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Abstract: Mangrove forest ecosystems are distributed at the land–sea interface in tropical and
subtropical regions and play an important role in carbon cycles and biodiversity. Accurately mapping
global mangrove aboveground biomass (AGB) will help us understand how mangrove ecosystems
are affected by the impacts of climatic change and human activities. Light detection and ranging
(LiDAR) techniques have been proven to accurately capture the three-dimensional structure of
mangroves and LiDAR can estimate forest AGB with high accuracy. In this study, we produced a
global mangrove forest AGB map for 2004 at a 250-m resolution by combining ground inventory
data, spaceborne LiDAR, optical imagery, climate surfaces, and topographic data with random forest,
a machine learning method. From the published literature and free-access datasets of mangrove
biomass, we selected 342 surface observations to train and validate the mangrove AGB estimation
model. Our global mangrove AGB map showed that average global mangrove AGB density was
115.23 Mg/ha, with a standard deviation of 48.89 Mg/ha. Total global AGB storage within mangrove
forests was 1.52 Pg. Cross-validation with observed data demonstrated that our mangrove AGB
estimates were reliable. The adjusted coefficient of determination (R2) and root-mean-square error
(RMSE) were 0.48 and 75.85 Mg/ha, respectively. Our estimated global mangrove AGB storage was
similar to that predicted by previous remote sensing methods, and remote sensing approaches can
overcome overestimates from climate-based models. This new biomass map provides information
that can help us understand the global mangrove distribution, while also serving as a baseline to
monitor trends in global mangrove biomass.
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1. Introduction

Mangrove forests are important intertidal ecosystems that link terrestrial and marine systems [1],
protecting land from the impact of storm surges, waves, and the erosion of the shore [2–4].
Mangrove plays a major role in the carbon cycle and helps maintain biodiversity. These forests
cover only 2% of the world’s coastal areas, yet they provide 5% of the net primary production of
global coastal ecosystems [5,6]. While mangrove forests comprise only 0.7% of the area of tropical
forests [7], their total carbon density is four times that of other tropical forests in the Indo-Pacific
region [8]. Mangrove forests consist of approximately seventy taxonomically diverse tree, shrub,
and fern species [9–11]. Moreover, mangrove is an important habit for other organisms [12], such as
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birds [13] and fish [14], such as mangroves in the Caribbean that have strong effect on the community
structure of fish living in the coral reef [14].

Currently, mangroves are highly threatened by both climate change and human activities. As a
result of global warming, suitable habitats for mangrove in tropical and subtropical areas have
expanded poleward, but sea level rise may be a major threat to the mangrove forests as a result of
changes in swamp duration, frequency, or salinity [15,16]. During the past century, approximately
35% of the area with mangrove forests has disappeared [17]. There is an annual deforestation rate of
1–3% [1,17–20] as these areas are converted for use in aquaculture or agriculture [21]. The amount of and
change in aboveground biomass act as indicators of other ecosystem services, such as biodiversity [22].
For example, studies indicate a degraded mangrove forest in Malaysia can lose half of its aboveground
biomass (AGB) when compared to a natural mangrove forest [22]. Consequently, accurate estimates of
the global distribution of mangrove aboveground biomass is beneficial for our understanding of the
status of mangrove ecosystems under threat from deforestation and degradation.

Field surveys are the most basic and most accurate methods for acquiring mangrove AGB at the
local scale [23–28]. However, this method is time-consuming and costly when applied to larger areas
while providing only discrete measurements of AGB at specified points [29,30]. Moreover, field surveys
in mangrove areas are more difficult than surveys in other terrestrial ecosystems due to the muddy
conditions and the peculiar structure of mangroves [9]. There are two additional methods for estimating
regional or global mangrove AGB: model-based methods and remote sensing. Model-based methods
usually provide mangrove AGB estimations from local to global scales based on a relationship between
environmental drivers and mangrove biomass [31–33]. However, model-based methods usually reflect
potential biomass distribution, which is often inconsistent with actual distribution. Remote sensing
methods provide an indirect approach for obtaining mangrove AGB measurements using regression
models built by linking surface measurements with remote sensing data. Development of these remote
sensing methods has greatly improved the efficiency and lowered the cost of mapping mangrove AGB
at large scales [34,35].

There are three popular remote sensing techniques for estimating mangrove biomass: passive
optical remote sensing, radar, and light detection and ranging (LiDAR) [36]. Passive optical remote
sensing and radar are the earliest and most frequently used methods for estimating mangrove extent
and biomass mapping [35,37,38], since they have the benefit of complete global coverage and the
data are easily accessible. However, both passive optical remote sensing and radar suffer from a
saturation effect at high biomass levels. Neither of these methods can retrieve complete vertical canopy
information because optical remote sensing only acquires canopy surface information and radar has
limited penetration ability [39].

An active remote sensing method, light detection and ranging, effectively penetrates the forest
canopy and can be used to derive information about forest structure in three dimensions [40,41].
Because of its ability to quantify forest height, AGB, and other structural parameters in a variety
of forest environments, LiDAR is a major advance in the field of forestry remote sensing [42,43].
Moreover, LiDAR does not saturate at high biomass [44,45]. Current limitations in temporal and
spatial coverage restrict the application of LiDAR at continental to global scales [46,47]. Airborne and
spaceborne LiDAR can acquire large scale data, but neither can provide worldwide, continuous LiDAR
measurements. The high cost of flight missions limits the use of airborne LiDAR to certain regions.
Spaceborne LiDAR such as the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud,
and Land Elevation Satellite (ICESat) have collected global LiDAR measurements, but the low density
and discontinuous distribution of the GLAS footprint prevents direct production of continuous global
data [48,49].

Recently, studies have demonstrated that using multi-source data can overcome the deficiencies
associated with GLAS data [48,49]. Passive optical images along with other continuous variables,
such as climate layers and a digital terrain model, can be used to build a regression model with
GLAS measurements, allowing us to extrapolate from discrete GLAS pixels into spatially continuous
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layers [46,47]. This method has been used to estimate forest biomass at the scale of the GLAS footprint
through a direct-link method proposed by Baccini et al. [50]. A second method uses airborne LiDAR as
a medium [51], thereby extrapolating from discrete AGB points into full coverage layers. However,
airborne LiDAR and plots in areas of mangrove are limited, and it is not possible to combine field
measurements with GLAS data. Another method suggested by Su et al. [47] provides wall-to-wall
estimates of forest AGB at larger scales. First, continuous remote sensing data are used to extrapolate
discrete GLAS parameters into spatially continuous layers. Second, a model is built using surface
observations rather than linking plot data directly with GLAS data.

Although global mangrove biomass estimates have been generated in the past using
climate-based [31,32] and remote sensing [52,53] methods, these results have had little explanatory
power or suffer from signal saturation. Moreover, structural information obtained using LiDAR were
not fully utilized in previous efforts to map global mangrove biomass. The objectives of this study, then,
were to estimate global mangrove AGB using ground inventory data, spaceborne LiDAR, and other
multi-source data and then to determine if structural information provided by GLAS can improve
our understanding of the distribution of mangrove AGB. To meet these objectives, a map of global
mangrove AGB map at 250 m has been created and will be disseminated via the internet. This new
biomass map provides information about mangrove forests, allowing us to better monitor regional and
global biomass trends into the future.

2. Materials and Methods

The global map of mangrove AGB was generated using field observation data, GLAS data,
the enhanced vegetation index (EVI), topographic data, and climate data. The methodology outlined
in Figure 1 allowed us to successfully estimate nation-wide forest AGB for China [47] and global forest
AGB [46]. A detailed description of each dataset (Table 1) and a brief introduction to the method used
to estimate mangrove forest AGB are provided below.
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Figure 1. The workflow for producing global mangrove aboveground biomass map based on the
multisource remote sensing data and ground observation data.

Table 1. The variables used in the random forest method to determine GLAS parameters and model
mangrove aboveground biomass.

Variable Dataset Year Resolution Reference

Mean annual precipitation (mm) Worldclim 1950–2000 1 km Hijmans et al., 2005 [54]

Precipitation of driest quarter (mm) Worldclim 1950–2000 1 km Hijmans et al., 2005 [54]

Precipitation seasonality Worldclim 1950–2000 1 km Hijmans et al., 2005 [54]

Precipitation of wettest quarter
(mm) Worldclim 1950–2000 1 km Hijmans et al., 2005 [54]

Annual mean temperature (◦C) Worldclim 1950–2000 1 km Hijmans et al., 2005 [54]

Mean temperature of driest quarter
(◦C) Worldclim 1950–2000 1 km Hijmans et al., 2005 [54]

Mean temperature of warmest
quarter (◦C) Worldclim 1950–2000 1 km Hijmans et al., 2005 [54]
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Table 1. Cont.

Variable Dataset Year Resolution Reference

Temperature seasonality Worldclim 1950–2000 1 km Hijmans et al., 2005 [54]

Elevation (m) CSRTM 2000 30 m Zhao et al., 2018 [55]

Slope CSRTM 2000 30 m Zhao et al., 2018 [55]

Enhanced vegetation index (EVI) MOD13Q1 2004 250 m Huete et al., 1999 [56]

Waveform extent (m) GLAS 2004 ~ a 70 m
diameter spots n/a

Leading edge extent (m) GLAS 2004 ~ a 70 m
diameter spots n/a

Trailing edge extent (m) GLAS 2004 ~ a 70 m
diameter spots n/a

2.1. Surface Measurements of Mangrove AGB

Field data are fundamental for estimating mangrove AGB from remote sensing data. In this study,
we obtained 510 plot measurements from previously published articles and free-access mangrove
biomass databases, such the Sustainable Wetlands Adaptation and Mitigation Program (https://data.
cifor.org/dataverse/swamp) [57,58]. Since these in situ plot measurements were collected from a variety
of sources using different protocols, we used three filtering criteria to ensure their quality: (1) the plot
has a georeferenced location, (2) the inventory was taken after 2000, and (3) the site was not surveyed
using harvesting methods. The geolocation of each individual plot was vital to this study. Using Google
Earth, we manually checked each point to determine whether the plot location was in the ocean or on
land. Records with the same geolocations were averaged together. In the end, 342 plot samples were
retained for use in the mangrove AGB mapping procedures (Figure 2).

Remote Sens. 2020, 12, x FOR PEER REVIEW 2 of 3 

 

Elevation (m) CSRTM 2000 30 m 
Zhao et al., 2018 

[55] 

Slope CSRTM 2000 30 m 
Zhao et al., 2018 

[55] 

Enhanced vegetation index (EVI) MOD13Q1 2004 250 m 
Huete et al., 

1999 [56] 

Waveform extent (m) GLAS 2004 

~ a 70 m 

diameter 

spots 

n/a 

Leading edge extent (m) GLAS 2004 

~ a 70 m 

diameter 

spots 

n/a 

Trailing edge extent (m) GLAS 2004 

~ a 70 m 

diameter 

spots 

n/a 

2.1. Surface Measurements of Mangrove AGB 

Field data are fundamental for estimating mangrove AGB from remote sensing data. In this 

study, we obtained 510 plot measurements from previously published articles and free-access 

mangrove biomass databases, such the Sustainable Wetlands Adaptation and Mitigation Program 

(https://data.cifor.org/dataverse/swamp) [57,58]. Since these in situ plot measurements were collected 

from a variety of sources using different protocols, we used three filtering criteria to ensure their 

quality: (1) the plot has a georeferenced location, (2) the inventory was taken after 2000, and (3) the 

site was not surveyed using harvesting methods. The geolocation of each individual plot was vital to 

this study. Using Google Earth, we manually checked each point to determine whether the plot 

location was in the ocean or on land. Records with the same geolocations were averaged together. In 

the end, 342 plot samples were retained for use in the mangrove AGB mapping procedures (Figure 

2). 

 

Figure 2. The collected mangrove plots distribution across the world. The color of each point indicated 

the value of aboveground biomass. 

2.2. Spacebrone LiDAR Data 

The GLAS instrument is the only waveform LiDAR instrument that has provided global 

coverage, and it was as an important data source for mapping global tree height and forest biomass. 

The GLAS instrument aboard the NASA (National Aeronautics and Space Administration) ICESat 

satellite was launched on 12 January 2003. After seven years in orbit and 18 laser-operation 

campaigns, the ICESat mission ended with the failure of the GLAS instrument. This instrument had 

three laser sensors, L1–L3, and each sensor used a 1064-nm laser pulse to record surface altimetry at 

20Hz. Each laser pulse had an ~65 m ellipsoidal footprint and was spaced at 170 m along a track with 

Figure 2. The collected mangrove plots distribution across the world. The color of each point indicated
the value of aboveground biomass.

2.2. Spacebrone LiDAR Data

The GLAS instrument is the only waveform LiDAR instrument that has provided global coverage,
and it was as an important data source for mapping global tree height and forest biomass. The GLAS
instrument aboard the NASA (National Aeronautics and Space Administration) ICESat satellite was
launched on 12 January 2003. After seven years in orbit and 18 laser-operation campaigns, the ICESat
mission ended with the failure of the GLAS instrument. This instrument had three laser sensors, L1–L3,
and each sensor used a 1064-nm laser pulse to record surface altimetry at 20 Hz. Each laser pulse
had an ~65 m ellipsoidal footprint and was spaced at 170 m along a track with tens of kilometers
between tracks [59]. We selected GLAS data from 2004 for use in mapping mangrove AGB since the
quantity and quality of these GLAS data are better than those from later operational periods [46,47].

https://data.cifor.org/dataverse/swamp
https://data.cifor.org/dataverse/swamp
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We downloaded three products (GLA01, GLA06, and GLA14) from the National Snow & Ice Data
Center (https://nsidc.org/data). These three products were provided in HDF5 (Hierarchical Data
Format) and contained full-waveform information (GLA01); geolocation and data quality information
(GLA06); and surface elevation information (GLA14). Laser pulses from these products were linked
together based on their unique ID and shot time.

Based on previous research [46–49], we applied four filtering criteria to quality control the GLAS
data: (1) laser shots taken under cloudy conditions were removed; (2) data with saturation effects
were removed; (3) the data had high signal to noise ratios (>50); and (4) data was not taken from a
location significantly higher (i.e., >100 m) than the land surface elevation as indicated by the Shuttle
Radar Topography Mission (SRTM) data. All GLAS data points used in this study were determined to
be within Spalding et al.’s mangrove map [19]. The final GLAS dataset contained 13,686 records in
areas of mangrove forests. From this dataset, three parameters were derived from the full-waveform
information of each pulse (waveform extent, leading edge extent, and trailing edge extent). These GLAS
parameters have been proven to be highly correlated with forest biomass, canopy height, canopy
height variability, and slope of the terrain [48,60].

2.3. EVI Data

We used the MOD13Q1 Version 6 product to obtain cumulative EVI for 2004. The EVI has improved
sensitivity for regions of high biomass as compared with NDVI [56]. MOD13Q1 is a composite 16-day
product at a 250-m resolution. The composite algorithm chooses the best available pixel value from
all acquisitions within the 16-day period, selecting pixels with low clouds, a low view angle, and the
highest EVI value. Cumulative EVI can provide more accurate estimates of AGB when compared with
values taken from a single time period [61,62]. Therefore, we calculated cumulative EVI from the sum
of all collected MOD13Q1 data, and clipped it using a 100-km coastline buffer. These data were used as
a predictor in the AGB analysis and mapping procedure.

2.4. Climate Data

In addition to using structure and spectral information from remote sensing data, we included
climate data to use in model predictions of mangrove AGB (Table 1). We selected the WorldClim dataset
(http://www.worldclim.org), and 50-year (1950–2000) average bioclimatic variables were calculated
from monthly temperature and precipitation layers [54]. We selected eight climate variables that can be
divided into two categories: precipitation and temperature (Table 1). The climate layers were obtained
with a 1-km resolution and then downscaled to 250 m using a bilinear method.

2.5. Topography Data

The GLAS parameters are related to forest structure and terrain variation, so we used topography
data to extrapolate from discrete GLAS data into spatial continuous layers. We selected the CSRTM
digital elevation model (DEM) provided by Zhao et al. [55]. The CSRTM is a corrected product from
the Shuttle Radar Topography Mission (SRTM), which reduced the vertical errors of SRTM at vegetated
areas. To be consistent with other datasets, we resampled the CSRTM DEM into 250-m resolution
using a bilinear method for further interpolation. The slope (denoted by tangent values of slope) was
calculated from the resampled CSRTM DEM.

2.6. Mangrove AGB Estimation Methods

As mentioned, we estimated global mangrove AGB using a methodology that had been successfully
implemented to estimate forest AGB at both national and global scales [46,47]. We modified the step
regarding plot location uncertainty to account specifically for the distribution of mangrove. We did not
use a land cover map in the random forest regression analysis as we assumed all areas were mangrove
based on our data collection methods previous described. As shown in Figure 1, the estimation of
mangrove AGB is generally divided into four major steps.

https://nsidc.org/data
http://www.worldclim.org
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First, discrete GLAS points were interpolated to create continuous spatial layers using the random
forest algorithm. The GLAS points were filtered using a 100-km coastline buffer and aggregated
into 250-m pixels using the average value of the GLAS full waveform parameter within each pixel.
These pixels were then used as training data to build the random forest model created to extrapolate
the GLAS parameters along with other predictor layers (cumulative EVI, DEM, slope, climate surfaces)
using the randomForest R package [63].

Second, we generated a circular buffer for each plot measurements with a 500-m radius to reduce
uncertainty related to plot location. Since mangrove has a much smaller distribution than other
forest types, we could not use the point-radius method suggested by Su et al. to reduce geolocation
uncertainty [47]. Using their Monte-Carlo simulation method, generating plot sets with location errors
of 1 or 10 km would relocate many mangrove plots into the ocean. To avoid this issue, we used the
circular buffer method. Most latitudes and longitudes in our field observation data were accurate to
0.01◦, corresponding to ~1km. We, therefore, adopted a 500-m radius to reduce location uncertainty.

Third, an initial global mangrove AGB map was created using the random forest method. Pixels for
each explanatory layer within a plot buffer were averaged and used as explanatory variables to build a
regression model from plot measurements. We randomly chose 70% of the plots (239 plots) to train
the model and used the remaining 30% (103 plots) to validate the mangrove AGB estimation model.
The three extrapolated GLAS parameters and the other nine parameters in Table 1 were used in the
regression model to generate the outputs needed to produce this initial mangrove AGB map.

Finally, we used a mangrove extent map from Spalding et al. as a mask for our initial mangrove
AGB map, eliminating areas outside of identified mangrove forests. [19]. The final global mangrove
AGB map was obtained by setting AGB value in areas outside the mangrove extent to 0 Mg/ha.

2.7. Accuracy Assessment

The accuracy of the estimated AGB was assessed using the adjusted coefficient of determination
(R2) and root-mean-square error (RMSE). The R2 and RMSE were calculated using following equations:

R2 = 1−
(n− 1)

∑n
i=1(xi − x̂i)

2

(n− 2)
∑n

i=1(xi − x)2 (1)

RMSE =

√∑n
i=1(xi − x̂i)

2

n− 2
(2)

where xi is the observed mangrove AGB, x̂i is the predicted AGB based on the random forest model
built with the training data, x is the average AGB of all validation plots, and n is the number of
validation plots.

3. Results

3.1. The GLAS Parameters in the Mangrove Distribution Zone

The discrete GLAS parameter points were extrapolated to spatially continuous layers using the
random forest method for leading edge extent, waveform extent, and trailing edge extent (Figure 3).
Overall, the random forest models explained 40.32%, 59.12%, and 41.39% of the variance in leading
edge extent, waveform extent and trailing edge extent, respectively. The root-mean-square residuals
for leading edge extent, waveform extent, and trailing edge extent were 4.30, 6.98, and 2.35 m,
respectively. According to the extrapolated results, the mean value of leading edge extent, waveform
extent, and trailing edge extent for the mangroves were 11.34 ± 5.61 m, 19.06 ± 7.09 m, 4.19 ± 1.34 m,
respectively. These three GLAS parameters showed similar spatial patterns of mangrove distribution.
The highest values of all three parameters appeared in the Indonesian archipelago, Central America,
and the Gulf of Guinea.
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Figure 3. The spatial-continuous map of three GLAS parameters in the mangrove distribution zone,
(a) waveform extent, (b) leading edge extent, and (c) trailing edge extent. Note that the spatially
continuous map was drawn using points since the mangrove distribution zone is narrow and cannot
be represented well using a raster map at the global scale.

3.2. The Global Mangrove Forest AGB Map

We used a random forest regression model with the three extrapolated GLAS parameters and
other predictor variables to estimate global mangrove AGB. The random forest model explained 52.34%
of the variance in AGB. The final AGB distribution pattern is similar to that of the GLAS parameters
(Figure 4). The mean AGB density of global mangrove was 115.23 Mg/ha with a standard deviation
of 48.89 Mg/ha. This map of AGB for mangrove forests will be shared on the GUO-Lab website
(http://www.3decology.org).

http://www.3decology.org
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3.3. Continental and National Level Mangrove Forest AGB Density

Total global AGB for mangroves was 1.52 Pg (Table 2), but the contribution by region was not
uniform. Southeastern Asia provided 34.98% of the AGB (0.53 Pg) while having both the largest area
(4,044,906.25 ha) and high AGB density (131.36± 45.94 Mg/ha). South America encompassed the second
largest area (2,062,231.25 ha) and high AGB density (111.33 ± 58.70 Mg/ha), and the second highest
stock of AGB (0.15 Pg). The mangrove AGB density in Central America (110.29 ± 39.48 Mg/ha) was
similar to that of South America, although the area of mangrove in Central America was much smaller
(1,388,962.50 ha). Mangrove AGB stocks in Southern Asia (0.13 Pg) and Western Africa (0.12 Pg) were
similar, although the density of AGB was much higher in Southern Asia (132.6 ± 29.79 Mg/ha) than in
Western Africa (79.27 ± 34.32 Mg/ha). The extent of mangrove in Southern Asia (949,281.25 ha), on the
other hand, was lower than that in Western Africa (1,475,343.75 ha). At the national level, Indonesia
had the highest stock of AGB (0.36 Pg) because of the high AGB density (140.12 ± 41.02 Mg/ha) and
large area covered by mangrove (2,547,556.25 ha). Mexico had the second largest AGB (0.1 Pg) since
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it has large areas (891,312.50 ha) and high AGB density (113.98 ± 34.10 Mg/ha). The mangrove AGB
density and stock for other important regions and countries are listed in Table 2.

Table 2. The mean AGB density and total AGB in the different regions and countries.

Region * Mean AGB
(Mg/ha)

Mangrove
Area (ha) Total AGB (Mg) Proportion of

Global AGB (%)

Southeastern Asia 131.36 ± 45.94 4,044,906.25 531,347,520.57 34.98
South America 111.33 ± 58.70 2,062,231.25 229,594,355.48 15.12

Central America 110.29 ± 39.48 1,388,962.50 153,185,736.15 10.09
Southern Asia 132.60 ± 29.79 949,281.25 125,874,227.46 8.29
Western Africa 79.27 ± 34.32 1,475,343.75 116,944,200.85 7.70
Eastern Africa 102.79 ± 53.63 821,906.25 84,482,779.41 5.56

Caribbean 123.69 ± 31.40 571,493.75 70,690,803.56 4.65
Melanesia 149.24 ± 48.63 438,768.75 65,479,984.29 4.31

Australia and New Zealand 101.22 ± 38.71 523,643.75 53,000,621.89 3.49
Middle Africa 101.79 ± 36.88 393,006.25 40,003,008.67 2.63

Northern America 103.48 ± 44.90 300,956.25 31,142,627.18 2.05
Southern Africa 197.16 ± 52.95 43,118.75 8,501,508.15 0.56

Western Asia 134.24 ± 16.11 23,162.50 3,109,444.89 0.20
Micronesia 279.89 ± 81.67 10,162.50 2,844,427.43 0.19

Northern Africa 161.37 ± 11.47 9,481.25 1,529,943.27 0.10
Eastern Asia 114.90 ± 23.41 9,156.25 1,052,045.89 0.07

Polynesia 160.25 ± 58.88 100.00 16,025.34 <0.01
Global 115.23 ± 48.89 13,065,675.00 1,518,798,427 100

Country Mean AGB
(Mg/ha)

Mangrove
Area (ha) Total AGB (Mg) Proportion

(%)

Indonesia 140.12 ± 41.02 2,547,556.25 356,964,199.62 23.50
Mexico 113.30 ± 34.10 891,312.50 100,985,695.79 6.65
Brazil 81.09 ± 44.96 1,117,700.00 90,630,600.45 5.97

Malaysia 134.00 ± 54.85 629,643.75 84,369,792.27 5.56
Bangladesh 154.17 ± 12.84 438,487.50 67,601,229.37 4.45
Colombia 166.95 ± 66.41 371,468.75 62,016,180.38 4.08

Mozambique 131.84 ± 51.61 413,456.25 54,511,434.50 3.59
Nigeria 76.54 ± 17.80 701,337.50 53,680,631.22 3.53
Cuba 126.27 ± 30.52 421,200.00 53,186,818.02 3.50

Papua New Guinea 148.94 ± 46.75 356,356.25 53,074,570.57 3.49
Global 115.23 ± 48.89 13,065,675.00 1,518,798,427 100

* The geographic regions used to organize the final statistics results were defined by the United Nations (https:
//unstats.un.org/unsd/methodology/m49/).

3.4. The Accuracy of Mangrove AGB Estimation

These estimates of mangrove AGB were validated using 103 independent validation plots
(Figure 5). Predicted mangrove AGB was consistent with observerd AGB. The R2 between predicted
and observed AGB is 0.48 and the RMSE is 75.85 Mg/ha. The AGB estimation method in this study
tended to marginally overestimate AGB densities at low values (<125 Mg/ha; Figure 5) and tends to
underestimate forest AGB density at high values (>125 Mg/ha).

https://unstats.un.org/unsd/methodology/m49/
https://unstats.un.org/unsd/methodology/m49/
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4. Discussion

4.1. Comparison with Other Mangrove Models

Combining multi-source remote sensing data and surface observations helps us better understand
global distribution of mangrove AGB. The model developed during this study is better able to explain the
spatial variability in mangrove AGB (R2 = 0.48) than those of other models. Rovai et al. [33] developed
a set of statistical climatic-geophysical models based on the environmental signature hypothesis,
which explained only 20% of the variability in mangrove AGB in the Neotropics. Twilley et al.’s [31]
latitude-based model explained 7.6% of the variation in mangrove AGB at the global scale, while
Hutchison et al.’s [32] climate-based model explained 26.7% of the variation. We used our plot data to
test Twilley et al.’s latitude-based model and Hutchison et al.’s [32] climate-based model; the resulting
explanatory power of these two models was much lower at 2.2% and 10.5%, respectively. There are three
primary reasons. First, the initial mangrove AGB dataset was extremely small in both Twilley et al.’s
(n = 34) and Hutchison et al.’s (n = 52) analyses. Insufficient training data cannot be used to create a
robust global scale model. These models, therefore, have large uncertainty when validated against our
larger, global data set (n = 342).

Second, machine learning methods are more suitable to estimating global mangrove AGB
than multi-linear regression methods. Although the climate variables used in our model and
Hutchison et al.’s [32] climate-based model were similar, the explanatory power of our model was
greater because of the difference in regression methods. Several studies have demonstrated that
random forest performs better than the linear regression method for estimating biomass [64].

Finally, structural information provided by GLAS and EVI improved the accuracy of random forest
to estimate mangrove AGB biomass (Figure 6). Recent field studies have found that canopy height
is strongly related to biomass for many mangrove species [65,66]. However, structure information
provided by GLAS does not have the expected effects in this study when compared with other
research into national and global forest AGB mapping. This may have been caused by the low-density
footprint of GLAS in mangrove areas, limiting its ability to represent the structure variation in different
mangrove species. Based on the statistical importance of each variable in our model (Figure 6), climate
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factors were more important than other variables. This is similar to Simard et al.’s results in which
precipitation, temperature and cyclone frequency explain 74% of the global variation in maximum
canopy height [53].
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error when a variable is removed in the model. The increase in node purity is calculated based on the
reduction in sum of squared errors whenever a variable is chosen to split.
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4.2. Comparison with Previously Published Mangrove AGB Maps

Our estimated global mangrove AGB (1.52 Pg) was similar to that of two global maps produced
using other remote sensing approaches (Table 3). Tang et al. [52] reported that total global mangrove
AGB was 1.908 Pg, while Simard et al. [53] estimated it to be 1.75 Pg. Although the estimated
mangrove storage was similar between these three remote sensing approaches, mean AGB density
(115.23 ± 48.89 Mg/ha) in our study was lower than that of Tang et al. (146.3 Mg/ha) or Simard et al.
(129.1 ± 87.2 Mg/ha). These differences are mainly caused by uncertainties induced by the allometric
equations. Tang et al. [52] and Simard et al. [53] predicted global mangrove biomass using SRTM’s
tree height and a global mangrove biomass allometry equation. The mean AGB density reported by
Tang et al. was the highest of these three estimates. Compared to Saenger and Snedaker’s global
mangrove height-biomass relationship used by Tang et al. [52], Simard et al. [53] applied 331 in situ
plots across a wide variety of mangrove forest ecotypes to fit a global equation between AGB and basal
area-weighted height. Our results for global mangrove AGB storage and mean AGB density were
similar to that of Simard et al. [53] because both methods utilized spaceborne LiDAR data. Traditionally,
mangrove forest aboveground biomass derived using synthetic aperture radar was underestimated
due to its limited ability to penetrate the mangrove canopy. Simard et al. [53] used GLAS data to
correct the SRTM tree height, thereby overcoming the issue of estimating mangrove AGB from SRTM
tree height.

Table 3. Comparison of total mangrove AGB and area with previously published results.

AGB (Pg) Mangrove
Area (ha) Year of Estimate Mangrove Map

Hutchison et al. (2014) [32] 2.83 15,314,094 1999–2003 Spalding et al., 2010 [19]
Twilley et al. (1992) [31] 2.34 ~24,000,000 1986 World Resources, 1986 [67]

Tang et al. (2018) [52] 1.908 ~13,042,000 2000 Spalding et al., 2010 [19]
Simard et al. (2019) [53] 1.75 ± 0.77 ~13,776,000 2000 Giri et al., 2011 [7]

This study 1.52 13,065,675 2004 Spalding et al., 2010 [19]

The estimated global mangrove AGB storage in our study (1.52 Pg) was significantly lower than
those from non-remote sensing approaches (Table 3). Twilley et al. [31] estimated global mangrove
AGB at 2.34 Pg based on a latitude model, nearly 54% higher than our result. Hutchison et al. [32]
used a climate-based model and predicted that total global mangrove AGB storage was 2.83 Pg, 86%
higher than our result. The difference in the baseline mangrove extent could be a major reason for the
variation in these results. Although our study and that of Hutchison et al. [32] both used the mangrove
map developed by Spalding et al. [19], the final global mangrove area in our study (13,065,675.00 ha)
was 15% smaller than that used by Hutchison et al. [32] (15,314,094 ha). This difference was caused,
in part, by inconsistent land boundaries between our predictor variables, mangrove distribution map,
and country extents. These layers have different spatial resolutions and extents, so small mangrove
patches along the coast or in the islets were omitted during our analysis. These places are also areas
with a large distribution of mangrove [19]. Consequently, the disparity in area led to variations in total
mangrove AGB storage between the two results. Part of the variation can also be explained by the
models used by Hutchison et al., which may overestimate mangrove AGB [32]. Rovai et al. [33] found
that these climate- and latitude-based models overestimated mangrove AGB by 25.3% to 44.4% in
the Neotropics region. In addition, the structural data provided by spaceborne LiDAR in this study
can provide better information for estimating mangrove AGB at larger geographical scales, thereby
reducing uncertainty in estimates of mangrove AGB storage.

Most of the 10 countries with largest total mangrove AGB stock from our study were also reported
in other research, such as that of Hutchison et al. (2014) [32] and Simard et al. (2019) [53], but the
order in which these countries appear on the list was different. Indonesia has the largest mangrove
AGB stock, which is consist in each study, even though the mangrove AGB in Indonesia and Papua
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New Guinea reported by our study was much lower than those of Hutchison et al. (2014) [32] and
Simard et al. (2019) [53] (Figure 7). This phenomenon maybe caused by the model we used to predict
biomass. Validation (Figure 5) showed that our model tended to underestimate mangrove AGB density
at high values (>125 Mg/ha) since observations are limited in these high biomass areas. The mangrove
AGB stock in Mexico, Cuba, and Colombia differed between the three studies. The difference in Mexico
and Cuba was induced by a bias in predicted mean mangrove AGB density in the different studies.
Adame et al. (2013) reported that the AGB in tall, medium and dwarf mangroves in the Mexican
Caribbean were as much as 176.2, 114.2 and 7.1 Mg/ha, respectively [68]. The mean mangrove AGB
density of Mexico in our study was 113.30 Mg/ha which is closer to that of the medium mangroves
reported by Adame et al. (2013). Simard et al. (2019) [53] reported a mean AGB in Mexico of
37.9 Mg/ha, which is much lower than that of the medium mangroves. This underestimation in
Simard et al. (2019) [53] may have been caused by using a global allometric equation to predict biomass.
The difference in Colombia was mainly caused by inconsistencies in mangrove extent. The mangrove
area in Colombia reported by Simard et al. (2019) [53] is much lower than that in our study and in
Hutchison et al. (2014) [32].
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4.3. Limitations and Future Studies

Although our model estimates global mangrove aboveground biomass fairly well, there are
limitations to this study. Available observation data was limited when compared with other regional and
global studies. Field data is fundamental for accurate estimations of global mangrove biomass. In this
study, we collected 510 records from a number of sources but more than 30% of them could not be used
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because of uncertainty in location information. Moreover, geolocation errors in mangrove plots cannot
be reduced by the point-radius model used by Su et al. [47] and Hu et al. [46], because randomly shifting
mangrove plot locations had a large probability of relocating the plot into the ocean. Furthermore,
the mismatch of spatial observation scales between plots and remote sensing data was a problem.
Researchers have begun recently to use drone-based LiDAR to retrieve mangrove biomass [69], using
it as a bridge to scale AGB from the plot level to the scale of satellite observations [70]. The increase in
drone-based LiDAR data in mangrove areas will benefit global mangrove forest biomass mapping
efforts in the future. Second, sparse GLAS datapoints within areas of mangrove lose some of the
variability in structure during extrapolation. Even though we used GLAS data within a 100-km buffer
of the coast to increase the number of GLAS datapoints, the explanatory power of the extrapolation
models were nearly 10% lower than those for China and global forest mapping [46,47]. Fortunately,
the Global Ecosystem Dynamics Investigation (GEDI) project [71] recently started collecting global
waveform LiDAR data, which will provide higher density data with a smaller footprint than GLAS.
This data will help us better understand variability in mangrove structure and biomass distribution.
Third, factors such as salinity [72] and river discharge [73] that specifically control the distribution and
production of mangrove forest should be added to the model in the future. With these factors, we
can more accurately estimate the biomass and better understand how mangrove AGB varies under
different environmental conditions.

5. Conclusions

This study produced a new global estimate of mangrove AGB for the year 2004, resulting in a
250-m resolution map that will be publicly available (http://www.3decology.org). This product was
generated using methodology that was successfully implemented previously to estimate nation-wide
forest AGB for China as well as global forest AGB. Three GLAS parameters and an additional nine
predictor variables were used to build a random forest estimation model using plot measurements
collected from published literature and free-access datasets. Based on this mangrove AGB analysis,
global mangrove AGB density was estimated to be approximately 115.67 (±48.89) Mg/ha on average,
with a total global AGB for mangrove forests of 1.52 Pg. Our product was compared to published
global mangrove AGB products, and it has better explanatory power (R2 = 0.48, RMSE = 75.85 Mg/ha)
than previous climate-based models. Results showed that this estimated global mangrove AGB storage
was similar to that predicted by other remote sensing methods, especially the mangrove AGB map
produced by Simard et al. [53]. Future research will include better LiDAR-based measurements of
mangrove biomass as well as additional factors known to affect mangrove distribution.
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