
remote sensing

Article

RL-AKF: An Adaptive Kalman Filter Navigation
Algorithm Based on Reinforcement Learning for
Ground Vehicles

Xile Gao 1 , Haiyong Luo 1,* , Bokun Ning 2, Fang Zhao 2, Linfeng Bao 1, Yilin Gong 2,
Yimin Xiao 2 and Jinguang Jiang 3

1 Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing 100190, China; gaoxile17g@ict.ac.cn (X.G.);
baolinfeng19s@ict.ac.cn (L.B.)

2 School of Software Engineering, Beijing University of Posts and Telecommunication, Beijing 100876, China;
bokunning@bupt.edu.cn (B.N.); zfsse@bupt.edu.cn (F.Z.); gonglin@bupt.edu.cn (Y.G.);
xyimin1027@bupt.edu.cn (Y.X.)

3 GNSS research center, Wuhan University, Wuhan 430072, China; jinguang@whu.edu.cn
* Correspondence: yhluo@ict.ac.cn

Received: 30 March 2020; Accepted: 25 May 2020; Published: 27 May 2020
����������
�������

Abstract: Kalman filter is a commonly used method in the Global Navigation Satellite System
(GNSS)/Inertial Navigation System (INS) integrated navigation system, in which the process noise
covariance matrix has a significant influence on the positioning accuracy and sometimes even causes
the filter to diverge when using the process noise covariance matrix with large errors. Though
many studies have been done on process noise covariance estimation, the ability of the existing
methods to adapt to dynamic and complex environments is still weak. To obtain accurate and robust
localization results under various complex and dynamic environments, we propose an adaptive
Kalman filter navigation algorithm (which is simply called RL-AKF), which can adaptively estimate
the process noise covariance matrix using a reinforcement learning approach. By taking the integrated
navigation system as the environment, and the opposite of the current positioning error as the
reward, the adaptive Kalman filter navigation algorithm uses the deep deterministic policy gradient
to obtain the most optimal process noise covariance matrix estimation from the continuous action
space. Extensive experimental results show that our proposed algorithm can accurately estimate the
process noise covariance matrix, which is robust under different data collection times, different GNSS
outage time periods, and using different integration navigation fusion schemes. The RL-AKF achieves
an average positioning error of 0.6517 m within 10 s GNSS outage for GNSS/INS integrated navigation
system and 14.9426 m and 15.3380 m within 300 s GNSS outage for the GNSS/INS/Odometer (ODO)
and the GNSS/INS/Non-Holonomic Constraint (NHC) integrated navigation systems, respectively.

Keywords: integrated navigation; Kalman filter; process noise covariance estimation; reinforcement
learning; deep deterministic policy gradient

1. Introduction

Precise positioning and navigation of ground vehicles in complex urban environments is
fundamental and necessary for the development of efficient stroke planning, unmanned driving,
and autonomous operation. With the worldwide deployment of the Global Navigation Satellite System
(GNSS) and the Inertial Navigation System (INS), many research efforts have been made to estimate
the dynamic states of ground vehicles and improve the estimation accuracy using GNSS and INS
data [1–5], among which the Kalman filtering (KF) techniques play an essential role [6].

Remote Sens. 2020, 12, 1704; doi:10.3390/rs12111704 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-1957-8369
https://orcid.org/0000-0001-6827-4225
https://orcid.org/0000-0002-0122-5514
http://dx.doi.org/10.3390/rs12111704
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/11/1704?type=check_update&version=3

Remote Sens. 2020, 12, 1704 2 of 25

The KF is an optimal state estimator for linear Gaussian state-space models and is the most
common technique for carrying out the GNSS/INS integrated navigation task [7]. KF series algorithms
can provide optimal solutions if the system process noise models are correctly defined, and the process
noise statistics are completely known [1,8]. The conventional method of determining the covariance
matrices of process noise (Q) for KF mostly relies on the calibrated results provided by the manufacturer
using the Allan variance algorithm [9] from each type of sensor and then fixing them. The process noise
represents the feature that the state of the system changes in accordance with time, the environment,
and the sensor device itself. However, it is difficult to know the exact details of when and how
these changes occur [10]. Assume that the Q are perturbed, how would such perturbations affect the
optimality of the filter? One stability consideration was presented in [8,11], where it is shown that
incorrect values of the process noise covariance matrix can cause the filter to diverge; i.e., the variance
of a linear combination of the estimation error becomes unbounded [12,13]. We experimentally verified
the influence of different process noise covariance matrices on the integrated navigation positioning
performance. Taking the calibration results of sensor manufacturers as the standard value, the variation
of positioning error with matrix Q is plotted in Figure 1, which confirms that matrix Q has an obvious
influence on positioning accuracy.

Remote Sens. 2020, 12, x FOR PEER REVIEW 2 of 26

The KF is an optimal state estimator for linear Gaussian state-space models and is the most

common technique for carrying out the GNSS/INS integrated navigation task [7]. KF series

algorithms can provide optimal solutions if the system process noise models are correctly defined,

and the process noise statistics are completely known [1,8]. The conventional method of determining

the covariance matrices of process noise (Q) for KF mostly relies on the calibrated results provided

by the manufacturer using the Allan variance algorithm [9] from each type of sensor and then fixing

them. The process noise represents the feature that the state of the system changes in accordance with

time, the environment, and the sensor device itself. However, it is difficult to know the exact details

of when and how these changes occur [10]. Assume that the Q are perturbed, how would such

perturbations affect the optimality of the filter? One stability consideration was presented in [8,11],

where it is shown that incorrect values of the process noise covariance matrix can cause the filter to

diverge; i.e., the variance of a linear combination of the estimation error becomes unbounded [12,13].

We experimentally verified the influence of different process noise covariance matrices on the

integrated navigation positioning performance. Taking the calibration results of sensor

manufacturers as the standard value, the variation of positioning error with matrix Q is plotted in

Figure 1, which confirms that matrix Q has an obvious influence on positioning accuracy.

Figure 1. The influence of different process noise matrix (Q) values on Kalman filter positioning

performance. The standard value of a Q matrix in the figure comes from the calibration data of the

sensor manufacturer.

Several results which deal with the deviation from the basic assumptions that guarantee

optimality, for example, zero-mean and constant-variance Gaussian models of the errors, are

presented in the literature, such as in [14–17], where the robustness of the filter is considered. There

are some online identification schemes which identify Q from the innovation sequence, but their

assumptions are rather restrictive and are not applicable for general system [18]. The results of [12]

constrain the uncertainties to a scalar multiple of the ideal model; e.g., for the process noise covariance

matrix, we have 𝑄′ = 𝛼𝑄, where 𝛼 is the learned zoom factor. This constraint appears to be quite

restrictive.

Accurate and continuous positioning of ground vehicles is a main requirement of autonomous

vehicle mapping systems [19]. GNSS is a key technology to meet this demand in outdoor

environments [20]. However, in densely built-up areas such as urban canyons and through tunnels,

GNSS observations, which may suffer from outages, jamming, and multipath effects, are not properly

available [21]. Inertial Navigation Systems (INS), on the other hand, are autonomous systems that are

immune to external interference, but their accuracy deteriorates in the long term due to the sensor’s

bias error drift, scale factor instability, and misalignment [22,23]. Integrating both INS and GNSS with

Figure 1. The influence of different process noise matrix (Q) values on Kalman filter positioning
performance. The standard value of a Q matrix in the figure comes from the calibration data of the
sensor manufacturer.

Several results which deal with the deviation from the basic assumptions that guarantee optimality,
for example, zero-mean and constant-variance Gaussian models of the errors, are presented in the
literature, such as in [14–17], where the robustness of the filter is considered. There are some online
identification schemes which identify Q from the innovation sequence, but their assumptions are rather
restrictive and are not applicable for general system [18]. The results of [12] constrain the uncertainties
to a scalar multiple of the ideal model; e.g., for the process noise covariance matrix, we have Q′ = αQ,
where α is the learned zoom factor. This constraint appears to be quite restrictive.

Accurate and continuous positioning of ground vehicles is a main requirement of autonomous
vehicle mapping systems [19]. GNSS is a key technology to meet this demand in outdoor
environments [20]. However, in densely built-up areas such as urban canyons and through tunnels,
GNSS observations, which may suffer from outages, jamming, and multipath effects, are not properly
available [21]. Inertial Navigation Systems (INS), on the other hand, are autonomous systems
that are immune to external interference, but their accuracy deteriorates in the long term due to

Remote Sens. 2020, 12, 1704 3 of 25

the sensor’s bias error drift, scale factor instability, and misalignment [22,23]. Integrating both
INS and GNSS with KF can provide superior performance than any of them operating alone.
There are many different types of sensors that can be used to navigate ground vehicles and are
highly adaptable to complex urban environments, such as Lidar [24], lane-boundary [25–27], map
matching [26,28], and stereo visual [19,29–32]. However, comprehensively considering the equipment
cost and positioning accuracy, the GNSS/INS integrated navigation system is currently still the most
widely used. In the integrated navigation system, the KF as an effective optimal state estimation
method has been widely used [33]. However, the KF performs unsatisfactorily when applied to
nonlinear system problems [34]. An approach coupled with the extended Kalman filter (EKF) [35]
algorithm and interactive multi-model has therefore been proposed to deal with unrealistic noise
considerations and allows the use of highly dynamic models in no maneuvering situations. Because
the EKF is sensitive to linearization errors, an unscented Kalman filter (UKF) [36–39] with different
noise covariances integrated with the interactive multi-model has been introduced into the framework
of integration to compensate for filter divergence. However, there is a limitation of the KF algorithm
due to the necessity of having a prior statistical value of process and measurement noise. If the
mathematical model of the integrated navigation system (including the system dynamics model
and statistical properties of process noise and measurement noise, etc.) is precisely known, the KF
algorithms can be used to get the real-time accurate state estimation [7,8,40].

However, the constructions of accurate mathematical models are very difficult and need a lot of
experimentation, especially concerning the accurate statistical properties of process noise covariance
matrices. To solve this problem, many studies have been carried out which constantly estimate or
correct the process noise covariance matrix online or offline [1,6–8,10,12,41]. The existing process noise
covariance estimation algorithms of KF can be roughly categorized as innovation-based estimation,
covariance scaling, and feedback correction. When the variance of Kalman gain is assumed to be
negligible for stable Kalman estimation, Wang et al. [1] and Akhlaghi et al. [6] calculated the process
noise covariance from the innovation sequence for the adaptive estimation of Q. Ngoc et al. [10]
modeled the process noise covariance as a function of the speed noise power spectral densities, the clock
bias noise, and frequency drift noise. However, concerning the dynamic case, this innovation-based
estimation algorithm is not accurate or even inapplicable. To improve the robustness of the adaptive
filtering algorithm for the process noise covariance matrix estimation, Ding et al. [41] proposed a scaling
method. It assumes that the Q matrix between adjacent moments has a proportional relationship.
Moreover, the scaling factor implies a rough ratio between the calculated process noise covariance and
the predicted one. On the basis of this work, Rui et al. [42] propose a method to automatically identify
and eliminate the instantaneous interference based on K-means clustering, which guarantees that only
stable measurement errors can be used to calibrate noise estimation. This method is more robust due
to fewer parameters, but it can only zoom in and out on the magnitude of the process noise covariance
matrix rather than individual elements. Riboni et al. [43] take both Q and R into consideration and
establish a back propagation model of the positioning error to study both of them. Not exactly using
the chain rule to calculate the gradient, this paper uses the Nelder–Mead algorithm to approximate it.

To overcome the problems of difficult gradient feedback and model limitation in the above literature,
we use reinforcement learning, which has a strong automatic exploitation ability, to adaptively search for
the optimal process noise covariance matrix in the continuous space through the reward maximization
mechanism. In [44], RL was applied to Gaussian processes for mobile robots. A similar method is
used in [45], where they are used to find parameters of a controller for a small blimp. However, these
methods do not find the Q parameters of KF, which play an important role in determining the system
stability [46]. The deep-Q-network (DQN) based method was developed to solve these problems [47].
However, the DQN-based [48] method has the following problems: (1) The action space is limited
because the DQN is only applicable to the discrete action space; (2) the size of the neural network
becomes larger as the discretization step becomes smaller, which requires much training time and
memory. To alleviate the problem of the DQN-based method, the deep deterministic policy gradient

Remote Sens. 2020, 12, 1704 4 of 25

(DDPG) [49] algorithm, which is a variant of the actor–critic algorithm for deep reinforcement learning,
is used. The DDPG algorithm has been successfully applied to high-dimensional and end-to-end
reinforcement learning problems such as simulation games and virtual physical environments.

In summary, the process noise covariance matrix has a great influence on the positioning
performance of KF but the previous studies have not yet provided a comprehensive estimation method
which can give a definite process noise covariance matrix and maintain accuracy and robustness. In this
study, we demonstrate an adaptive Kalman filter navigation algorithm (RL-AKF) to adjust the process
noise covariance matrix elastically using the DDPG method. By taking the integrated navigation system
as the environment and the opposite of the current positioning error as the reward, the adaptive Kalman
filter navigation algorithm uses the deep deterministic policy gradient to obtain the most optimal
process noise covariance matrix estimation from the continuous action space. Extensive experiments
are performed to demonstrate that the developed method successfully finds the Q parameters so as to
obtain the most optimal navigation accuracy.

To solve the above-mentioned problems, we propose an adaptive process noise covariance
estimation algorithm driven by the positioning accuracy using reinforcement learning (RL). RL [50]
is a class of machine learning methods for solving sequential decision-making problems that can
be described as Markov decision processes (MDPs) [51] by the trial and error method using the
environment information, which has a strong automatic exploitation ability [52]. By taking the
integrated navigation system as the environment and the negative of the positioning error as the
reward, our proposed adaptive Kalman filter navigation algorithm uses the deep deterministic policy
gradient to obtain the most optimal state estimation, i.e., the process noise covariance matrix in the
continuous action space.

The main contributions of this paper are summarized as follows:

1. We propose a novel adaptive Kalman filter navigation algorithm RL-AKF based on reinforcement
learning. This algorithm can achieve accurate and robust navigation performance by automatically
learning an optimal process noise covariance matrix online from low-cost MEMS IMU and GNSS
data over a short period of time without affecting the normal navigation process.

2. We design the reward of reinforcement learning as the negative of the location error. This scheme
solves the difficulty of the gradient calculation and enables the current process noise covariance
matrix to be updated effectively toward the direction of reducing the position error.

3. We design the state and action space for adaptive process noise covariance matrix estimation.
We introduce the Deep Deterministic Policy Gradient (DDPG) method to obtain an optimal state
estimation from continuous action space. We also propose an exponential strategy to meet the
semi-positive definite requirement of the covariance matrix.

4. We evaluate our proposed algorithm with extensive practical data. The experimental results
demonstrate that our proposed RL-AKF algorithm can obtain excellent performances, including
position, velocity, and course angle, under different data collection times, various GNSS outage
periods, and different integration navigation schemes.

The rest of this paper is organized as follows. Within discussing the related work, we provide
several existing algorithms of adaptive navigation. We then show how we establish the RL network
for adaptive estimation of the process noise covariance matrix in the Kalman filter from the raw sensor
data in Section 3, followed by an experimental evaluation and comparison with other state-of-art
algorithms. We conclude our work in Section 5. Table 1 lists the main mathematical notations used in
this paper.

Remote Sens. 2020, 12, 1704 5 of 25

Table 1. Description of Notation.

Field Symbol Description

Kalman filter

δx Error state in the prediction phase
P The covariance matrix of the predicted error
δz Error state obtained from the measurement
H The observation matrix
Q Process noise covariance matrix
R Measurement noise covariance matrix

RL

s State of RL, which is defined as the value of the current process noise
α Action of RL, which is defined as the change of the current process noise
r Reward of RL
E Environment of RL

DDPG
θµ,θµ′ The parameters of Actor network
θν,θν′ The parameters of Critic network

Sensors
ωIMU

t ,αIMU
t Gyroscope and acceleration output at time t

rIMU
t The predicted position at time t

rRTK
t The measurement position at time t

2. Materials and Methods

2.1. System Overview

Our proposed adaptive Kalman filter navigation algorithm RL-AKF is mainly composed of
integrated navigation based on the Kalman filter and adaptive process noise covariance matrix
estimation using reinforcement learning. The system overview is shown in Figure 2.

Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 26

Table 1. Description of Notation.

Field Symbol Description

Kalman
filter

 Error state in the prediction phase
 The covariance matrix of the predicted error
 Error state obtained from the measurement

H The observation matrix
 Process noise covariance matrix
 Measurement noise covariance matrix

RL

 State of RL, which is defined as the value of the current process noise
 Action of RL, which is defined as the change of the current process

noise
 Reward of RL
 Environment of RL

DDPG , The parameters of Actor network
, The parameters of Critic network

Sensors
, Gyroscope and acceleration output at time t
 The predicted position at time t
 The measurement position at time t

2. Materials and Methods

2.1. System Overview

Our proposed adaptive Kalman filter navigation algorithm RL-AKF is mainly composed of
integrated navigation based on the Kalman filter and adaptive process noise covariance matrix
estimation using reinforcement learning. The system overview is shown in Figure 2.

Embedded Platform Kalman Navigation

Prediction

measurement

Update

k=k+1

> threshold

Cloud platform Adaptive Learning

Process Noise Covariance Matrix

Y

N

compensation

Integrated Navigation

Deep Deterministic
Policy Gradient

Action
State

Reward

Y

Figure 2. The overview of the adaptive Kalman filter navigation algorithm based on reinforcement
learning.

The idea of the RL-AKF algorithm is to realize the high-accuracy positioning of the integrated
navigation system by adaptively adjusting the Q matrix. The algorithm obtains the input of the
gyroscope and the input of the acceleration at each IMU data update time. Given the initial
state and initial state covariance matrix , the embedded platform Kalman navigation module
calculates the prediction error state once the IMU data is updated. If the GNSS measurement
inputs , and exist at the current moment, the module will carry out a measurement update

~ , ~ , ~

,

, ,

, , No adjustment

N

Figure 2. The overview of the adaptive Kalman filter navigation algorithm based on reinforcement learning.

The idea of the RL-AKF algorithm is to realize the high-accuracy positioning of the integrated
navigation system by adaptively adjusting the Q matrix. The algorithm obtains the input ωIMU

k of
the gyroscope and the input αIMU

k of the acceleration at each IMU data update time. Given the initial
state X̂0 and initial state covariance matrix P0, the embedded platform Kalman navigation module
calculates the prediction error state Xk once the IMU data is updated. If the GNSS measurement inputs
Zk, Hk and Rk exist at the current moment, the module will carry out a measurement update to obtain

Remote Sens. 2020, 12, 1704 6 of 25

the final error state estimation result X̂k. Then the current position estimation result rKal
k is obtained

after the error compensation.
At the beginning of the algorithm’s operation, the Q matrix in this process is provided by the

default value Q0 (calibration result of the product or the estimation result of the previous RL-AKF).
Considering that the GNSS carrier phase differential positioning results (RTK) have the characteristics
of high accuracy but high environmental requirements, the RL-AKF algorithm will consistently monitor
the GNSS positioning status. Once it is detected that the current positioning result is RTK differential
positioning, the algorithm will calculate the positioning error of the current KF system. If the calculated
error is greater than the threshold, it means that there is a certain deviation in the Q matrix, which leads
to inaccurate KF results. Then the RL-AKF algorithm collects N seconds of IMU and GNSS data nearest
to the current moment, performs adaptive learning of the process noise covariance matrix, and finally
feedbacks the learned Q matrix to the previous KF system to continue filtering and positioning.

The target of the cloud platform adaptive learning module is to learn a process noise covariance
matrix which is able to minimize the location error of the collected data using the RL algorithm.
The elements of RL are defined as follows.

State s: The current value of process noise vector W. The estimation target Q matrix is the
covariance of the W vector.

Action α: The change of noise vector W. The α’s dimension is six because six noise values make
up the W vector. Obviously, the action is defined in the continuous real number space.

Reward r : The opposite of the location error. The bigger the reward, the better the current
navigation result.

Environment: The GNSS/INS integration navigation model. Once the environment receives a
new action, it updates the current state and calculates the location error to get a reward. Then it passes
the reward to the agent.

Agent: The decision model of RL. We use the Deep Deterministic Policy Gradient (DDPG)
algorithm, which adopts a network to fit the strategy function in the aspect of action output, to deal
with the challenge of continuous action space.

The implemented tasks conform to the standard interface of an infinite-horizon discounted
Markov decision process (MDP), defined by the tuple (s, α, P, r, ρ0), where s is an infinite set of
states, α is a set of actions, P : s×α× s→ R≥0 is the transition probability distribution represented
by the agent, r : s×α→ R is the reward value obtained from the environment, and ρ0 : s→ R≥0 is
the initial state. These characteristics allow the RL-AKF to be formalized as an MDP where operator
actions cause state transitions, which affect the ramp-up value of reward. Capturing the dependencies
between actions and reactions allows the machine learning methods to be used to find good policies
for the ramp-up of observed states, from which we can also obtain the learned optimal state.

2.2. Environment Definition

Inertial navigation is a kind of projection and integral operation. Its navigation error accumulates
with time. Therefore, INS needs to be combined with other navigation and positioning methods to solve
the problem of accuracy divergence. Integrated navigation is a technique that uses the complementary
information provided by multiple sensors to improve the accuracy and redundancy of the navigation
system. The effective fusion of data from multiple sensors requires the selection of an appropriate
optimal estimation algorithm.

The value of the process noise covariance matrix has a direct impact on the positioning accuracy
of the integrated navigation system. In this paper, we locate the environment factor of reinforcement
learning as the integrated navigation system based on the Kalman filter. This environment will give an
evaluation of the pros and cons of the current covariance matrix. The overall calculation process can be
divided into forwarding INS mechanization, error model update, and feedback correction.

Remote Sens. 2020, 12, 1704 7 of 25

2.2.1. Forwarding INS Mechanization

To initialize the INS system, the alignments of the position (r0), the velocity (v0) and the attitude
(ψ0) have to be done. The first two can be obtained directly from the GNSS measurement, and the
attitude alignment can be achieved by stationary alignment [22] or in-motion alignment [53] methods.

Shin et al. [37] have covered the forward INS mechanization algorithm in detail. It takes the attitude
ψk−1, velocity vk−1, and position rk−1 at time tk−1, gyrometer incremental angles ∆θ̃k, and acceleration
incremental velocities due to the specific force ∆ṽk from tk−1 to tk as the input to calculate the attitude
ψ̂IMU

k , velocity v̂IMU
k , and postion r̂IMU

k at time tk.

2.2.2. Error Model Based on Kalman Filter

In our navigation system, an error model is used to describe the relationship between the prediction,
i.e., r̂IMU

k , and the measurement, i.e., rRTK
k . The error state vector of the prediction stage is defined as

δx =
[
δrT δvT φT bT

g bT
a sT

g sT
a

]T
(1)

where δr, δv, and φ represent the error of position, velocity, and attitude, which can be written
as follows:

δr =
[
δrN δrE δrD

]
(2)

δv =
[
δvN δvE δvD

]
(3)

φ =
[
φroll φpitch φcourse

]
(4)

where bg denotes the gyro biases; ba, the accelerometer biases; sg, the gyro scale; and sa, the accelerometer
scale. These errors are all represented by a three-dimensional vector. In the prediction stage, the estimate
and its error covariance are projected ahead as follows:

δx̂k|k−1 = Φk−1δx̂k−1|k−1 + Γk|k−1Wk−1 (5)

Pk|k−1 = Φk−1Pk−1|k−1ΦT
k−1 + Qk−1 (6)

where δx̂k−1|k−1 and Pk−1|k−1 are the integrated navigation result at time k-1, while δx̂k|k−1 and Pk|k−1
represent the INS prediction result at time k from the navigation result at time k-1. Φk−1 is the state
transition matrix, Γk|k−1 is the process noise distribution matrix, and Wk−1 is the process noise vector,
where E

[
WkWT

k

]
= Qk.

Once receiving a new measurement rRTK
k , the error measurement δzk will be calculated first as

Equation (7) shows:
δzk = r̂IMU

k − rRTK
k (7)

After the Kalman gain Kk is computed, the error state vector and the error covariance are updated
using the predicted estimate, δx̂k|k−1, and its covariance matrix, Pk|k−1:

Kk = Pk|k−1HT
k

(
HkPk|k−1HT

k + Rk
)−1

(8)

δx̂k|k = δx̂k|k−1 + Kk
(
δzk −Hkδx̂k|k−1

)
(9)

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
T + KkRkKT

k (10)

where Rk is the measurement noise covariance matrix and Hk is a matrix used to unify the units and
scales between the prediction and the measurement.

Remote Sens. 2020, 12, 1704 8 of 25

2.2.3. Feedback Correction

The δrk|k in the error state vector explicitly represents the difference between the mechanization
result and the final navigation position. In low latitudes, the navigation position can be obtained
directly through the error compensation as:

rIMU
k = r̂IMU

k + δrk (11)

2.3. State Definition

2.3.1. Components of the Q Matrix

The sensor manufacturer usually provides a set of default calibration values for the corresponding
type of the sensor. In this section we provide the components and the initial value of the process noise
covariance matrix, which is shown in Equation (12).

Wk = [wδr, wδv, wϕ, wq, w∇, wδkii]
T (12)

Q = E[WkWT
k] (13)

where Wk is the process noise vector with 21x1 dimension, and Q is the covariance of this vector.
The meaning of each component of the noise vector and its initial value are shown in Table 2, which is
based on the manufacturer’s calibration results.

Table 2. Initial Values of Matrix Q.

Symbol Meaning Dim M39 CPT

wδr position walk coefficient 3 0m/
√

h 0m/
√

h
wδv velocity random walk 3 0.09m/s/

√
h ~m/s/

√
h

wφ angle random walk 3 0.12deg/
√

h 0.067deg/
√

h
wq angular rate random walk 3 180deg/

2√

h3 ~deg/
2√

h3

w∇ acceleration random walk 3 8µGal/
√

h ~µGal/
√

h
wδkii scale error random walk 6 1000ppm/

√
h 4000ppm/

√
h

2.3.2. Construction of Positive Semi-Definiteness for Matrix Q

The prerequisite of calculating matrix Q using Equation (13) is that all the estimated states of
reinforcement learning are positive semi-definite matrices. The current state transition method cannot
guarantee this requirement. We refactor the calculation method of Q so that the new state always
satisfies this condition.

Since Q is a diagonal matrix, the Q matrix is a positive semi-definite matrix as long as the diagonal
elements are constrained to non-negative. We propose a simple way to enforce this constraint by adding
an element-wise exponential function to the diagonal vector, i.e., updating the Q matrix according to
Equation (14).

Q = E[eWk(eWk)
T
] (14)

The state change is defined on the current Wk. When a new action ak is executed, the new state Q’
will be expressed as:

Q′ = E[eWk+ak(eWk+ak)
T
] (15)

2.4. Reward Definition

When the environment receives an action that causes a state change, we need to define a sufficient
reward mechanism to evaluate the current action. For this problem, we modeled the reward as the
opposite of the location error over the N seconds of IMU and GNSS data.

Remote Sens. 2020, 12, 1704 9 of 25

We select m segments with the length of lm from the N seconds of data. To simulate the outage
of GNSS signals, we will not carry out the GNSS measurement update during these segments in the
Kalman filter navigation process. We calculate the positioning error at the end of each segment and
then obtain the root mean square error over m errors as the final navigation accuracy under the current
process noise covariance matrix. The reward value is configured to the opposite of the final localization
error. By maximizing the reward, we will finally obtain the process noise covariance matrix, which can
minimize the positioning error.

2.5. Agent Definition

For the adaptive process noise covariance matrix estimation problem, the action space is defined in
the real number field,

[
Lp,p

]
. We need an algorithm that can choose optimal action from the continuous

space instead of a simple Q(s, a) table.

2.5.1. Action Generation with DDPG

DDPG is an actor–critic, model-free algorithm based on the deterministic policy gradient that
can operate over continuous action spaces and it includes two neural networks (NNs), a critic NN
introduced to evaluate the long-time performance of the designed control in the current time step
and an action NN used to output continuous action in the corresponding state [49]. Moreover,
in order to improve learning efficiency and prevent local optimality, an experience replay memory is
created to store historical samples, each time a certain number of samples are randomly selected for
training. The application framework of DDPG in adaptive process noise covariance matrix estimation
of integrated navigation is shown in Figure 3.

Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 26

2.5. Agent Definition

For the adaptive process noise covariance matrix estimation problem, the action space is defined
in the real number field, [ℒ , ℧]. We need an algorithm that can choose optimal action from the
continuous space instead of a simple Q(s, a) table.

2.5.1. Action Generation with DDPG

DDPG is an actor–critic, model-free algorithm based on the deterministic policy gradient that
can operate over continuous action spaces and it includes two neural networks (NNs), a critic NN
introduced to evaluate the long-time performance of the designed control in the current time step
and an action NN used to output continuous action in the corresponding state [49]. Moreover, in
order to improve learning efficiency and prevent local optimality, an experience replay memory is
created to store historical samples, each time a certain number of samples are randomly selected for
training. The application framework of DDPG in adaptive process noise covariance matrix estimation
of integrated navigation is shown in Figure 3.

Navigation
Model

 ACTOR

noise

Experience Replay
Memory

optimizer

action
eval net

action
target net

 CRITIC
optimizer

value
target net

value
eval net

gradient w.r.t.asampling
batchsize

update action gradient updatevalue gradient

Figure 3. The application framework of the deep deterministic policy gradient (DDPG) in adaptive
process noise covariance matrix estimation of integrated navigation.

In each episode, the DDPG executes a certain time step. At each time step, the action is
selected by the action evaluation network of the ACTOR module, which is based on the cost function
that maximizes the reward from taking accurate action. Then Uhlenbeck–Ornstein stochastic process
(UO process) is added to the learned action as a random noise since it has a good correlation in time,
which can make the agent explore the environment much better. The GNSS/INS integration
navigation model executes this action, calculates the reward, and stores the transition data in the
experience replay memory. When the size of the memory meets the requirements, the DDPG will
randomly sample batch-sized training samples to calculate the gradient of the value evaluation net
and action evaluation network, separately. Then, it updates the network weight for the next round of
calculation. The algorithm process is described in Algorithm 1.

 ()

= ()

′ = ′()

(, , ,)

(, , ,), i = 1,2, … , batchsize

Figure 3. The application framework of the deep deterministic policy gradient (DDPG) in adaptive
process noise covariance matrix estimation of integrated navigation.

In each episode, the DDPG executes a certain time step. At each time step, the action ai is selected
by the action evaluation network of the ACTOR module, which is based on the cost function that
maximizes the reward from taking accurate action. Then Uhlenbeck–Ornstein stochastic process
(UO process) is added to the learned action as a random noise since it has a good correlation in time,
which can make the agent explore the environment much better. The GNSS/INS integration navigation
model executes this action, calculates the reward, and stores the transition data in the experience
replay memory. When the size of the memory meets the requirements, the DDPG will randomly
sample batch-sized training samples to calculate the gradient of the value evaluation net and action
evaluation network, separately. Then, it updates the network weight for the next round of calculation.
The algorithm process is described in Algorithm 1.

Remote Sens. 2020, 12, 1704 10 of 25

Algorithm 1. Adaptive process noise covariance matrix estimation based on DDPG.

Input: Continuous-time series IMU sensor data and GNSS data
Output: Final state as the optimal process noise covariance matrix.

• Construct an action evaluation network and a value evaluation network. The input size of the action net
is s_dim=21, and the output size is a_dim=6. As for value net, the former is s_dim + a _dim=27 and the
latter represents υ(s, a) with dimension 1

• Initialize the weights of the two networks as θµ and θυ. Copy the network and parameters as the action
target network and the value target network: θµ → θµ

′

,θυ → θυ
′

• Initialize experience replay memory with capacity 100. Initialize the batch size as 32
• For each episode:
• For each time step t:
• Action evaluation net selects a possible action at under the current state si

• The navigation model calculates the next state: st+1 = st × eat

• Calculate the new Q matrix, return the location error et by the navigation model and get the reward:
rt = −et

• Save the transition (st, at, st+1, rt) to the experience replay memory;
• If memory.size() > memory.capacity:
• Sample batch-size data as training data
• Calculate the gradient of value eval net and update the θυ

• θυt+1 = θυt − η×∇θυt L
(
θυt

)
= θυt − η×∇θυt

(
1
N

N∑
i=1

(
yi − υ(si, ai

∣∣∣θυt))2
)

• Calculate the gradient of action evaluation net and update the θµ with θµt+1 = θ
µ
t − η×∇θµt

L
(
θ
µ
t

)
• ≈ θ

µ
t − η×∇θµt

(
1
N

N∑
i=1

(
∇aυ(ai,µ(si)

∣∣∣∣θυt) ×∇θµt µ(si
∣∣∣θµt)))

• Soft update target net with the exponential average strategy:
• θµ′ = βθµ + (1− β)θµ′,θυ′ = βθυ + (1− β)θυ′

• End time step
• End episode
• Return µ(s0

∣∣∣θµ)
DDPG builds an actor network for an agent to select actions via the actor–critic system, instead of

using the traditional greedy algorithm. This method has been proved to be able to learn good policies
for many tasks using low-dimensional observations. The performance of DDPG learned optimal states
will be evaluated in Section 3.

2.5.2. Deep Network Architecture

The network structure used in DDPG is Multi-Layer Perception (MLP) through multiple fully
connected (FC) layers. The structure of the actor part is not the same as that of the critic part since the
meanings of the input and output are different. The network structure diagram is fixed as in Figure 4
because that way the dimensions of state and action will not change in the problem.

The actor evaluation network and the actor target network are three-layer fully connected networks.
The dimension of the input layer is 21 and that of the hidden layer is 30, followed by a ReLU activation
function. The output layer size is equal to the action. After applying a tanh activation function to the
neurons of the output layer, we can finally obtain the predicted action.

The network of value evaluation net and value target net is just like in Figure 4, a four-layer
network. The input dimension is s_dim + a_dim = 27. The state input and the action input, respectively,
learn to obtain the 30-dimensional hidden layers h1 and h2. After adding the two layers, an ReLU
activation function is used to obtain the hidden layer result. Finally, the value estimation of the current
state and action is obtained through a fully connected layer.

Remote Sens. 2020, 12, 1704 11 of 25
Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 26

Figure 4. The structure diagram of the actor (left) and critic (right) network.

The network of value evaluation net and value target net is just like in Figure 4, a four-layer

network. The input dimension is s_dim + a_dim = 27. The state input and the action input,

respectively, learn to obtain the 30-dimensional hidden layers h1 and h2. After adding the two layers,

an ReLU activation function is used to obtain the hidden layer result. Finally, the value estimation of

the current state and action is obtained through a fully connected layer.

3. Results

3.1. Evaluation Metrics and Compared Methods

Considering the data source that can be collected in the practical application, this paper takes

the positioning result of RTK fixed solution, which appears opportunistically as the ground-truth,

and then carries out error calculation compared with out integrated navigation result. As long as the

ambiguity is fixed and the satellite distribution meets the requirements, the positioning accuracy of

RTK can reach the centimeter level at any time, which meets the accuracy requirements for the truth

value of this algorithm.

The RL-AKF algorithm needs position error calculation in two modules. First, we will calculate

the positioning error to determine whether Q matrix adjustment is needed when an RTK signal is

detected as shown in the lower right of Figure 2. This calculation process is simple and only needs to

calculate the distance between two latitude and longitude. Second, it is necessary to calculate the

positioning error for each Q matrix estimated by reinforcement learning and take its negative number

as the reward. Since this module will only be triggered when there is an RTK result and the training

sequence collection is the nearest N seconds from the current moment, the training data must contain

RTK solutions. Therefore, we only need to calculate the distance between the latitude and longitude

pairs at the moments when we have the RTK solution.

In the references, the calculation method of position error is unified, which is the same as that in

this paper, but there are differences between the source of the truth value and the statistical time. In

terms of the truth value source, it can be divided into two types: From RTK or from other high-

accuracy integrated navigation equipment. The statistics time can be divided into time-based, such

as 10 s, 20 s and 60 s, or distance-based, such as 100 m, 200 m and 300 m.

The position error calculation method is shown in the following formula, where la and lo

represent latitude and longitude and subscripts true and pred represent truth and predicted value.

𝑒 = 2 × 𝑎 × asin √
𝑠𝑖𝑛2 (

𝑙𝑎𝑝𝑟𝑒𝑑 − 𝑙𝑎𝑡𝑟𝑢𝑒

2
) +

cos (𝑙𝑎𝑝𝑟𝑒𝑑) × cos (𝑙𝑎𝑡𝑟𝑢𝑒) × 𝑠𝑖𝑛2(
𝑙𝑜𝑝𝑟𝑒𝑑 − 𝑙𝑜𝑡𝑟𝑢𝑒

2
)

 (16)

Actor network Critic network

FC FC

FC

FC

FC
𝑠𝑡

𝑎𝑡

𝑠𝑡

𝑎𝑡

υ(s𝑡 , 𝑎𝑡)

Add

Figure 4. The structure diagram of the actor (left) and critic (right) network.

3. Results

3.1. Evaluation Metrics and Compared Methods

Considering the data source that can be collected in the practical application, this paper takes
the positioning result of RTK fixed solution, which appears opportunistically as the ground-truth,
and then carries out error calculation compared with out integrated navigation result. As long as the
ambiguity is fixed and the satellite distribution meets the requirements, the positioning accuracy of
RTK can reach the centimeter level at any time, which meets the accuracy requirements for the truth
value of this algorithm.

The RL-AKF algorithm needs position error calculation in two modules. First, we will calculate
the positioning error to determine whether Q matrix adjustment is needed when an RTK signal is
detected as shown in the lower right of Figure 2. This calculation process is simple and only needs
to calculate the distance between two latitude and longitude. Second, it is necessary to calculate the
positioning error for each Q matrix estimated by reinforcement learning and take its negative number
as the reward. Since this module will only be triggered when there is an RTK result and the training
sequence collection is the nearest N seconds from the current moment, the training data must contain
RTK solutions. Therefore, we only need to calculate the distance between the latitude and longitude
pairs at the moments when we have the RTK solution.

In the references, the calculation method of position error is unified, which is the same as that in this
paper, but there are differences between the source of the truth value and the statistical time. In terms
of the truth value source, it can be divided into two types: From RTK or from other high-accuracy
integrated navigation equipment. The statistics time can be divided into time-based, such as 10 s, 20 s
and 60 s, or distance-based, such as 100 m, 200 m and 300 m.

The position error calculation method is shown in the following formula, where la and lo represent
latitude and longitude and subscripts true and pred represent truth and predicted value.

e = 2× a× asin

√√√√√√√ sin2
(

lapred−latrue
2

)
+

cos
(
lapred

)
× cos(latrue) × sin2

(
lopred−lotrue

2

) (16)

Considering that it is impossible to carry another piece of high-accuracy integrated navigation
equipment in the actual vehicle operation, we adopt the RTK fixed solution as the truth value. Above all,
we finally make the following test plan:

1. Apply the current Q matrix to the Kalman filter.

Remote Sens. 2020, 12, 1704 12 of 25

2. Starting from the position where the GNSS time and the IMU time can match for the first
time, perform the GNSS measurement update every second for 100 s, which makes the Kalman
filter converge.

3. During the 10 seconds from 100 s to 110 s, we do not perform the GNSS measurement update
to simulate the GNSS signal loss. At 110 s, we calculate the error between the current inertial
prediction position and the real GNSS position. After that, the system runs a 10 s GNSS
measurement update to make the Kalman filter converge again.

4. Repeat step 3 until the end of the IMU or the GNSS signal.
5. Calculate the root mean square of the above-mentioned errors as the final positioning error.

The smaller the positioning error, the better the process noise covariance matrix obtained by the
current algorithm.

As comparisons, we implement another four methods, which estimate the process noise covariance
matrix using Nelder–Mead, covariance-scale, NN-feedback, separately:

• Nelder–Mead (N-M) [43]: An optimization method based on the simplex algorithm rather than
explicit gradient computations. This method uses the prediction error minimization technique
to seek the value of R and Q, which can minimize the quadratic deviation of yt and expectation,
as Equation (17) shows.

〈Rres, Qres〉 =

argmin
R,Q

T∑
t=0

(yt − h(µt))
TP−1(yt − h(µt))

(17)

• Covariance-scale (Cov-scale) [41]: A robust algorithm with fewer adaptive parameters. Starting
from the covariance matching principles, develop an innovative process noise scaling algorithm.
The scalping strategy is as Equation (18) shows.

Q̂k = Qk−1

√√√√ trace
{
Hk(Φk−1P̂k−1QT

k−1 + Q̃k−1)HT
k

}
trace

{
Hk(Φk−1P̂k−1QT

k−1 + Qk−1)HT
k

} (18)

• NN-feedback (NN-fb): A Multi-Layer Perceptron. The input is a 180-dimensional vector, the index
[30i, 30i+30] of which represents the possible value of the ith value of the Q matrix. This MLP
will obtain a six-dimensional vector, which is the vector form of the Q matrix. Since the Q matrix
has no truth value, we take the positioning error with the current Q matrix as the loss function.
The smaller the loss is, the more consistent the current Q is with the actual value.

• Default: Calculated from the parameters calibrated by the sensor manufacturer.
• RL-AKF: Our proposed approach. It uses the RL to estimate the process noise covariance

matrix adaptively.

The key settings in all strategies to be compared are listed in Table 3.

Remote Sens. 2020, 12, 1704 13 of 25

Table 3. The key setting in all strategies to be compared.

Strategy Hyper-Parameter Value

N-M

Reflection coefficient 1
Expansion coefficient 2
Tightening coefficient 0.5
Contraction coefficient 0.5

Cov-scale No artificial or empirical parameters

NN-fb

FullyConnected. input layer size 180
FullyConnected. hidden layer size 100
FullyConnected. output layer size 6

Model. optimizer Adam

Default calculated from the initial value

RL-AKF

Actor. learning rate 0.001
Critic. learning rate 0.002

DDPG. max_episodes 20
DDPG. max_episodes_steps 5

DDPG. memory_capacity 100
DDPG. soft_update 0.01

Structure of the action and value net Figure 4

3.2. Data Collection and Train Test Split

To generate training data, we collected IMU and GNSS data of the ground vehicle along with
the common urban environment with M39 and SPAN-CPT equipment. The equipment installation
diagram for data acquisition is shown in Figure 5.

Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 26

Table 3. The key setting in all strategies to be compared.

Strategy Hyper-parameter Value

N-M

Reflection coefficient 1
Expansion coefficient 2
Tightening coefficient 0.5
Contraction coefficient 0.5

Cov-scale No artificial or empirical parameters

NN-fb

FullyConnected. input layer size 180
FullyConnected. hidden layer size 100
FullyConnected. output layer size 6

Model. optimizer Adam
Default calculated from the initial value

RL-AKF

Actor. learning rate 0.001
Critic. learning rate 0.002

DDPG. max_episodes 20
DDPG. max_episodes_steps 5

DDPG. memory_capacity 100
DDPG. soft_update 0.01

Structure of the action and value net Figure 4

3.2. Data Collection and Train Test Split

To generate training data, we collected IMU and GNSS data of the ground vehicle along with
the common urban environment with M39 and SPAN-CPT equipment. The equipment installation
diagram for data acquisition is shown in Figure 5.

M39 [54] is a navigation device produced by Maipu Space & Time Navigation Technology Co.,
Ltd. with low-precision MEMS gyro. The angle random walk of the gyroscope is 0.1 deg √hr⁄ . The
velocity random walk of the accelerometer is 0.09 m sec √hr⁄⁄ . SPAN-CPT [55] is a compact, all-in-
one package GNSS/INS integrated navigation system manufactured by NovAtel, Canada. The built-
in IMU module contains a high-precision triaxial fiber optic gyroscope with an angle random walk
of only 0.0667 deg √hr⁄ . The antenna connected to the GNSS receivers is GPS500 produced by
Shenzhen Huaxin Antenna Technology Co. Ltd., and its size is 152 mm×62.2 mm

Figure 5. The picture of the equipment installation diagram for data acquisition. The antennas are
placed on the roof for receiving Global Navigation Satellite System (GNSS) signals. To avoid the
relative movement between the data acquisition device and the vehicle, the M39 and SPAN-CPT
devices are fixed in the trunk of the vehicle by a steel plate. The GNSS receiver is connected to the
antennas on the top of the car. The driving wheel of the vehicle is equipped with an odometer to

Figure 5. The picture of the equipment installation diagram for data acquisition. The antennas are
placed on the roof for receiving Global Navigation Satellite System (GNSS) signals. To avoid the relative
movement between the data acquisition device and the vehicle, the M39 and SPAN-CPT devices are
fixed in the trunk of the vehicle by a steel plate. The GNSS receiver is connected to the antennas on the
top of the car. The driving wheel of the vehicle is equipped with an odometer to monitor the speed of
the car through the grating principle. All the data are transferred to the PC for storage.

M39 [54] is a navigation device produced by Maipu Space & Time Navigation Technology Co., Ltd.
with low-precision MEMS gyro. The angle random walk of the gyroscope is 0.1 deg/

√
hr. The velocity

random walk of the accelerometer is 0.09 m/ sec /
√

hr. SPAN-CPT [55] is a compact, all-in-one
package GNSS/INS integrated navigation system manufactured by NovAtel, Canada. The built-in
IMU module contains a high-precision triaxial fiber optic gyroscope with an angle random walk of

Remote Sens. 2020, 12, 1704 14 of 25

only 0.0667 deg/
√

hr. The antenna connected to the GNSS receivers is GPS500 produced by Shenzhen
Huaxin Antenna Technology Co. Ltd., and its size is 152 mm × 62.2 mm.

3.3. Experimental Setup

M39 records the original IMU and GNSS data at 200 Hz while the frequency of SPAN-CPT is
100 Hz. Both of them support GNSS/INS integration navigation post-processing operations. After data
preprocessing, the final IMU data file contains seven columns, which are GPS time(s), gyro-forward,
gyro-right, gyro-down(rad), acc-forward, acc-right, acc-down (m/s). The GNSS file is formatted into
13 columns, which are GPS time(s), latitude, longitude (deg), height (m), velocity-north, velocity-east,
velocity-down (m/s) and six columns corresponding to the variances of the position and velocity.

We collected 77 minutes of IMU and GNSS data on July 10, 2019, at Wuhan, from GPS time 198423
to 203059. The trajectory of the data is shown in Figure 6.

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 26

monitor the speed of the car through the grating principle. All the data are transferred to the PC for
storage.

3.3. Experimental Setup

M39 records the original IMU and GNSS data at 200 Hz while the frequency of SPAN-CPT is
100 Hz. Both of them support GNSS/INS integration navigation post-processing operations. After
data preprocessing, the final IMU data file contains seven columns, which are GPS time(s), gyro-
forward, gyro-right, gyro-down(rad), acc-forward, acc-right, acc-down (m/s). The GNSS file is
formatted into 13 columns, which are GPS time(s), latitude, longitude (deg), height (m), velocity-
north, velocity-east, velocity-down (m/s) and six columns corresponding to the variances of the
position and velocity.

We collected 77 minutes of IMU and GNSS data on July 10, 2019, at Wuhan, from GPS time
198423 to 203059. The trajectory of the data is shown in Figure 6.

Figure 6. The trajectory of the train and test data on July 10. It starts at 198423 s and ends at 201059 s
of GPS time, and contains multiple parking points and turning points.

Excluding the stationary static data that was initially used for static base alignment, we start at
the timestamp 199200 and cut out 100, 200, 300, or 400 seconds data for training, separately. Take 300
seconds of data as an example; in this route, we use the data between 199200 s and 199500 s to train
the RL network and calculate the Q matrix. Then test the optimal estimate of Q on the 3500 s of data
from 199500 s to 203000 s and calculate the position error to verify the validity of the algorithm.

We provide in this section the setting and the implementation details of our proposed method.
We implement the full approach in Python3.5 with the tensorflow library for the process noise
covariance matrix adaptive estimation.

As for the state, the default value of the Q matrix can be obtained from Table 2. The current
action is generated by the state through the action evaluation network and is constrained by the upper
bound ℧ and lower bound ℒ . Moreover, the algorithm will add a Gaussian noise with a mean of
zero and a variance of to the predicted action. These parameters are defined as super-parameters
and are configured as follows:

7 9 13 9 10

8 10 14 10 11

2 8 8 10 14 10 11

[0,10 ,10 ,10 ,10 ,10]
[0, 10 , 10 , 10 , 10 , 10]

[5 10 ,5 10 ,,5 10 ,5 10 ,5 10 ,5 10]

p

p

U
L

σ

− − − − −

− − − − −

− − − − − −

=
= − − − − −

= × × × × × ×

(19)

Figure 6. The trajectory of the train and test data on July 10. It starts at 198423 s and ends at 201059 s of
GPS time, and contains multiple parking points and turning points.

Excluding the stationary static data that was initially used for static base alignment, we start
at the timestamp 199200 and cut out 100, 200, 300, or 400 seconds data for training, separately.
Take 300 seconds of data as an example; in this route, we use the data between 199200 s and 199500 s
to train the RL network and calculate the Q matrix. Then test the optimal estimate of Q on the 3500 s of
data from 199500 s to 203000 s and calculate the position error to verify the validity of the algorithm.

We provide in this section the setting and the implementation details of our proposed method.
We implement the full approach in Python3.5 with the tensorflow library for the process noise
covariance matrix adaptive estimation.

As for the state, the default value of the Q matrix can be obtained from Table 2. The current action
is generated by the state through the action evaluation network and is constrained by the upper bound
p and lower bound Lp. Moreover, the algorithm will add a Gaussian noise with a mean of zero and
a variance of σ2 to the predicted action. These parameters are defined as super-parameters and are
configured as follows:

Up = [0, 10−7, 10−9, 10−13, 10−9, 10−10]

Lp = [0,−10−8,−10−10,−10−14,−10−10,−10−11]

σ2 = [5× 10−8, 5× 10−8, , 5× 10−10, 5× 10−14, 5× 10−10, 5× 10−11]

(19)

Remote Sens. 2020, 12, 1704 15 of 25

The training platform is based on Intel Core i5-4440 64-bit Windows 10 system. CPU’s main
frequency is 3.1 GHz. The memory model is DDR3—a total of 16 G.

3.4. Results of Training

Following the procedure described in Section 3.1, the proposed method will have different
positioning accuracies and training times on different training sequences of 100 s, 200 s, 300 s, and
400 s. We first trained the Q matrix of M39 and SPAN-CPT under different sequence lengths, as shown
in Table 4. The results on the test set of July 10 data are described in Table 5.

Table 4. Parameters of Q matrix and training time with different train sequence length.

Seq
len Device Q[1:3] Q[4:6] Q[7:9] Q[10:12] Q[13:15] Q[16:21] Train

Time(s)

100s
M39 0 7.1668× 10−7 3.3580× 10−9 8.2571× 10−13 2.0095× 10−9 1.0617× 10−10 7889
CPT 0 1.5860× 10−6 8.6049× 10−10 1.2858× 10−12 1.9014× 10−9 5.9887× 10−10 3176

200s
M39 0 6.8444× 10−7 3.2846× 10−9 8.2571× 10−13 2.4998× 10−9 1.2317× 10−10 7918
CPT 0 1.4703× 10−6 1.0001× 10−10 1.4058× 10−12 1.8014× 10−9 6.5556× 10−10 4926

300s
M39 0 6.8444× 10−7 3.3161× 10−9 8.2571× 10−13 1.9000× 10−9 1.3424× 10−10 10240
CPT 0 1.5320× 10−6 9.0008× 10−10 1.3958× 10−12 1.9014× 10−9 5.3925× 10−10 6558

400s
M39 0 6.8444× 10−7 3.4921× 10−9 9.3571× 10−13 1.9762× 10−9 1.5427× 10−10 12521
CPT 0 1.5316× 10−6 6.7272× 10−10 1.2558× 10−12 2.2013× 10−9 5.3867× 10−10 7410

Table 5. Positioning errors on July 10 test data under different train sequence length.

Device. Error 1 Seq_100 Seq_200 Seq_300 Seq_400

M39

p_67%(m) 0.6762 0.5782 0.5775 0.5693
p_90%(m) 0.8564 0.7625 0.7600 0.7568
p_rms(m) 0.7477 0.6517 0.6457 0.6424

v_67%(m/s) 0.0578 0.0579 0.0578 0.0574
v_90%(m/s) 0.1433 0.0987 0.0931 0.0958
v_rms(m/s) 0.1023 0.0904 0.0896 0.0826
c_67%(deg) 0.1717 0.1437 0.1423 0.1256
c_90%(deg) 0.3024 0.2974 0.2972 0.2961
c_rms(deg) 0.2415 0.1663 0.1659 0.1543

CPT

p_67%(m) 0.4504 0.4012 0.3928 0.3498
p_90%(m) 0.6982 0.6787 0.6361 0.5918
p_rms(m) 0.5629 0.4963 0.4937 0.4846

v_67%(m/s) 0.0369 0.0351 0.0346 0.0337
v_90%(m/s) 0.0979 0.0828 0.0812 0.0710
v_rms(m/s) 0.0736 0.0586 0.0573 0.0524
c_67%(deg) 0.3924 0.3809 0.3736 0.3294
c_90%(deg) 0.8649 0.8184 0.7841 0.6943
c_rms(deg) 0.4710 0.4651 0.4525 0.4186

1. p, v, and c represent position error, velocity error, and course error, respectively. *_rms is the root mean square
of the error. After the error list is sorted, 67% and 90% of the error correspond to *_67% and *_90% in the table.
We count the course errors only here to simplify the statistics.

Table 4 lists the final values of the Q matrix obtained using our proposed RL-AKF algorithm
with the training time listed in the last column. The training time of M39 is nearly twice as long as
that of CPT equipment caused by the high sampling frequency of the former. Taking CPT equipment
with training sequence length of 200 as an example, the training time is about 82 minutes, which is
a bit long. According to the calculation process of the RL-AKF algorithm, we divided it into three
parts, actor network update, environment feedback, and critic network update, and also calculated the
time consumption of each component in the training process, separately. The statistical results show
that the environment feedback accounts for 99.65% of training time, which is caused by the inherent
computational overhead of the Kalman filter while the actor and critic take only 0.35% due to their low

Remote Sens. 2020, 12, 1704 16 of 25

complexity and computational simplicity. However, the subsequent experiments demonstrate that
the matrix Q obtained from RL-AKF can maintain high positioning accuracy in a certain time range
without drastic changes in the environment, which makes up for the disadvantage of the long training
time of the RL-AKF algorithm.

As can be seen from Table 5, the positioning performance varies with the length of the selected
sequence of the training data. In general, the longer the training sequence, the higher the navigation
accuracy, and the longer the training will take. In the case of M39, when the sequence length of the
training data increased from 100 s to 200 s, the positioning error decreased by 12.84% while the training
duration increased by only 0.36%. When the length increased to 300 s, the training duration increased
by 29.32%, but the positioning error decreased by only 0.92%. A similar result can also be obtained
for SPAN-CPT.

The length of the training sequence also has a direct impact on the storage capacity requirements of
the embedded platform. Taking the SPAN-CPT equipment as an example, the data collection frequency
of IMU is 100 Hz. Each collection contains the data of time, acceleration, and gyroscope. Assuming that
the data is stored in a 32-bit format, the IMU data need 2.8 KB of storage space per second. GNSS has
7 data per second in terms of time, position, and velocity. So GNSS data requires 0.028 KB of storage
space per second. Then, if the training sequence length is N, the embedded platform needs at least
2.828×N KB of additional storage space.

Taking the positioning performance, the training time, and the storage requirements into
consideration, we finally choose the Q matrix trained from a sequence length of 200 as the calibration
result of the current inertial sensor device. At this point, the CPT device requires only 0.57 MB of
additional storage space.

3.5. Accuracy of RL-AKF

In the integrated navigation system, both the GNSS signal outage period and measurement fusion
strategy have an impact on the positioning performance. In this section, we take M39 as an example to
test the positioning robustness of the process noise covariance matrix outlined in Section 3.4 under
different application environments and make a comparison.

3.5.1. Accuracy with Data Collected on Different Time

When the navigation environment does not change obviously, the process noise covariance matrix
of the same devices will maintain stability. To test whether the learning results in the training stage can
maintain robustness during a time period, we collected another set of data using M39 on 17 July, 2019.

As shown in Figure 7, this route is relatively flat and has less turning behavior, which is quite
different from the data route on July 10. In the data acquisition process, there are three times when
manual operations unplug the GNSS antenna, which is more compatible with the real positioning
environment. The navigation results are illustrated in Figures 8–10.

Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 26

Figure 8 depicts the cumulative probability distribution of various errors of the process noise
covariance matrix learnt from July 10 and tested on the July 17 data. The experimental results show
that the positioning error is still at the sub-meter level. The forward and rightward position errors
are substantially flat. Figures 9 and 10 demonstrate detailed positioning results under a section of the
path in the positioning process. The blue triangle periods simulate the GNSS signal loss by not
performing the GNSS measurement update. It can be seen from the figure that our integrated
navigation algorithm has strong positioning robustness for GNSS hopping, vehicle turning, and long-
term GNSS loss.

Figure 7. The trajectory of the test data on 17 July. It starts at 294514 s and ends at 303058 s of GPS
time. The data collection time and road conditions are quite different from the training data.

Figure 8. The cumulative probability of position, velocity, and course errors of July 17 data. The
forward and rightward position errors are calculated by projecting the current latitude and longitude
into the vehicle coordination system. The form of the annotation part is (,), where represents
the current error value and represents P(x) = .

Figure 7. The trajectory of the test data on 17 July. It starts at 294514 s and ends at 303058 s of GPS time.
The data collection time and road conditions are quite different from the training data.

Remote Sens. 2020, 12, 1704 17 of 25

Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 26

Figure 8 depicts the cumulative probability distribution of various errors of the process noise

covariance matrix learnt from July 10 and tested on the July 17 data. The experimental results show

that the positioning error is still at the sub-meter level. The forward and rightward position errors

are substantially flat. Figures 9 and 10 demonstrate detailed positioning results under a section of the

path in the positioning process. The blue triangle periods simulate the GNSS signal loss by not

performing the GNSS measurement update. It can be seen from the figure that our integrated

navigation algorithm has strong positioning robustness for GNSS hopping, vehicle turning, and long-

term GNSS loss.

Figure 7. The trajectory of the test data on 17 July. It starts at 294514 s and ends at 303058 s of GPS

time. The data collection time and road conditions are quite different from the training data.

Figure 8. The cumulative probability of position, velocity, and course errors of July 17 data. The

forward and rightward position errors are calculated by projecting the current latitude and longitude

into the vehicle coordination system. The form of the annotation part is (𝑥0, 𝑦0), where 𝑥0 represents

the current error value and 𝑦0 represents P(x ≤ 𝑥0) = 𝑦0.

Figure 8. The cumulative probability of position, velocity, and course errors of July 17 data. The
forward and rightward position errors are calculated by projecting the current latitude and longitude
into the vehicle coordination system. The form of the annotation part is (x0, y0), where x0 represents
the current error value and y0 represents P(x ≤ x0) = y0.Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 26

Figure 9. The position, velocity, and course errors over time. The green line at the bottom of the

position error represents the GNSS outage time, which is 10 s out of every 20 seconds. The position

and velocity errors vary obviously with the navigation time. During the outage of GNSS, the

navigation error shows a quadratic trend of growth. Once receiving the GNSS signal, the positioning

error will significantly decrease. The trend of the course error has little correlation with the navigation

time; it more depends on the vehicle’s current driving velocity.

Figure 10. The trajectory map of the integrated navigation. The black asterisk in the figure indicates

the predicted position, and the red circle is the GNSS measurement position. During the blue triangle

period, we do not perform the GNSS measurement update to simulate the current time period GNSS

outage. In order to show the positioning details, the section intercepts the 299770 to 302500 time

period in the 17 July data. These include 1) unplugging the GNSS antenna for 100 s to simulate GNSS

loss; 2) slow cornering at 1 m/s; 3) special conditions such as GNSS position drift.

Figure 9. The position, velocity, and course errors over time. The green line at the bottom of the
position error represents the GNSS outage time, which is 10 s out of every 20 seconds. The position and
velocity errors vary obviously with the navigation time. During the outage of GNSS, the navigation
error shows a quadratic trend of growth. Once receiving the GNSS signal, the positioning error will
significantly decrease. The trend of the course error has little correlation with the navigation time;
it more depends on the vehicle’s current driving velocity.

Figure 8 depicts the cumulative probability distribution of various errors of the process noise
covariance matrix learnt from July 10 and tested on the July 17 data. The experimental results show
that the positioning error is still at the sub-meter level. The forward and rightward position errors are
substantially flat. Figures 9 and 10 demonstrate detailed positioning results under a section of the path
in the positioning process. The blue triangle periods simulate the GNSS signal loss by not performing
the GNSS measurement update. It can be seen from the figure that our integrated navigation algorithm
has strong positioning robustness for GNSS hopping, vehicle turning, and long-term GNSS loss.

Figure 11 and Table 6 compare the navigation results using different algorithms on the July 17
test data. As can be seen from the experimental results, our proposed RL-AKF performs best overall.
The NN-feedback algorithm has the weakest learning ability and finally performs as well as the default
process noise covariance matrix. The positioning accuracy of the Nelder–Mead algorithm at 67% is
better than the default process noise covariance matrix, but the position error at 90% diverges too much.

Remote Sens. 2020, 12, 1704 18 of 25

The course error estimated by Cov-scale algorithm is slightly smaller than that of RL-AKF algorithm,
but the latter still outperforms in position and velocity estimation.

Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 26

Figure 9. The position, velocity, and course errors over time. The green line at the bottom of the

position error represents the GNSS outage time, which is 10 s out of every 20 seconds. The position

and velocity errors vary obviously with the navigation time. During the outage of GNSS, the

navigation error shows a quadratic trend of growth. Once receiving the GNSS signal, the positioning

error will significantly decrease. The trend of the course error has little correlation with the navigation

time; it more depends on the vehicle’s current driving velocity.

Figure 10. The trajectory map of the integrated navigation. The black asterisk in the figure indicates

the predicted position, and the red circle is the GNSS measurement position. During the blue triangle

period, we do not perform the GNSS measurement update to simulate the current time period GNSS

outage. In order to show the positioning details, the section intercepts the 299770 to 302500 time

period in the 17 July data. These include 1) unplugging the GNSS antenna for 100 s to simulate GNSS

loss; 2) slow cornering at 1 m/s; 3) special conditions such as GNSS position drift.

Figure 10. The trajectory map of the integrated navigation. The black asterisk in the figure indicates
the predicted position, and the red circle is the GNSS measurement position. During the blue triangle
period, we do not perform the GNSS measurement update to simulate the current time period GNSS
outage. In order to show the positioning details, the section intercepts the 299770 to 302500 time period
in the 17 July data. These include (1) unplugging the GNSS antenna for 100 s to simulate GNSS loss;
(2) slow cornering at 1 m/s; (3) special conditions such as GNSS position drift.

Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 26

upward direction. In this section, we compared the performance using different estimation methods

with an extra NHC integrated navigation module. The experimental results are shown in Figure 13

and listed in Table 9.

Table 9. Accuracy comparison with different methods of GNSS/INS/NHC Integrated Navigation

System.

Item RL-AKF N-M Cov-scale NN-fb Default

p_67%(m) 12.7463 34.2574 17.7241 27.8423 26.2548

p_90%(m) 22.4210 40.5821 39.1731 40.2518 41.2658

p_rms(m) 15.3380 36.2158 20.9373 33.4861 32.2581

v_67%(m/s) 0.1668 0.2156 0.1730 0.2186 0.2027

v_90%(m/s) 0.4637 0.2542 0.2198 0.2437 0.2256

v_rms(m/s) 0.2370 0.2467 0.1675 0.2259 0.2122

c_67%(deg) 0.6523 1.2957 1.1481 1.2999 1.3284

c_90%(deg) 0.9581 1.9524 1.7248 1.7654 1.8766

c_rms(deg) 0.7211 1.4755 1.2218 1.5284 1.4657

The rule shown in Table 9 is basically similar to Table 8. As the NHC provides a new

measurement update for the velocity, the velocity estimation using the RL-AKF is slightly worse than

other methods because the process noise covariance matrix used for RL-AKF is learned from the

GNSS/INS integrated navigation scheme. Since the confidence of NHC measurements is less than

that of the ODO, the accuracy of velocity using the NHC constraint is not obvious. The overall

accuracy using our proposed RL-AKF method is still better than the comparative methods.

Figure 11. Accuracy comparison on the July 17 data under 10 s of GNSS outage. The results show our

proposed RL-AKF can obtain more accurate position and velocity estimation.

Figure 12. Accuracy comparison for the GNSS/Inertial Navigation System (INS)/ODO integrated

navigation system with 300 s of GNSS outage. Though the RL-AKF performs mediocrely in velocity

estimation, it still has a more accurate position estimation.

Figure 11. Accuracy comparison on the July 17 data under 10 s of GNSS outage. The results show our
proposed RL-AKF can obtain more accurate position and velocity estimation.

Table 6. Accuracy comparison on the 17 July test data.

Item RL-AKF N-M Cov-scale NN-fb Default

p_67%(m) 0.5959 0.9847 0.9174 1.2035 1.2309
p_90%(m) 0.7558 4.3011 1.3387 1.7144 1.6722
p_rms(m) 0.6075 2.8496 0.9978 1.4251 1.3425

v_67%(m/s) 0.0703 0.1354 0.1371 0.2145 0.2034
v_90%(m/s) 0.1105 0.4911 0.1709 0.3725 0.3459
v_rms(m/s) 0.0741 0.6116 0.1341 0.2457 0.2478
c_67%(deg) 1.4520 2.3270 1.2643 2.3326 2.3425
c_90%(deg) 1.8238 6.7497 1.5780 4.4513 4.4615
c_rms(deg) 1.6548 3.3338 1.2132 3.0215 3.0524

Remote Sens. 2020, 12, 1704 19 of 25

To evaluate the robustness of our proposed RL-AKF on different time, we use the process noise
covariance matrix learnt by the RL-AKF on July 10 to test with a completely new dataset collected
on 17 July, and find that the RL-AKF still can obtain reasonable positioning accuracy, as Table 5
shows. The experimental results demonstrate that the process noise covariance matrix estimated with
our proposed method can be used for integrated navigation for a rather long period of time with
good accuracy.

3.5.2. Accuracy Comparison of Different GNSS Outage Periods

In the actual positioning scene, the GNSS outage moment is difficult to predict and the duration is
uncertain. Therefore, we need the RL-AKF learnt process noise covariance matrix to be adaptive to
different GNSS outage time periods. To evaluate the accuracy with different GNSS outage time periods,
we compare the positioning error under the learnt covariance matrix and other algorithms with 10 s,
20 s, . . . , 60 s GNSS outage, separately. The error variations with different GNSS outage time periods
are shown in Table 7.

Table 7. Accuracy comparison with different GNSS outage periods.

Periods RL-AKF N-M Cov-scale NN-fb Default

10s 0.6517 0.7724 0.8773 1.1024 1.0578
20s 1.9730 5.7627 2.4160 3.9617 4.2157
30s 5.1794 28.8819 7.2712 9.2458 9.6138
40s 8.3244 46.1954 11.8819 17.3697 16.3254
50s 14.9237 - 18.5435 25.2157 25.1732
60s 20.4279 - 24.7773 31.2648 32.2154

As can be seen from Table 7, the positioning error of RL-AKF is nearly quadratic in relation to
the GNSS outage time. The process noise covariance matrix learnt by the Nelder–Mead algorithm
causes a rapid divergence of positioning errors when the GNSS outage time lasts longer. The Cov-scale
algorithm can fit the inherent noise parameters of the sensor device to a certain extent and reduce the
positioning error. However, on the whole, the RL-AKF can reasonably learn process noise covariance
matrix and perform better than the comparative methods under various GNSS outage situations.

3.5.3. Accuracy Comparison of GNSS/INS/ODO System

Depending on the device and the actual positioning scenario, the number and the types of
measurement used in the integrated navigation system may also differ. We hope that the process
noise covariance matrix learnt from the GNSS/INS system can also be robust to various integrated
navigation schemes.

Odometers have recently received more and more attention in the area of integrated navigation by
providing reliable and low-noise velocity measurements. During the GNSS outage time, the odometer
can still provide reliable measurement updates for the Kalman filter.

We compared the accuracy of GNSS/INS/ODO integrated navigation with the process noise
covariance matrix learnt from the GNSS/INS system. The accuracy comparison is shown in Figure 12
and the statistical performance is listed in Table 8. To evaluate the accuracy with a rather long period
of GNSS outage, we increased the GNSS outage time to 300 s.

As can be seen from Table 8, the velocity error using the default covariance matrix and Cov-scale
is smaller than that using the covariance matrix learnt by the RL-AKF method. However, the latter can
obtain less position and course error than other algorithms. We infer that with the Q matrix learnt
from GNSS/INS integrated navigation it is difficult to accurately represent the relative relationship
between the odometer measurement and the predicted velocity obtained from the inertial navigation,
while the odometer speed using the default covariance matrix can provide more accurate velocity
estimation. However, the learnt covariance matrix is much better for the course and position estimation.

Remote Sens. 2020, 12, 1704 20 of 25

That may be the reason why the overall performance of the covariance matrix learnt by the RL-AKF
method is better. Nevertheless, we guess that using our proposed method to estimate the process noise
covariance matrix of GNSS/INS/ODO will achieve better performance. Considering the limited space,
we will not repeat it here.

Remote Sens. 2020, 12, x FOR PEER REVIEW 21 of 26

upward direction. In this section, we compared the performance using different estimation methods

with an extra NHC integrated navigation module. The experimental results are shown in Figure 13

and listed in Table 9.

Table 9. Accuracy comparison with different methods of GNSS/INS/NHC Integrated Navigation

System.

Item RL-AKF N-M Cov-scale NN-fb Default

p_67%(m) 12.7463 34.2574 17.7241 27.8423 26.2548

p_90%(m) 22.4210 40.5821 39.1731 40.2518 41.2658

p_rms(m) 15.3380 36.2158 20.9373 33.4861 32.2581

v_67%(m/s) 0.1668 0.2156 0.1730 0.2186 0.2027

v_90%(m/s) 0.4637 0.2542 0.2198 0.2437 0.2256

v_rms(m/s) 0.2370 0.2467 0.1675 0.2259 0.2122

c_67%(deg) 0.6523 1.2957 1.1481 1.2999 1.3284

c_90%(deg) 0.9581 1.9524 1.7248 1.7654 1.8766

c_rms(deg) 0.7211 1.4755 1.2218 1.5284 1.4657

The rule shown in Table 9 is basically similar to Table 8. As the NHC provides a new

measurement update for the velocity, the velocity estimation using the RL-AKF is slightly worse than

other methods because the process noise covariance matrix used for RL-AKF is learned from the

GNSS/INS integrated navigation scheme. Since the confidence of NHC measurements is less than

that of the ODO, the accuracy of velocity using the NHC constraint is not obvious. The overall

accuracy using our proposed RL-AKF method is still better than the comparative methods.

Figure 11. Accuracy comparison on the July 17 data under 10 s of GNSS outage. The results show our

proposed RL-AKF can obtain more accurate position and velocity estimation.

Figure 12. Accuracy comparison for the GNSS/Inertial Navigation System (INS)/ODO integrated

navigation system with 300 s of GNSS outage. Though the RL-AKF performs mediocrely in velocity

estimation, it still has a more accurate position estimation.

Figure 12. Accuracy comparison for the GNSS/Inertial Navigation System (INS)/ODO integrated
navigation system with 300 s of GNSS outage. Though the RL-AKF performs mediocrely in velocity
estimation, it still has a more accurate position estimation.

Table 8. Accuracy comparison with different methods of GNSS/INS/ODO integrated navigation system.

Item RL-AKF N-M Cov-scale NN-fb Default

p_67%(m) 9.3911 26.4577 14.5501 21.4873 20.4578
p_90%(m) 28.7662 34.2566 27.2024 30.2443 31.2548
p_rms(m) 14.9426 29.9687 18.0201 25.1547 24.2454

v_67%(m/s) 0.1272 0.1427 0.0998 0.1143 0.1025
v_90%(m/s) 0.1853 0.1987 0.1367 0.2156 0.2438
v_rms(m/s) 0.1249 0.1723 0.0991 0.1467 0.1587
c_67%(deg) 0.7566 1.2543 0.9635 1.0259 1.2578
c_90%(deg) 1.0196 1.7628 1.7159 1.5946 1.5687
c_rms(deg) 0.6920 1.5324 1.1488 1.2913 1.2744

3.5.4. Accuracy Comparison of GNSS/INS/NHC System

Non-Holonomic Constraint (NHC) is another method that has been widely used as a measurement
update for the vehicle navigation system based on the Kalman filter, which assumes that the vehicle’s
velocity in the carrier coordinate system will always be zero in the rightward and upward direction.
In this section, we compared the performance using different estimation methods with an extra NHC
integrated navigation module. The experimental results are shown in Figure 13 and listed in Table 9.Remote Sens. 2020, 12, x FOR PEER REVIEW 22 of 26

Figure 13. Accuracy comparison for the GNSS/INS/Non-Holonomic Constraint (NHC) integrated

navigation system under 300 s of GNSS outage. Due to the limited reliability of NHC measurement,

RL-AKF does not perform as well as the GNSS/INS/ODO system. However, comparing with other

algorithms, RL-AKF still performs excellently in position and course estimation.

4. Discussions

Different from the measurement noise covariance matrix, the influence of the process noise

covariance matrix on the positioning results is not easy to quantitatively evaluate after several rounds

of iterations. Therefore, the feedback correction algorithm is not suitable for estimating the process

noise covariance matrix. Inspired by the strong automatic exploitation of reinforcement learning, we

introduce the reinforcement learning into the process noise covariance matrix estimation, which can

avoid the direct gradient back propagation operation of position error to the process noise covariance

matrix.

From the above-mentioned experiments, we can find that the main advantages of our proposed

algorithm include the following three aspects. 1) Using the RL-AKF method can obtain a more

accurate position, velocity and course estimation compared with other state-of-the-art methods. 2)

The process noise covariance matrix learnt by the RL-AKF method can keep the validity for a certain

period of time, which avoids continuous front and back data transmission. 3) The covariance matrix

estimated by the RL-AKF method can adapt to various measurements for Kalman Filter, which is

suitable for complex and dynamic practical application environment.

As concerns (1), during the absence of any other measurement assistance, the 10 s error of pure

inertial navigation is 0.6517m. Taking the average road speed of 36km/h, that is, 10 m/s, as the

standard, it can be obtained that the overall position error of the vehicle under the pure inertial

navigation system will not exceed a standard lane after 400 m driving, and the lateral position

deviation is even smaller. With the help of the odometer, the displacement of the vehicle after running

3000 m shall not exceed 10 m. At this time, the integrated navigation can reasonably meet the high-

accuracy and continuous positioning needs in the special areas, such as in the long tunnel and high-

density forest area.

The process noise covariance matrix will change with the temperature. However, the

temperature will not change much for a short period of time. Then, the covariance matrix will not

have a great change either since it represents the inherent performance of the sensor device.

Therefore, after an effective estimation of the process noise covariance matrix for a specific device is

made by this algorithm, the quadratic estimation is not needed in the subsequent navigation process.

It is not necessary to estimate the process noise covariance matrix in real-time. Our presented

algorithm is energy-efficient, which transmits sensor data to the background for learning on demand

and returns the prediction results to the embedded platform.

In the actual positioning scene, other observational measurements such as odometer, empirical

measurements such as non-holonomic constraints, and opportunistic measurements such as zero

velocity detection may be applied to Kalman filter. The process noise covariance matrix obtained by

this algorithm can well represent the prediction performance of navigation state in the inertial

navigation phase. This makes the RL-AKF algorithm available for occasional increase or decrease of

different measurements in Kalman filter.

Figure 13. Accuracy comparison for the GNSS/INS/Non-Holonomic Constraint (NHC) integrated
navigation system under 300 s of GNSS outage. Due to the limited reliability of NHC measurement,
RL-AKF does not perform as well as the GNSS/INS/ODO system. However, comparing with other
algorithms, RL-AKF still performs excellently in position and course estimation.

Remote Sens. 2020, 12, 1704 21 of 25

Table 9. Accuracy comparison with different methods of GNSS/INS/NHC Integrated Navigation System.

Item RL-AKF N-M Cov-scale NN-fb Default

p_67%(m) 12.7463 34.2574 17.7241 27.8423 26.2548
p_90%(m) 22.4210 40.5821 39.1731 40.2518 41.2658
p_rms(m) 15.3380 36.2158 20.9373 33.4861 32.2581

v_67%(m/s) 0.1668 0.2156 0.1730 0.2186 0.2027
v_90%(m/s) 0.4637 0.2542 0.2198 0.2437 0.2256
v_rms(m/s) 0.2370 0.2467 0.1675 0.2259 0.2122
c_67%(deg) 0.6523 1.2957 1.1481 1.2999 1.3284
c_90%(deg) 0.9581 1.9524 1.7248 1.7654 1.8766
c_rms(deg) 0.7211 1.4755 1.2218 1.5284 1.4657

The rule shown in Table 9 is basically similar to Table 8. As the NHC provides a new measurement
update for the velocity, the velocity estimation using the RL-AKF is slightly worse than other methods
because the process noise covariance matrix used for RL-AKF is learned from the GNSS/INS integrated
navigation scheme. Since the confidence of NHC measurements is less than that of the ODO,
the accuracy of velocity using the NHC constraint is not obvious. The overall accuracy using our
proposed RL-AKF method is still better than the comparative methods.

4. Discussions

Different from the measurement noise covariance matrix, the influence of the process noise
covariance matrix on the positioning results is not easy to quantitatively evaluate after several rounds
of iterations. Therefore, the feedback correction algorithm is not suitable for estimating the process
noise covariance matrix. Inspired by the strong automatic exploitation of reinforcement learning,
we introduce the reinforcement learning into the process noise covariance matrix estimation, which
can avoid the direct gradient back propagation operation of position error to the process noise
covariance matrix.

From the above-mentioned experiments, we can find that the main advantages of our proposed
algorithm include the following three aspects. (1) Using the RL-AKF method can obtain a more accurate
position, velocity and course estimation compared with other state-of-the-art methods. (2) The process
noise covariance matrix learnt by the RL-AKF method can keep the validity for a certain period of time,
which avoids continuous front and back data transmission. (3) The covariance matrix estimated by the
RL-AKF method can adapt to various measurements for Kalman Filter, which is suitable for complex
and dynamic practical application environment.

As concerns (1), during the absence of any other measurement assistance, the 10 s error of pure
inertial navigation is 0.6517m. Taking the average road speed of 36km/h, that is, 10 m/s, as the standard,
it can be obtained that the overall position error of the vehicle under the pure inertial navigation system
will not exceed a standard lane after 400 m driving, and the lateral position deviation is even smaller.
With the help of the odometer, the displacement of the vehicle after running 3000 m shall not exceed
10 m. At this time, the integrated navigation can reasonably meet the high-accuracy and continuous
positioning needs in the special areas, such as in the long tunnel and high-density forest area.

The process noise covariance matrix will change with the temperature. However, the temperature
will not change much for a short period of time. Then, the covariance matrix will not have a great
change either since it represents the inherent performance of the sensor device. Therefore, after
an effective estimation of the process noise covariance matrix for a specific device is made by this
algorithm, the quadratic estimation is not needed in the subsequent navigation process. It is not
necessary to estimate the process noise covariance matrix in real-time. Our presented algorithm is
energy-efficient, which transmits sensor data to the background for learning on demand and returns
the prediction results to the embedded platform.

In the actual positioning scene, other observational measurements such as odometer, empirical
measurements such as non-holonomic constraints, and opportunistic measurements such as zero

Remote Sens. 2020, 12, 1704 22 of 25

velocity detection may be applied to Kalman filter. The process noise covariance matrix obtained
by this algorithm can well represent the prediction performance of navigation state in the inertial
navigation phase. This makes the RL-AKF algorithm available for occasional increase or decrease of
different measurements in Kalman filter.

However, RL-AKF algorithm also has some limitations. While the robustness of this algorithm
greatly reduces the training frequency of RL part, it is undeniable that this algorithm takes a long time
for once training, which is mainly caused by the computational overhead of integrated navigation
itself and the complexity of the reward definition. In addition, the algorithm requires the integrated
navigation device to store 200 s of IMU and GNSS data, which brings additional storage overhead to
the device. These two aspects will be optimized and improved in our future work.

5. Conclusions

In this paper, we introduce the adaptive estimation of the process noise covariance matrix for
the Kalman filter based on the strong automatic exploitation of reinforcement learning. By taking
the integrated navigation system as the environment, and the opposite of the current positioning
error as the reward, the RL-AKF algorithm uses the deep deterministic policy gradient to obtain the
most optimal state estimation and the process noise covariance matrix from the continuous action
space. The RL-AKF can significantly improve the positioning performance of the integrated navigation
when the GNSS signal is not available. Our approach will not affect the real-time performance of
integrated navigation since the training process can be independently run on the cloud platform.
Moreover, the RL-AKF needs only 0.57 MB of additional storage space and requires data transmission
operations between the embedded platform and cloud platform only after the embedded platform
issues a new training request. The experimental results demonstrate that using the process noise
covariance matrix estimated by our proposed algorithm can obtain accurate position estimation, which
is robust under different times, different GNSS outage time periods and using different integration
navigation fusion schemes.

Author Contributions: Conceptualization, X.G. and H.L.; methodology, X.G.; software, X.G.; validation, L.B., Y.X.
and Y.G.; formal analysis, X.G.; investigation, X.G. and B.N.; resources, H.L.; data curation, J.J.; writing—original
draft preparation, X.G.; writing—review and editing, H.L. and F.Z.; visualization, L.B.; supervision, B.N.; project
administration, H.L.; funding acquisition, H.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the National Key Research and Development Program under Grant
2018YFB0505200, the Action Plan Project of the Beijing University of Posts and Telecommunications supported by
the Fundamental Research Funds for the Central Universities under Grant 2019XD-A06, the Special Project for
Youth Research and Innovation, Beijing University of Posts and Telecommunications, the Fundamental Research
Funds for the Central Universities under Grant 2019PTB-011, the National Natural Science Foundation of China
under Grant 61872046 and 61761038, the Joint Research Fund for Beijing Natural Science Foundation and Haidian
Original Innovation under Grant L192004, the Key Research and Development Project from Hebei Province under
Grant 19210404D, the Science and Technology Plan Project of Inner Mongolia Autonomous Regio under Grant
2019GG328 and the Open Project of the Beijing Key Laboratory of Mobile Computing and Pervasive Device..
(Corresponding author: Haiyong Luo.)

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, J.J.; Ding, W.; Wang, J. Improving adaptive kalman filter in GPS/SDINS integration with neural
network. In Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute
of Navigation (ION GNSS 2007), Fort Worth, TX, USA, 25–28 September 2007; Volume 1, pp. 571–578.

2. Ren, T.; Petovello, M.G. A stand-alone approach for high-sensitivity GNSS receivers in signal-challenged
environment. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2438–2448. [CrossRef]

3. Xie, P.; Petovello, M.G. Measuring GNSS multipath distributions in urban canyon environments. IEEE Trans.
Instrum. Meas. 2015, 64, 366–377.

http://dx.doi.org/10.1109/TAES.2017.2699539

Remote Sens. 2020, 12, 1704 23 of 25

4. Jiang, W.; Liu, D.; Cai, B.; Rizos, C.; Wang, J.; Shangguan, W. A Fault-tolerant tightly coupled GNSS/INS/OVS
integration vehicle navigation system based on an FDP algorithm. IEEE Trans. Veh. Technol. 2019, 68,
6365–6378. [CrossRef]

5. Cui, B.; Wei, X.; Chen, X.; Li, J.; Li, L. On sigma-point update of cubature kalman filter for GNSS/INS under
GNSS-challenged environment. IEEE Trans. Veh. Technol. 2019, 68, 8671–8682. [CrossRef]

6. Akhlaghi, S.; Zhou, N.; Huang, Z. Adaptive adjustment of noise covariance in Kalman filter for dynamic
state estimation. In Proceedings of the IEEE Power Energy Society General Meeting, Chicago, IL, USA, 16–20
July 2017; pp. 1–5.

7. Huang, Y.; Zhang, Y.; Wu, Z.; Li, N.; Chambers, J. A novel adaptive kalman filter with inaccurate process and
measurement noise covariance matrices. IEEE Trans. Autom. Control 2018, 63, 594–601. [CrossRef]

8. Feng, B.; Fu, M.; Ma, H.; Xia, Y.; Wang, B. Kalman filter with recursive covariance estimation-Sequentially
estimating process noise covariance. IEEE Trans. Ind. Electron. 2014, 61, 6253–6263. [CrossRef]

9. El-Sheimy, N.; Hou, H.; Niu, X. Analysis and modeling of inertial sensors using allan variance. IEEE Trans.
Instrum. Meas. 2008, 57, 140–149. [CrossRef]

10. Ngoc, T.T.; Khenchaf, A.; Comblet, F. Evaluating Process and Measurement Noise in Extended Kalman Filter
for GNSS Position Accuracy. In Proceedings of the 13th European Conference Antennas Propagation, EuCAP
2019, Krakow, Poland, 31 March–5 April 2019; pp. 1–5.

11. Sangsuk-Iam, S. Divergence of the discrete-time Kalman filter under incorrect noise covariances for linear
periodic systems. In Proceedings of the 1994 American Control Conference—ACC ’94, Baltimore, MD, USA,
29 June–1 July 1994; IEEE: Piscataway, NJ, USA, 2013; Volume 1, pp. 1190–1194.

12. Saab, S.S. Discrete-time Kalman filter under incorrect noise covariances. In Proceedings of the 1995 American
Control Conference-ACC’95, Seattle, WA, USA, 21–23 June 1995; Volume 2, pp. 1152–1156.

13. Zhang, L.; Sidoti, D.; Bienkowski, A.; Pattipati, K.R.; Bar-Shalom, Y.; Kleinman, D.L. On the identification of
noise covariances and adaptive kalman filtering: A new look at a 50 year-old problem. IEEE Access 2020, 8,
59362–59388. [CrossRef]

14. McBurney, P.W. A robust approach to reliable real-time Kalman filtering. In Proceedings of the IEEE
Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences,
Las Vegas, NV, USA, 20 March 1990; IEEE: Piscataway, NJ, USA, 2013; Volume 53, pp. 549–556.

15. Liu, J.; Cai, B.G.; Wang, J. Cooperative Localization of Connected Vehicles: Integrating GNSS With DSRC
Using a Robust Cubature Kalman Filter. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2111–2125. [CrossRef]

16. Boncelet, C.; Dickinson, B. An approach to robust Kalman filtering. In Proceedings of the 22nd IEEE
Conference on Decision and Control, San Antonio, TX, USA, 14–16 December 1983; IEEE: Piscataway, NJ,
USA, 1983; Volume 544, pp. 304–305.

17. Romera, R. Robust Kalman filter and its application in time series analysis. Kybernetika 1991, 27, 481–494.
18. Dunik, J.; Kost, O.; Straka, O.; Blasch, E. State and measurement noise in positioning and tracking: Covariance

matrices Estimation and Gaussianity Assessment. In Proceedings of the 2018 IEEE/ION Position, Location
Navigation Symposium PLANS 2018, Monterey, CA, USA, 23–26 April 2018; pp. 1326–1335.

19. Ramezani, M.; Khoshelham, K. Vehicle positioning in GNSS-deprived urban areas by stereo visual-inertial
odometry. IEEE Trans. Intell. Veh. 2018, 3, 208–217. [CrossRef]

20. Hirokawa, R.; Ebinuma, T. A low-cost tightly coupled GPS/INS for small UAVs augmented with multiple
GPS antennas. Navig. J. Inst. Navig. 2009, 56, 35–44. [CrossRef]

21. Marais, J.; Berbineau, M.; Heddebaut, M. Land mobile GNSS availability and multipath evaluation tool.
IEEE Trans. Veh. Technol. 2005, 54, 1697–1704. [CrossRef]

22. Tan, C.M.; Wang, Y.; Zhu, X.H.; Su, Y.; Wei, G. Improved alignment method for a SINS using two vector
measurements. In Proceedings of the 5th International Conference on Instrumentation and Measurement,
Computer, Communication and Control (IMCCC) 2015, Qinhuangdao, China, 18–20 September 2015;
pp. 1674–1678.

23. Ramanandan, A.; Chen, A.; Farrell, J.A. Inertial navigation aiding by stationary updates. IEEE Trans. Intell.
Transp. Syst. 2012, 13, 235–248. [CrossRef]

24. Hata, A.Y.; Wolf, D.F. Feature detection for vehicle localization in urban environments using a multilayer
LIDAR. IEEE Trans. Intell. Transp. Syst. 2016, 17, 420–429. [CrossRef]

25. Bento, L.C.; Bonnifait, P.; Nunes, U.J. Set-membership position estimation with GNSS pseudorange error
mitigation using lane-boundary measurements. IEEE Trans. Intell. Transp. Syst. 2019, 20, 185–194. [CrossRef]

http://dx.doi.org/10.1109/TVT.2019.2916852
http://dx.doi.org/10.1109/TVT.2019.2931923
http://dx.doi.org/10.1109/TAC.2017.2730480
http://dx.doi.org/10.1109/TIE.2014.2301756
http://dx.doi.org/10.1109/TIM.2007.908635
http://dx.doi.org/10.1109/ACCESS.2020.2982407
http://dx.doi.org/10.1109/TITS.2016.2633999
http://dx.doi.org/10.1109/TIV.2018.2804168
http://dx.doi.org/10.1002/j.2161-4296.2009.tb00442.x
http://dx.doi.org/10.1109/TVT.2005.853461
http://dx.doi.org/10.1109/TITS.2011.2168818
http://dx.doi.org/10.1109/TITS.2015.2477817
http://dx.doi.org/10.1109/TITS.2018.2808542

Remote Sens. 2020, 12, 1704 24 of 25

26. Rabiee, R.; Zhong, X.; Yan, Y.; Tay, W.P. LaIF: A lane-level self-positioning scheme for vehicles in GNSS-denied
environments. IEEE Trans. Intell. Transp. Syst. 2019, 20, 2944–2961. [CrossRef]

27. Rife, J. Collaborative vision-integrated pseudorange error removal: Team-estimated differential GNSS
corrections with no stationary reference receiver. IEEE Trans. Intell. Transp. Syst. 2012, 13, 15–24. [CrossRef]

28. Toledo-Moreo, R.; Bétaille, D.; Peyret, F.; Laneurit, J. Fusing GNSS, dead-reckoning, and enhanced maps for
road vehicle lane-level navigation. IEEE J. Sel. Top. Signal Process. 2009, 3, 798–809. [CrossRef]

29. Schmuck, P.; Chli, M. CCM-SLAM: Robust and efficient centralized collaborative monocular simultaneous
localization and mapping for robotic teams. J. Field Robot. 2019, 36, 763–781. [CrossRef]

30. Weiss, S.; Achtelik, M.W.; Lynen, S.; Achtelik, M.C.; Kneip, L.; Chli, M.; Siegwart, R. Monocular vision for
long-term micro aerial vehicle state estimation: A compendium. J. Field Robot. 2013, 30, 803–831. [CrossRef]

31. Chowdhary, G.; Johnson, E.N.; Magree, D.; Wu, A.; Shein, A. GPS-denied indoor and outdoor monocular
vision aided navigation and control of unmanned aircraft. J. Field Robot. 2013, 30, 415–438. [CrossRef]

32. Vetrella, A.R.; Opromolla, R.; Fasano, G.; Accardo, D.; Grassi, M. Autonomous flight in GPS-challenging
environments exploiting multi-UAV cooperation and vision-aided navigation. In Proceedings of the AIAA
Information Systems-AIAA Infotech @ Aerospace, Grapevine, TX, USA, 9–13 January 2017; pp. 1–14.

33. Abdolkarimi, E.S.; Mosavi, M.R.; Abedi, A.A.; Mirzakuchaki, S. Optimization of the low-cost INS/GPS
navigation system using ANFIS for high speed vehicle application. In Proceedings of the 2015 Signal
Processing and Intelligent Systems Conference (SPIS) 2015, Tehran, Iran, 16–17 December 2016; pp. 93–98.

34. Li, T.C.; Su, J.Y.; Liu, W.; Corchado, J.M. Approximate Gaussian conjugacy: Parametric recursive filtering
under nonlinearity, multimodality, uncertainty, and constraint, and beyond. Front. Inf. Technol. Electron. Eng.
2017, 18, 1913–1939. [CrossRef]

35. Jiancheng, F.; Sheng, Y. Study on innovation adaptive EKF for in-flight alignment of airborne POS. IEEE Trans.
Instrum. Meas. 2011, 60, 1378–1388. [CrossRef]

36. Rouhani, A.; Abur, A. Linear phasor estimator assisted dynamic state estimation. IEEE Trans. Smart Grid
2018, 9, 211–219. [CrossRef]

37. Shin, E.-H. Estimation Techniques for Low-Cost Inertial Navigation. Ph.D. Thesis, The University of Calgary,
Calgary, AB, Canada, 2005; pp. 46–48.

38. Ye, W.; Li, J.; Fang, J.; Yuan, X. EGP-CDKF for performance improvement of the SINS/GNSS integrated
System. IEEE Trans. Ind. Electron. 2018, 65, 3601–3609. [CrossRef]

39. Julier, S.J.; Uhlmann, J.K. Unscented filtering and nonlinear estimation. Proc. IEEE 2004, 92, 401–422.
[CrossRef]

40. Gao, N.; Wang, M.; Zhao, L. An integrated INS/GNSS urban navigation system based on fuzzy adaptive
Kalman filter. In Proceedings of the Chinese Control Conference CCC, Chengdu, China, 27–29 July 2016;
pp. 5732–5736.

41. Ding, W.; Wang, J.; Rizos, C. Improving covariance based adaptive estimation for GPS/INS integration.
J. Navig. 2007, 60, 517–529. [CrossRef]

42. Rui, C. K-means aided Kalman Filter noise estimation calibration for integrated GPS/INS Navigation.
In Proceedings of the 2016 IEEE International Conference on Intelligent Transportation Engineering ICITE
2016, Singapore, 20–22 August 2016; pp. 156–161.

43. Riboni, L.; Ghidoni, R.; Tettamanti, G. Discriminative training of kalman filters. J. Neurochem. 2005, 52,
1401–1406. [CrossRef]

44. Ko, J.; Fox, D. GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models.
Auton. Robots 2009, 27, 75–90. [CrossRef]

45. Ko, J.; Klein, D.J.; Fox, D.; Haehnel, D. Gaussian processes and reinforcement learning for identification and
control of an autonomous blimp. In Proceedings of the 2007 Ieee International Conference on Robotics and
Automation, Roma, Italy, 10–14 April 2007; pp. 742–747.

46. Oh, T.H.; Kim, T.I.; Han, J.S.; Kim, Y.S.; Lee, J.H.; Kim, S.O.; Lee, S.S.; Lee, S.H.; Cho, D.I.L. Deep Deterministic
Policy Gradient-based Parameter Selection Method of Notch Filters for Suppressing Mechanical Resonance
in Industrial Servo Systems. In Proceedings of the CCTA 2019—3rd IEEE Conference on Control Technology
and Applications, Hong Kong, China, 19–21 August 2019; pp. 320–324.

47. Wang, X.; Gu, Y.; Cheng, Y.; Liu, A.; Chen, C.L.P. Approximate Policy-Based Accelerated Deep Reinforcement
Learning. IEEE Trans. Neural Netw. Learn. Syst. 2019, 1–11. [CrossRef]

http://dx.doi.org/10.1109/TITS.2018.2870048
http://dx.doi.org/10.1109/TITS.2011.2178832
http://dx.doi.org/10.1109/JSTSP.2009.2027803
http://dx.doi.org/10.1002/rob.21854
http://dx.doi.org/10.1002/rob.21466
http://dx.doi.org/10.1002/rob.21454
http://dx.doi.org/10.1631/FITEE.1700379
http://dx.doi.org/10.1109/TIM.2010.2084710
http://dx.doi.org/10.1109/TSG.2016.2548244
http://dx.doi.org/10.1109/TIE.2017.2748048
http://dx.doi.org/10.1109/JPROC.2003.823141
http://dx.doi.org/10.1017/S0373463307004316
http://dx.doi.org/10.1111/j.1471-4159.1989.tb09186.x
http://dx.doi.org/10.1007/s10514-009-9119-x
http://dx.doi.org/10.1109/TNNLS.2019.2927227

Remote Sens. 2020, 12, 1704 25 of 25

48. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari
with deep reinforcement learning. arXiv 2013, arXiv:1312.5602.

49. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control
with deep reinforcement learning. arXiv 2015, arXiv:1509.02971.

50. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; IEEE: Piscataway, NJ, USA, 2012;
ISBN 978-1-4799-0997-1.

51. Monahan, G.E. Survey of partially observable markov decision processes—Theory, models, and algorithms.
Manag. Sci. 1982, 28, 1–16. [CrossRef]

52. Notsu, A.; Yasuda, K.; Ubukata, S.; Honda, K. Optimization of learning cycles in online reinforcement learning
systems. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC),
Miyazaki, Japan, 7–10 October 2018; pp. 3530–3534.

53. Nie, Q.; Zhao, P. SINS in-motion alignment for initial attitude uncertainty. In Proceedings of the 5th
International Conference on Instrumentation and Measurement, Computer, Communication and Control
IMCCC 2015, Qinhuangdao, China, 18–20 September 2015; pp. 200–203.

54. Available online: http://www.whmpst.com/cn/imgproduct.php?aid=80 (accessed on 1 March 2020).
55. Available online: http://www.gpsolution.com/inertial-cn/span_cpt-cn (accessed on 1 March 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1287/mnsc.28.1.1
http://www.whmpst.com/cn/imgproduct.php?aid=80
http://www.gpsolution.com/inertial-cn/span_cpt-cn
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	System Overview
	Environment Definition
	Forwarding INS Mechanization
	Error Model Based on Kalman Filter
	Feedback Correction

	State Definition
	Components of the Q Matrix
	Construction of Positive Semi-Definiteness for Matrix Q

	Reward Definition
	Agent Definition
	Action Generation with DDPG
	Deep Network Architecture

	Results
	Evaluation Metrics and Compared Methods
	Data Collection and Train Test Split
	Experimental Setup
	Results of Training
	Accuracy of RL-AKF
	Accuracy with Data Collected on Different Time
	Accuracy Comparison of Different GNSS Outage Periods
	Accuracy Comparison of GNSS/INS/ODO System
	Accuracy Comparison of GNSS/INS/NHC System

	Discussions
	Conclusions
	References

