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Abstract: The southeast coastal area of China (SCAC), a typhoon-prone area with a long coastline,
suffers severe damage from typhoons almost every year. Exploring the spatial characteristics of
historical typhoon-induced vegetation damage (VD) is crucial to predicting VD after severe typhoon
landfalls and improving strategies for vegetation protection and restoration. Remote sensing is an
efficient and feasible approach for measuring large-scale VD caused by natural disasters. This paper,
by exploring the spatial distribution of VD of every severe landfalling typhoon with Google Earth
Engine (GEE), aims to reveal the spatial characteristics of typhoon-induced VD in SCAC. Firstly,
the values of disaster vegetation damage index (DVDI), difference in enhanced vegetation index
(DEVI), and normalized difference vegetation index (DNDVI) for the 28 selected landing typhoons
in SCAC were calculated and compared by using moderate resolution imaging spectroradiometer
(MODIS) data in GEE. Secondly, every DVDI image was overlaid with land cover, elevation, relative
aspect and typhoon path layers in ArcGIS. Thirdly, spatial characteristics of VD were revealed with
the aid of spatial statistical analysis. The study found that: (1) DVDI is a more effective index for
evaluating VD caused by typhoons. (2) The Pearl River Delta is the most severe VD region. The severe
VD regions for four typhoon groups have significantly spatial correlation with typhoon-landing
locations. (3) Forests are ranked the first in terms of damaged areas by typhoon in every year, followed
by sparse forests. (4) Topography has no influence on VD by a single typhoon event, and relative
aspect has no correlation with VD caused by typhoons in SCAC.

Keywords: disaster vegetation damage index (DVDI); Google Earth Engine (GEE); southeast coastal
area of China (SCAC); spatial characteristics; MODIS

1. Introduction

The southeast coastal area of China (SCAC), with its long coastline and location in a typhoon-active
area, suffers severe damages from typhoons almost every year. According to statistics [1], 43 typhoons
landed in SCAC from 2000 to 2018 and resulted in extensive vegetation damage (VD) and enormous
economic loss. For instance, Typhoon Mangkhu swept through SCAC in 2018, when 174,400 hectares
of crops were affected, of which 3300 hectares were destroyed (see Figure 1), and the direct economic
loss was 5.2 billion yuan [2]; in 2013, Typhoon Utor damaged 4,278,400 croplands and induced
16.23 billion yuan of direct economic loss [3], etc. Understanding the spatial characteristics of historically
typhoon-induced VD is crucial to projecting VD after severe typhoon landfall and improving strategies
for vegetation protection and restoration.
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Figure 1. Pictures of vegetation damage (VD) induced by Mangkhu in 2018 (a) and (b) are from 
http://news.sina.com.cn/o/2018-09-19/doc-ihkhfqns8435454.shtml, (c) is from 
http://www.weather.com.cn/zt/tqzt/2930932.shtml). 

Satellite remote sensing techniques are the primary efficient and feasible tools for extracting 
pixel-based information on vegetation damage induced by typhoons and other natural disasters at 
large scale. Many studies have evaluated VD successfully by calculating the differences in enhanced 
vegetation index (DEVI) or difference in normalized difference vegetation index (DNDVI) before and 
after a disaster via satellite remote sensing imagery [4–11]. For example, by using 250 m EVI imagery, 
the post hurricane forest damage of Hurricane Felix in 2007 was successfully characterized from pre- 
and postdisaster enhanced vegetation index (EVI) data [4]. Utilizing moderate resolution imaging 
spectroradiometer (MODIS, product MOD13Q1) time series imagery, pre- and post-disaster EVI 
values for five hurricanes’ landfall along the northern Gulf of Mexico were derived, and the study 
results indicated that the MODIS data could be applied to detect severe hurricane damage to 
vegetation [5]. Using Landsat-8 OLI and Sentinel-2 data, VD on Dominica and Puerto Rico by 
Hurricane Maria (2017) was investigated by comparing the changes of NDVI in 2017 with those in 
reference years (2015 and 2016), with a sudden drop in NDVI values after Hurricane Maria’s landfall 
detected [6]. The spatial pattern of damaged forest expressed as differences in NDVI (DNDVI) before 
and after Typhoon Saomai in 2006 were extracted from Landsat Enhanced Thematic Mapper Plus 
(ETM+) data, and the results showed that the influencing factors of DNDVI were vegetation 
aggregation, elevation, land use, relative aspect and distance from the typhoon’s path [7]. Landsat-5 
NDVI data before and after Hurricane Katrina’s 2005 landfall in the WBR (Weeks Bay National 
Estuarine Research Reserve) indicated that the average NDVI values decreased by 49% after landfall 
[8]. 

The temporal differences of vegetation indices before and after a disastrous event, such as the 
aforementioned DNDVI and DEVI, have been used in various studies for characterizing the 
vegetative damage. Both NDVI and EVI are the measure of vegetative condition and health. The 
dynamic ranges of the indices for a specific location are related to vegetation types and their growth 
environment at the location. For example, at a sparsely vegetated location, the maximum NDVI value 
might be 0.2, and DNDVI of –0.2 represents the total destruction of vegetation at the location, while, 
at a densely vegetated location, the maximum NDVI value might be 0.8 and DNDVI of –0.2 represents 
slight damage to the vegetation. Therefore, DNDVI and DEVI cannot be used to compare the 
vegetative damage of different locations. To avoid this problem, Di et al. proposed the disaster 
vegetation damage index (DVDI) to calculate the difference of vegetation condition immediately 
before and after a natural disaster, and effectively measured the VD by flood disasters [12]. DVDI 
uses the difference of VCI, which has been normalized by location-specific historical vegetation 
dynamic ranges, making it comparable across locations. However, DVDI is a newly proposed index 
and has not been widely validated for different kind of natural disasters. 

The aforementioned studies state that DVDI and the changes of EVI/NDVI pre- and post-
disaster derived from satellite remote sensing imagery are effective indexes for evaluating VD due to 
typhoon events. For most existing studies, which focus on extracting VD induced by only one or a 
couple natural disasters, it is practical for computing VD indexes by downloading and compositing 
remote sensing data. But for studies investigating VD caused by many historical typhoons, the 
traditional computational approach for typhoon VD studies is not suitable due to time and labor-
intensive data downloading, cost to acquire the data, and local computer power limitations. Applying 

Figure 1. Pictures of vegetation damage (VD) induced by Mangkhu in 2018 (a) and (b) are from
http://news.sina.com.cn/o/2018-09-19/doc-ihkhfqns8435454.shtml, (c) is from http://www.weather.com.
cn/zt/tqzt/2930932.shtml.

Satellite remote sensing techniques are the primary efficient and feasible tools for extracting
pixel-based information on vegetation damage induced by typhoons and other natural disasters at
large scale. Many studies have evaluated VD successfully by calculating the differences in enhanced
vegetation index (DEVI) or difference in normalized difference vegetation index (DNDVI) before and
after a disaster via satellite remote sensing imagery [4–11]. For example, by using 250 m EVI imagery,
the post hurricane forest damage of Hurricane Felix in 2007 was successfully characterized from pre-
and postdisaster enhanced vegetation index (EVI) data [4]. Utilizing moderate resolution imaging
spectroradiometer (MODIS, product MOD13Q1) time series imagery, pre- and post-disaster EVI values
for five hurricanes’ landfall along the northern Gulf of Mexico were derived, and the study results
indicated that the MODIS data could be applied to detect severe hurricane damage to vegetation [5].
Using Landsat-8 OLI and Sentinel-2 data, VD on Dominica and Puerto Rico by Hurricane Maria (2017)
was investigated by comparing the changes of NDVI in 2017 with those in reference years (2015 and
2016), with a sudden drop in NDVI values after Hurricane Maria’s landfall detected [6]. The spatial
pattern of damaged forest expressed as differences in NDVI (DNDVI) before and after Typhoon Saomai
in 2006 were extracted from Landsat Enhanced Thematic Mapper Plus (ETM+) data, and the results
showed that the influencing factors of DNDVI were vegetation aggregation, elevation, land use, relative
aspect and distance from the typhoon’s path [7]. Landsat-5 NDVI data before and after Hurricane
Katrina’s 2005 landfall in the WBR (Weeks Bay National Estuarine Research Reserve) indicated that the
average NDVI values decreased by 49% after landfall [8].

The temporal differences of vegetation indices before and after a disastrous event, such as the
aforementioned DNDVI and DEVI, have been used in various studies for characterizing the vegetative
damage. Both NDVI and EVI are the measure of vegetative condition and health. The dynamic ranges
of the indices for a specific location are related to vegetation types and their growth environment at
the location. For example, at a sparsely vegetated location, the maximum NDVI value might be 0.2,
and DNDVI of −0.2 represents the total destruction of vegetation at the location, while, at a densely
vegetated location, the maximum NDVI value might be 0.8 and DNDVI of −0.2 represents slight
damage to the vegetation. Therefore, DNDVI and DEVI cannot be used to compare the vegetative
damage of different locations. To avoid this problem, Di et al. proposed the disaster vegetation
damage index (DVDI) to calculate the difference of vegetation condition immediately before and after
a natural disaster, and effectively measured the VD by flood disasters [12]. DVDI uses the difference of
VCI, which has been normalized by location-specific historical vegetation dynamic ranges, making
it comparable across locations. However, DVDI is a newly proposed index and has not been widely
validated for different kind of natural disasters.

The aforementioned studies state that DVDI and the changes of EVI/NDVI pre- and post-disaster
derived from satellite remote sensing imagery are effective indexes for evaluating VD due to typhoon
events. For most existing studies, which focus on extracting VD induced by only one or a couple
natural disasters, it is practical for computing VD indexes by downloading and compositing remote
sensing data. But for studies investigating VD caused by many historical typhoons, the traditional
computational approach for typhoon VD studies is not suitable due to time and labor-intensive data
downloading, cost to acquire the data, and local computer power limitations. Applying Google
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Earth Engine (GEE) can be more efficient due to its analysis-ready satellite image archive, scalable
computing power, and integrated analysis capabilities. GEE is a cloud-based platform for processing
very large geospatial datasets efficiently by avoiding scalability problems such as data acquisition
and storage, parsing obscure file formats, central processing units (CPUs), graphics processing units
(GPUs), managing databases, and machine allocations. GEE is also well designed for users and allows
easy dissemination of results to others [13]. The GEE public data catalog is made up of earth-observing
remote images, including the entire MODIS, Landsat, Sentinel-1&2 archives, as well as land cover data
and many other geophysical, environmental and socio-economic datasets [13]. GEE is successfully
and widely used in global forest change [14], flood mapping [15], crop yield estimation [16], land use
change assessment [17], etc.

This study has two objectives: (1) to test whether DVDI can be applied to evaluate VD caused
by typhoons in GEE; (2) to explore the spatial characteristics of VD by historical landing typhoons
in SCAC.

2. Study Area and Data

2.1. The Study Area

The study area is in the southeast coastal area of China. It is centered at (23◦37′, 110◦46′), covers
417, 500 km2, and includes Guangdong province, Guangxi Zhuang autonomous region, and the Hong
Kong and Macao special administrative regions (see Figure 2). With a long coastline, the study area
captures the overall trend of high northwest and low southeast. Its annual average precipitation is
1500–2214 mm (http://www.gd.gov.cn/, http://www.gxzf.gov.cn/). Its altitude ranges from 24 m to
2141.5 m, with an average elevation of 319.5 m. The Pearl River is the main water system in this area,
and forms the Pearl River Delta, one of the most developed areas in China. The major crops in this area
include rice, peanut, sugar cane, and plantain, among which sugar cane and plantain are vulnerable to
strong wind disasters. Forests, sparse forests, croplands, and impervious lands covered about 45.2%,
35.8%, 12.3%, and 3.8% of the total area in 2016, respectively, as counted by using the MODIS land
cover product (MCD12Q1).

2.2. Data

2.2.1. The Selected Typhoons

The 43 typhoons that landed in SCAC between 2000 and 2018, recorded by the typhoon network
of the China meteorological station, were checked, and the 28 of them whose landfall wind speed
scale was equal or above 10 were selected. The information on these 28 typhoons is listed in Table 1.
In order to analyze the spatial characteristics of vegetation damage induced by typhoon disasters,
these 28 typhoons were sorted into four groups by their landfall locations: Leizhou Peninsula, Pearl
River Delta, Eastern Guangzhou and Western Guangzhou. These four groups contain 3, 11, 7 and 7
typhoons respectively (see Figure 2 and Table 1). Figure 2 also shows that 22 of these 28 typhoons’
paths are from southeast to northwest, indicating that the majority of landing typhoons affected almost
the entire SCAC.

2.2.2. Remote Sensing Data

The study area is located in the coastal region and frequently covered by clouds, so most of the
time useful information cannot be extracted from a single remote sensing image alone. Because of
frequent global coverage, MODIS allows cloud-free images for large geographic area during a short
period to be obtained [18]. The GEE platform was applied to generate MODIS image sequences at
250 m spatial resolution before and after the selected typhoon events. Considering the short time
of typhoon landing and extinction (see Table 1), and the effectiveness of VD assessment, the image
sequences of 14 days before landing and 14 days after extinction, respectively, were used to reduce

http://www.gd.gov.cn/
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composite images with lowest cloud composite at the pixel level in GEE. Practically, for each pixel, we
checked from the closest landing/extinction date image by QC(quality check) 250 m band, found the
first “good quality” value, and then composited it into the pre-/post-typhoon image.

Table 1. Information on the 28 selected typhoons.

No. ID Name
Scale of
Landfall

Wind Speed
Time Group

Correlation
Coefficient

(R)

Significance
Level

Ratio
(%)

1 200013 Maria 10 2000.8.29–9.2 Group 2 0.33 0.39 0.54
2 200104 Utor 11 2001.7.1–7.7 Group 2 −0.97 0.00 0.33
3 200107 Yutu 12 2001.7.22–7.26 Group 4 0.77 0.01 0.77
4 200212 Kammuri 10 2002.8.1–8.6 Group 3 −0.92 0.00 2.87
5 200214 Vongfong 11 2002.8.15–8.20 Group 4 −0.97 0.00 0.00
6 200308 Imbudo 14 2003.7.15–7.25 Group 4 0.90 0.00 0.88
7 200313 Dujuan 12 2003.8.28–9.3 Group 2 0.14 0.69 0.5
8 200510 Sanvu 11 2005.8.9–8.15 Group 3 −0.80 0.01 2.49
9 200606 Prapiroon 12 2006.7.28–8.5 Group 4 0.89 0.00 2.91
10 200812 Nuri 12 2008.8.17–8.23 Group 2 0.92 0.00 0.31
11 200814 Hagupit 15 2008.9.17–9.25 Group 4 0.91 0.00 1.10
12 200906 Molave 13 2009.7.15–7.19 Group 2 −0.59 0.09 0.00
13 200915 Koppu 12 2009.9.12–9.15 Group 2 0.72 0.03 0.00
14 201003 Chanthu 12 2010.7.19–7.23 Group 4 0.70 0.03 0.00
15 201011 Fanapi 12 2010.9.15–9.21 Group 3 −0.93 0.00 0.00
16 201208 Vicente 13 2012.7.21–7.25 Group 2 0.79 0.01 0.00
17 201213 Kai-tak 12 2012.8.13–8.18 Group 1 0.96 0.00 0.00
18 201311 Utor 14 2013.8.10–8.16 Group 4 −0.93 0.00 0.00
19 201319 Usagi 14 2013.9.17–9.23 Group 3 −0.97 0.00 0
20 201409 Rammasun 17 2014.7.12–7.20 Group 1 −0.15 0.70 0
21 201415 Kalmaegi 13 2014.9.12–9.17 Group 1 -0.14 0.72 0
22 201510 Linfa 12 2015.7.2–7.10 Group 3 0.85 0.00 0
23 201522 Mujigea 15 2015.10.2–10.5 Group 1 −0.95 0.00 0
24 201604 Nida 14 2016.7.30–8.3 Group 2 −0.99 0.00 0.19
25 201622 Haima 14 2016.10.15–10.22 Group 3 0.81 0.01 0
26 201713 Hato 14 2017.8.20–8.24 Group 2 0.97 0.00 0
27 201714 Pakhar 12 2017.8.25–8.28 Group 2 0.97 0.00 0
28 201822 Mangkhut 14 2018.9.7–9.17 Group 2 −0.94 0.00 0

Group 1: The Leizhou Peninsula landfalls group, three typhoons; Group 2: The Pearl River Delta landfalls group, 11
typhoons; Group 3: The Eastern Guangdong landfalls group, seven typhoons; Group 4: The Western Guangdong
Landfalls group, seven typhoons.Correlation coefficient (R) and Significance level are the results of correlation
analysis of elevation levels and area percentages of VD.Ratio is the percentage of pixels with bad quality using the
images acquired within 7 days after the typhoon landfall to composite the post-typhoon image.

2.2.3. Land Cover Data

MCD12Q1 has an annual updating cycle and five classification schemes. From the aspect of
compatibility degree between each classification scheme and land cover types in our study area,
MCD12Q1 land cover type 2 of the university of Maryland (UMD) scheme at 500 m resolution
was used as our original data and reclassified them into nine types: (referring to [19]) croplands,
forests, grasslands, shrublands, wetlands, water bodies, impervious land, barelands, and sparse forest
(see Table 2). Due to the lack of MCD12Q1 2000, MCD12Q1 2001 was used for 2000, assuming that land
cover change in adjacent years can be ignored for statistics. The four dominant types of land cover, i.e.,
forests, sparse forests, croplands, and impervious lands covered 97.11% of total area. The other five
land cover types covered less than 3% in 2016 in SCAC.

2.2.4. DEM

The Advanced Spaceborne Thermal Emission Reflection Radiometer (ASTER) Generalized Digital
Environment Model (GDEM) data at 30 m spatial resolution were downloaded from the Geospatial
data cloud website (http://www.gscloud.cn/). These GDEM data are used for deriving relative aspects
to typhoon paths, and also for exploring the relationship between VDs and elevations.

http://www.gscloud.cn/
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Table 2. Land cover types in this study and the moderate resolution imaging spectroradiometer
(MODIS) University of Maryland (UMD) scheme.

Land Cover Types in this Study Percentages of Area in SCAC
in 2016

MODIS Land Cover Types of
UMD Scheme

Forests 45.23%
Evergreen Needleleaf and Broadleaf
Forests, Deciduous Broadleaf Forests,

Mixed Forests
Sparse Forests 35.83% Woody Savannas

Croplands 12.27% Croplands, Cropland/Natural
Vegetation Mosaics

Impervious Lands 3.78% Urban and Built-up Lands
Grasslands 1.22% Grasslands
Wetlands 0.81% Permanent Wetlands

Water Bodies 0.80% Water Bodies
Barelands 0.06% Non-Vegetated Lands
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3. Methodology

3.1. Disaster Vegetation Damage Index (DVDI)

DVDI is an index for measuring disaster vegetation damage based on comparing the difference of
vegetation condition before and after a disaster [12]. It can be computed by Equation (1).

DVDI = mVCIa − mVCIb (1)

Where mVCIa and mVCIb are the mVCI values immediately after and before a disaster, respectively,
and mVCI is a modified vegetation condition index which was proposed by Di et al. [12]. The mVCI,
using median NDVI instead of minimum values to calculate vegetation condition index, can avoid
cloud contamination of image’s pixels and reflects relative vegetation/crop condition comparing with
historical records. It can be calculated by Equation (2).

mVCI = (NDVI − NDVIm)/(NDVImax − NDVIm) (2)

Where NDVI is the normalized difference vegetation index value of a specific day of interest,
NDVImax and NDVIm are the maximum and median values of NDVI respectively for the pixel from
the historic records of NDVI at the specific day. The mVCI >0 means that the vegetation/crop growth
condition is better than historical average (HA) and mVCI <0 means that it is worse than HA [12].

The assumption in DVDI is that the vegetation condition (expressed as mVCI) should have very
small change or no change if the time interval (b-a) is small (e.g., a few days) and no vegetative disaster
happens during the interval. If vegetation condition get significantly worse during the interval (DVDI
is a negative value), it indicates a vegetative disaster happens during the interval, and the magnitude
of the negative DVDI signifies the degree of damage. The positive value of DVDI indicates there is no
vegetation damage during the time interval, hence, no vegetative disaster. For the typhoon disaster,
DVDI >0 means that the observed typhoon has made no damage to vegetation (including forests and
crops), and DVDI <0 refers to the degree of damage due to the disaster.

The flowchart for calculation of DVDI in GEE is presented in Figure 3. In the image composition
step, the two 14-day MODIS image sequences before and after the typhoon are generated, and then
NDVIa and NDVIb are calculated. In the historic NDVIs computation step, the historic records of NDVI
for the corresponding period of the selected typhoon event are created and applied to obtain NDVImax

and NDVIm. In the last step, by applying Equations (1) and (2), the DVDI value of every pixel in the
study area can be calculated and a DVDI map can be produced. The key code for deriving DNVI in
GEE can be accessed at https://code.earthengine.google.com/?accept_repo=users/chuyiwu/calcDVDI.

In order to further identify the degree of damage, the method of equal-interval categorization
is used to sort the DVDI values into the following five levels: no damage, slight damage, moderate
damage, extreme damage, and exceptional damage.

https://code.earthengine.google.com/?accept_repo=users/chuyiwu/calcDVDI
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3.2. DNDVI and DEVI

DNDVI is a most commonly used VD index [9,15,17,18] and can be computed by Equation (3).

DNDVI =
NDVIa −NDVIb

NDVIb
(3)

Where NDVIa and NDVIb are the NDVI values immediately after and before a disaster respectively.
Positive DNDVI indicates vegetation damage due to the disaster, while negative DNDVI represents
no VD.

DEVI is a frequently used VD index [4,5,18,20] and calculated by Equation (4).

DEVI = EVIa − EVIb (4)

Where EVIa and EVIb are EVI values immediately after and before a disaster, respectively. EVI is
calculated from surface reflectance values of red, near infrared, and blue bands (MODIS Bands 1,2 and
3, respectively) by Equation (5).

EVI = G×
NIR−RED

(L + NIR + C1RED + C2BLUE)
(5)

Where G is the gain factor, L is a parameter of canopy background adjustment, C1 and C2 are
coefficients of aerosol resistance term. For MODIS EVI, G = 2.5, L = 1, C1 = 6 and C2 = 7.5 [21].

3.3. The Relative Aspect to Typhoon Path

Aspect is defined as the downslope direction of the maximum rate of change in value from each
cell to its neighbors [22]. In order to identify the comprehensive effects of aspect and typhoon path on
VD, the relative aspect (RA) is computed. RA acknowledges the relative direction of the aspect to the
direction of Typhoon path [7], and is defined as follows: the leeward direction to the typhoon path is



Remote Sens. 2020, 12, 1692 8 of 16

defined as 0◦; the windward direction of the typhoon path is defined as 180◦; and others are between
0◦ to 180◦ [7]. RA can be derived by Equations (6) and (7).

When θ ≥ 180, RA =


(360− θ) + α, 0 < α < θ− 180

θ− α, θ− 180 ≤ α < θ

α− θ, θ ≤ α < 360

(6)

When θ < 180, RA =


θ− α, 0 < α < θ

α− θ, θ− 180 ≤ α < θ

(360− α) + θ, θ ≤ α < 360

(7)

Where θ is the direction of the typhoon path, and α is the real aspect which derived from digital
elevation model (DEM).

4. Results

4.1. The Comparison of DVDI, DEVI and DNDVI Results

Brennan et al. suggested that most forest damage occurred within 100 km of the hurricane
path [20]; Zhang et al. proved that the distance from a typhoon’s path has a strong influence on
VD [7]. It is well known that the distribution of VD is significantly correlated with typhoon path [7,20].
VD maps of DVDI, DEVI and DNDVI of four presentative typhoons (one for a typhoon group) were
presented in Figure 4. For Typhoon Mangkhu (Figure 4a–c), comparing the results of DEVI and DVDI,
the distribution of DVDI has the strongest correlation with typhoon path, and the distribution of the
noise of DVDI is the least; For Typhoons Mujigea (see Figure 4d–f), Vongfong (see Figure 4g–i), Usagi
(see Figure 4j–l), and for 18 out of the 24 other typhoons, the same pattern can be found. The wind
speed of the typhoon, and hence the vegetation damage, decreases with the distance to the typhoon
path. Therefore, the VD represented by the percentage of area suffered from medium or severer
vegetative damage should be negatively correlated with distance to the typhoon path. For the study
area, 5 km internal buffer is an appropriate unit of measure, since it can reflect DVDI changes and
not be too small to induce noise interference. Therefore, for each selected typhoon, the percentages of
damaged areas (pixels with DVD/DEVI/DNDVI <0) to the area of SCAC for every 5 km interval buffer
of typhoon path were counted. Correlation analysis of the percentages of damaged areas versus buffer
distances was executed in SPSS Statistics 20.0. The results are listed in Table 3. Table 3 shows, among
DVDI, DEVI, and DNDVI, only DVDI exhibits this negative correlation consistently for all 14 selected
typhoons. This proves that DVDI is the best index among DVDI, DEVI, and DNDVI to measure the
vegetative damage caused by typhoons. The inconsistent correlations of both DEVI and DNDVI with
the distance to typhoon paths (i.e., for some typhoons, the correlation coefficient is negative and for
others it is positive) indicate both DEVI and DNDVI are not good indices for measuring the vegetative
damage over a large geographic area. Therefore, it can be conclude that DVDI, compared with DEVI
and DNDVI, is a more effective index to evaluate VD caused by natural disasters. Below we will focus
on using DVDI to explore the spatial characteristics of typhoon-induced VD in the study area.

The values of mVCI, NDVI and EVI of croplands and the other three dominant land cover types
may change naturally even without a typhoon during two 14-day periods. In our study, it was
supposed the change of vegetation index value by natural growth is much less than that induced by
typhoon. Actually, up to 97% of pixels in all 28 typhoons’ composite images (see Table 1) are from
images acquired within seven days after the typhoon landfall. As shown in the ratio column of Table 1,
the percentage of pixels with bad quality (which corresponds to the attribute of data quality as not
“0:Highest quality”) is rather low even if only using the images acquired within seven days after the
typhoon landfall are used to composite the post-typhoon image.
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Figure 4 also shows that some areas close to a typhoon’s path are identified as slight damage or
even no damage. This can be mainly caused by abundant typhoon precipitation causing a possible
benefit to vegetation/crop growth in these areas.
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Figure 4. The comparison of DVDI, difference in enhanced vegetation index (DEVI) and normalized
difference vegetation index (DNDVI) results fortyphoon Mangkhut (201822), Mujigae (201522),
Vongfong (200214) and Usagi (201319): (a,d,g,j) are DVDIs for the 4 presentative typhoons respectively;
(b,e,h,k) are DVDIs for the 4 presentative typhoons respectively; (c,f,i,l) DVDIs for the 4 presentative
typhoons respectively.
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Table 3. Correlation analysis results of DVDI/DNDV/DEVI and area percentages of VD.

Typhoon Group
DVDI DNDVI DEVI

R SIG R SIG R SIG

Vongfong Group 4 −0.883 0.000 0.773 0.000 0.251 0.036
Mugigea Group 1 −0.971 0.000 −0.579 0.000 −0.606 0.000

Usagi Group 3 −0.544 0.000 0.010 0.932 −0.628 0.000
Mangkhut Group 3 −0.091 0.455 −0.627 0.000 −0.670 0.000

Utor Group 2 −0.882 0.000 −0.676 0.000 −0.682 0.000
Dujuan Group 2 −0.865 0.000 −0.748 0.000 −0.525 0.000

Nuri Group 2 −0.232 0.054 −0.412 0.000 −0.170 0.159
Kai-tak Group 1 −0.298 0.012 −0.558 0.000 0.030 0.804

Rammasun Group 1 −0.787 0.000 0.182 0.131 −0.588 0.000
Kalmaegi Group 1 −0.862 0.000 0.747 0.000 0.961 0.000

Sanvu Group 3 −0.809 0.000 −0.637 0.000 0.342 0.004
Prapiroon Group 4 −0.212 0.078 0.456 0.000 −0.177 0.142
Imbudo Group 4 −0.370 0.002 0.569 0.000 0.956 0.000

Utor Group 4 −0.864 0.000 0.321 0.007 0.285 0.017

4.2. The Spatial Characteristics of Historical Landfalling Typhoons in SCAC

4.2.1. The Accumulated DVDIs of 28 Selected Typhoons

The 28 DVDI images for the selected typhoons were calculated and downloaded from GEE and
overlaid in ArcGIS 10.2. The statistics of 28 typhoons’ DVDI maps shows that, when DVDI <10,
the highest area percentage for one typhoon is 3.32%, and the area percentages of 18 typhoons are less
than 1%. Therefore, in order to calculate the magnitude of VD, we set DVDI to 0 when DVDI >0, and set
DVDI to −10 when DVDI < −10. The spatial distribution of the accumulated DVDIs of 28 selected
typhoons is presented in Figure 5. VD is more severe in the southern and central regions than in the
north, due to two reasons: the northern region is further from the coastline and has higher elevation.
Figure 5 also shows that VD in the west of Pearl River Delta is most severe (in red ellipse), while the
elevation of this severe VD region is almost lower than 600 m. It includes most parts of Zhaoqing,
Yunfu, Yingde, Wuzhou cities, and also some parts of Jiangmen, Heyuan, Huizhou, Guangzhou,
Hezhou, Yulin, and Guigang cities.
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4.2.2. The accumulated DVDIs of Four Typhoon Groups

Based on the rule of mapping of Figure 5 (i.e., set DVDI to 0 when DVDI >0, and set DVDI to
−10 when DVDI < −10), the accumulated DVDI maps of four typhoon groups are also delineated
respectively (see Figure 6). Figure 6 shows that severe VD regions with the lowest accumulated DVDIs
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of four typhoon groups are evidently spatially correlated with the typhoons’ landfall locations: for the
Pearl River Delta landfall group (Figure 6a), the severe VD region (in red ellipse) is around the Pearl
River Delta; for the Western Guangdong landfall group (Figure 6b), the severe VD region is in the west
of Pearl River Delta; for the Eastern Guangdong landfall group (Figure 6c), the northern and western
regions of Pearl River Delta are both severe VD regions; and for the Leizhou Peninsula landfalls group
(Figure 6d), the severe VD region is around the Leizhou Peninsula.
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4.2.3. Vegetation Damages Over Different Land Covers

Percentages of damaged areas (DVDI <0) over the four dominant land cover types were computed
and shown in solid lines (in Figure 7). Figure 7 illustrated that forest, with the largest area among
eight land cover types (see Table 2), has the greatest area of damage, followed by sparse forests,
croplands, and impervious lands. The similitude of line shapes of forests, sparse forest and croplands
shows that vegetation damages over these three land cover types are similar, while impervious lands’
line keeps stable. This possibly means its vegetation damage changes less, or its VDs’ fluctuation
cannot be discovered in items of its smallest area. Considering the total area of each land cover type,
the percentage of damaged area for the type was recalculated and shown by dashed lines. Compared
with solid lines, dashed lines can enlarge and better present VD changes, and show very similar shapes.

The possible reasons for little VDs of different land cover types are as follows: forests, including
evergreen needleleaf and broadleaf forests, deciduous broadleaf forests, and mixed forests, are in the
best growth period from July to October in our study time period, and, relatively invulnerable to
strong wind and heavy rain, are also relatively hard to recover. Sparse forests are usually mixed woody
savannas with natural vegetation, croplands mixed crops with natural vegetations, and impervious
lands mix urban and built-up land with planted grasses and trees. Comparing with forests, sparse
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forests and croplands are more easily damaged, but by means of natural vegetation growing during
the short period of typhoon landing and extinction, their VDs situation can be improved to some
extent. Though planted grasses in impervious lands are most invulnerably damaged, planted trees
(usually separated) are sensitive to strong wind.
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Figure 7. The percentages of damaged areas over the four dominant land cover types and the
percentages of damaged area for the type in SCAC from 2000 to 2018.

4.2.4. Influence of Topography on Vegetation Damages by Typhoons

For each selected typhoon, the percentages of damaged areas (pixels with DVDI <0) to the area
of SCAC for every 200 m elevation level were counted. Correlation analysis of the percentages of
damaged areas versus elevations was executed in SPSS. The results are listed in Table 4.

Table 4. The area percentages of 11 elevation levels.

Elevation
Level

Area
Percentage

Elevation
Level

Area
Percentage

<200 47.78% 1200–1400 0.94%
200–400 22.65% 1400–1600 0.37%
400–600 13.16% 1600–1800 0.10%
600–800 7.73% 1800–2000 0.01%
800–1000 4.97% 2000–2200 0.00%

1000–1200 2.29%

Table 4 shows that, among 28 selected typhoons, there are 13 typhoons with negative correlation
coefficient (elevation increases, damaged areas decreases), and 15 typhoons with positive correlation
coefficient (elevation increases, damaged areas also increases). As at 0.01 significance level, 10 and
11 typhoons obtained negative and positive correlation between the percentages of damaged areas
and elevations respectively. Therefore, the conclusion of no influence of topography on vegetation
damages by a single typhoon event in SCAC can be made. One explanation could be that the elevation
in 96.3% of the study area is below 1000 meters above sea level and the strong circular wind of a
typhoon extends from near ground to several thousand meters above sea level.

4.2.5. Influence of Relative Aspect on Vegetation Damages by Typhoons

Typhoons Mujigea (201522, Group 1), Mangkhut (201822, Group 2), Usagi (201319, Group 3),
and Vongfong (200214, Group 4) were selected for analyzing the influence of relative aspect on VD.
Vegetation damages induced by the four representative typhoons under different relative aspects are
presented in Figure 8. The percentages of decreased DVDI curves show the accumulated percentages
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of damaged areas of four levels (slight, moderate, extreme, and exceptional damage). For Typhoons
Mujigea and Mangkhut, the percentages of damaged areas in the windward direction are slightly
higher than those in the leeward direction, and the differences in the percentages of damage for
every 20◦ RA are less than 3%, while for Typhoons Usagi and Vongfong, the percentages of damaged
areas keep stable when RAs changes. Thus the correlation between DVDIs and RAs is insignificant.
The possible reason of the insignificance of DVDIs and RAs is that instantaneous wind direction can be
different from the typhoon paths and changes frequently.

Remote Sens. 2020, 2, 20 FOR PEER REVIEW 13 of 17 

 

200–400 22.65% 1400–1600 0.37% 
400–600 13.16% 1600–1800 0.10% 
600–800 7.73% 1800–2000 0.01% 

800–1000 4.97% 2000–2200 0.00% 
1000–1200 2.29%   

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 8. The percentages of damaged areas for different relative aspects. (a) Typhoon Mujigae 
(201522), (b) Typhoon Mangkhut (201822), (c) Typhoon Usagi (201319), (d) Typhoon Vongfong 
(200214). 

5. Discussion 

In order to validate the performance of DVDI, we include the comparison of the damaged 
cropland area calculated from DVDI maps for areas with moderate or above levels of damage, as 
obtained from the Yearbook of Meteorological Disasters in China (2005–2018) for the 20 typhoons 

Figure 8. The percentages of damaged areas for different relative aspects. (a) Typhoon Mujigae (201522),
(b) Typhoon Mangkhut (201822), (c) Typhoon Usagi (201319), (d) Typhoon Vongfong (200214).

5. Discussion

In order to validate the performance of DVDI, we include the comparison of the damaged cropland
area calculated from DVDI maps for areas with moderate or above levels of damage, as obtained
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from the Yearbook of Meteorological Disasters in China (2005–2018) for the 20 typhoons listed in
the Yearbook. Figure 9 is the plot of damaged areas for the 20 typhoons. From the figure, it can be
found that damaged area calculated from DVDI follows the general trend of damaged cropland area
reported by the yearbook, particularly well for the Guangdong province (orange lines) but not so
well for Guangxi province (blue lines). One explanation for this could be that the damaged hectares
reported by the yearbook are the cropland which actually lost yield, while DVDI measures the change
of spectral signal which could be caused by loss or damage of leaves and some crops can recover
from such damage later. Such a leaf damage can be caused by winds that moderately strong but not
strong enough to destroy the entire crop. This could also explain why the agreement of damaged
areas in Guangxi province is poorer than Guangdong province because Guangxi province is more
inland than Guangdong province and typhoons reaching to Guangxi generally have much weaker
winds, which could damage the crop leaves but may not devastate the crop and yield. Another
phenomenon can be found from the figure is that the area damaged by typhoons estimated by DVDI
is generally larger than reported in the yearbook. This could be caused by defining the threshold
values for moderate and severer damage classes too high. Further research on the class boundaries for
defining damage classes in DVDI is needed. It is also interesting to find that, for both the Kai-Tak and
Hagupit typhoons, the DVDI and YMDC seem to have a close match for both Guangxi and Guangdong
provinces. A further study should be conducted to identify the specific characteristics of those two
typhoons which resulted in the close match. Based on above observations, it can be concluded DVDI
is a good index to measure vegetative damage due to typhoons, and the damaged cropland area
calculated from DVDI could be used as a quick estimation of the area of crop loss, especially for the
geographic area near the typhoon landfall.
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Figure 9. The comparison of the damaged cropland area calculated from DVDI maps for area with
moderate or above levels of damage (DVDI, dashed lines) and that obtained from the Yearbook of
Meteorological Disasters in China (YMDC, solid lines) (2005–2018). Orange and blue lines are for
Guangdong and Guangxi Provinces respectively.

6. Conclusions

Using MODIS data in GEE, DVDI, DEVI, and DNDVI values for the 28 selected typhoons landing
in SCAC were calculated and compared. The DVDI images were overlaid with land cover, elevation,
relative aspect and typhoon path layers, and the spatial characteristics of vegetation damages induced
by historical typhoons were explored with the aid of spatial statistical analysis in ArcGIS. The results
showed that:
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1. DVDI is a more effective index for evaluating VD caused by typhoons.
2. The Pearl River Delta, with elevation almost less than 600 m, is the most severe VD region.

The severe VD regions for four typhoon groups have significant spatial correlation with
landing locations.

3. Forests are ranked first in terms of damaged areas by typhoon in every year, followed by sparse
forests, while the percentage of damaged area for the land cover type is very similar.

4. Topography has no influence on VD by a single typhoon event, and RA has no correlation with
VD per typhoon in SCAC.
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