diagnostics of buildings and structures.

The TOF scanner is able to register the borders between bricks and mortar joints in a brick wall in
a much clearer manner than the PS scanner.

The TLS method can easily determine the moisture and biodegradation area.

So far, it is not possible to test for moisture levels using the TLS technique. Therefore, future research
in this direction is needed.

A methodology for the post-processing of point clouds, to detect the bio-deterioration of buildings,
should be developed and tested.
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