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Abstract: Coastal wetlands are a critical component of the coastal landscape that are increasingly
threatened by sea level rise and other human disturbance. Periodically mapping wetland distribution is
crucial to coastal ecosystem management. Ensemble algorithms (EL), such as random forest (RF) and
gradient boosting machine (GBM) algorithms, are now commonly applied in the field of remote sensing.
However, the performance and potential of other EL methods, such as extreme gradient boosting
(XGBoost) and bagged trees, are rarely compared and tested for coastal wetland mapping. In this study,
we applied the three most widely used EL techniques (i.e., bagging, boosting and stacking) to map
wetland distribution in a highly modified coastal catchment, the Manning River Estuary, Australia.
Our results demonstrated the advantages of using ensemble classifiers to accurately map wetland
types in a coastal landscape. Enhanced bagging decision trees, i.e., classifiers with additional methods
to increasing ensemble diversity such as RF and weighted subspace random forest, had comparably
high predictive power. For the stacking method evaluated in this study, our results are inconclusive,
and further comprehensive quantitative study is encouraged. Our findings also suggested that the
ensemble methods were less effective at discriminating minority classes in comparison with more
common classes. Finally, the variable importance results indicated that hydro-geomorphic factors,
such as tidal depth and distance to water edge, were among the most influential variables across the
top classifiers. However, vegetation indices derived from longer time series of remote sensing data that
arrest the full features of land phenology are likely to improve wetland type separation in coastal areas.
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1. Introduction

Coastal wetlands are a critical component of the coastal landscape, representing unique and important
habitat for many species ranging from marine megafauna [1] to waterbirds (particularly shorebirds, [2])
to terrestrial mammals [3]. They also provide several ecosystem services, including the removal of
nutrients and other pollutants, stabilising the shoreline, and carbon sequestration [4–6]. Nevertheless,
coastal wetlands are among the most threatened ecosystems [7] and are disappearing worldwide at an
alarming rate [8] due to land-use activities (e.g., conversion to aquaculture and agriculture, urbanisation; [9])
and other processes (e.g., climate change, sea level rise (SLR), decreased sediment supply [10–12]).

The growing awareness of the rapid loss of coastal wetlands and the services we derive from
them has resulted in extensive studies to quantify the problem, understand its underlying causes,
and assess possible solutions [9]. Among those studies, mapping wetland vegetation is crucial to
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coastal ecosystem management [13,14], because vegetation communities are directly associated with
ecosystem functions and services [15] and are suitable for assessing the conservation status of a site [16].
Recent advances in sensor design and geospatial analysis techniques are making remote sensing
systems practical and attractive to manage coastal landscapes through mapping and monitoring coastal
wetland vegetation [17] as well as other applications [14,18].

Located at the interface of land and marine ecosystems, coastal wetlands represent the most
diverse wetland types on the Earth and come in many forms including freshwater, brackish or
saline [8]. Moreover, they are highly dynamic systems responding to variations in tidal and freshwater
inflows [10]. Their high diversity and high degree of spatial heterogeneity may present a challenge for
effectively mapping wetland vegetation [19,20]. To effectively differentiate major plant communities,
most previous research relied on aerial photography (e.g., drone imagery) or commercial high
spatial resolution satellite imagery such as quick Bird and Worldview-2 [21–23]. The high costs,
limited coverage and irregular revisits associated with high spatial resolution imagery restrict their
wider applications. Reliable tools to accurately discriminate coastal wetland types using the freely
available medium-resolution satellite imagery (such as Landsat TM, ETM +, and OLI, or the more
recent Sentinels-1 and 2), therefore, are of particular interest to researchers and resource managers
involved in monitoring at the landscape or regional scale [24,25].

In parallel with the advances in remote data acquisition sensors, for example, the launch of
high-resolution satellites such as IKONOS (1 m), Quick Bird (0.61 m), and Worldview-2 (0.5 m),
developing machine learning algorithms (MLA) for land cover classification (e.g., vegetation mapping)
and modelling environmental data in general (e.g., Reference [26]) has become a major focus of the
remote-sensing literature [25,27–29]. A wide variety of models have been developed in the field of
machine learning since the term "Machine Learning" was coined in 1959 by Arthur Samuel [30]. Some of
the popular MLAs including Random Forest (RF), Support Vector Machine (SVM), Neural networks
(NN), and k-Nearest Neighbour (KNN), have been increasingly used for wetland classification and land
cover/use mapping in general [21,31,32]; in many cases, they provide improved results [25] due to their
capacity for handling more complex data better than classical statistical methods [33]. In the literature,
the terms “classifier” or “learner” refers to any algorithm or model that produces a hypothesis about
an object using a set of learning data. Here, we use these terms interchangeably as synonyms.

Ensemble learning (EL) methods, which involve building and combining multiple learners,
have been shown to produce better results and achieve improved generalisation compared with any
of the constituent classifiers alone [34–36]. The ensemble approach is particularly useful when the
amount of training data is small. With limited available training data, it becomes difficult to select
an appropriate classifier. Ensemble algorithms could reduce the risk of choosing a poor classifier by
averaging the votes of individual classifiers [37]. Many methods for constructing ensembles have
been developed, but bagging, boosting and stacking are the commonly used techniques [38]. Briefly,
bagging (also known as bootstrap aggregation; [39]) is the way to improve the stability and accuracy of
MLA through training the same algorithm many times by using different subsets sampled from the
training data (i.e., random samples with replacement, bootstrapping). RF, a modification of bagged
decision tree (DT) that builds a large collection of independent trees by randomly choosing a subset of
features (predictor variables) for each bootstrapped sample, can further improve predictive power [40].
The boosting method is an iterative process in which the first algorithm is trained on the entire training
dataset and the subsequent algorithms are built by fitting the residuals of the previous algorithm,
thus giving higher weight to those observations that were poorly predicted by the predecessor [41].
This mostly helps to reduce bias in the data set and to some extent leads to a reduction in variance as
well [39]. Unlike bagging and boosting, which combine the results of similar base learners to build a
strong learner through majority voting, stacking combines multiple layers of different MLAs using
another MLA [42,43].

Ensemble algorithms, such as RF [44] and Gradient Boosting Machine (GBM) [45], are now commonly
applied in the field of remote sensing, and generally produce satisfactory results. The performance and
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potential of other EL methods, such as extreme gradient boosting (XGBoost) [46] and bagged trees [47],
are rarely compared and tested for wetland mapping. In this study, we test EL techniques such as
bagging [48], boosting and RF using a wetland type map from a highly modified coastal landscape.
To evaluate the performance of various EL methods, some widely used benchmark classifiers such
as elastic net [49], decision tree (CART, [50]), Naïve Bayes classifiers (probabilistic machine learning
models) [51], regularised discriminant analysis (RDA), SVM, NN and kNN are also tested and compared.
Results from this investigation are intended to provide reliable information for the growing number of
practitioners and resource managers engaged in regional and national coastal wetland monitoring and
inventory projects.

2. Methods

2.1. Study Site

The Manning River Estuary (152.686◦ E and 31.879◦ S, Figure 1) is situated on the Mid North
Coast of New South Wales, Australia. The estuary has a warm temperate climate with mild winter and
summer. The mean-annual (1998–2018) rainfall is 1108 mm, mean maximum summer temperature is
28.5 ◦C, and mean minimum winter temperature is 7.5 ◦C [52]. It is a wave-dominated barrier estuary
with an open, trained entrance (i.e., breakwater and bank structures for stabilisation). The Manning
River and its tributaries are largely unregulated, with no major storages and weirs. However, the tidal
regime has been substantially altered through dredging and entrance training walls [53], and the natural
land cover has been extensively modified by land clearing for pasture and oyster aquaculture [54].

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 20 

 

2. Methods 

2.1. Study Site 

The Manning River Estuary (152.686 °E and 31.879 °S, Figure 1) is situated on the Mid North 
Coast of New South Wales, Australia. The estuary has a warm temperate climate with mild winter 
and summer. The mean-annual (1998–2018) rainfall is 1108 mm, mean maximum summer 
temperature is 28.5 °C, and mean minimum winter temperature is 7.5 °C [52]. It is a wave-dominated 
barrier estuary with an open, trained entrance (i.e., breakwater and bank structures for stabilisation). 
The Manning River and its tributaries are largely unregulated, with no major storages and weirs. 
However, the tidal regime has been substantially altered through dredging and entrance training 
walls [53], and the natural land cover has been extensively modified by land clearing for pasture and 
oyster aquaculture [54]. 

 
Figure 1. Manning River Estuary and the distribution of major wetland types. The Crowdy Bay 
National Park (>11,700 ha) is to the north of the estuary entrance. The broad vegetation classes are 
derived from aggregating vegetation classes recently mapped by EcoLogical in 2019 [55]. Background 
(aerial photo) shows extensive agricultural development. Inset map shows the location of the study 
site (marked) in New South Wales, Australia. 

The Manning River Estuary has diverse relic wetlands including open freshwater lagoons 
dominated by floating macrophytes, large sedgelands, shrublands, forested wetlands dominated by 
tree species such as Swamp Oak (Casuarina glauca), Swamp Mahogany (Eucalyptus robusta), and 
Broad-leaved Paperbark (Melaleuca quinquenervia), saltmarshes, and open fringing mangrove forests 
and mudflats [55]. These wetlands are typically patchy and small, scattered across the foreshore, 
inter-tidal, riparian and floodplain areas; except the Crowdy Bay National Park (~11,700 ha) where 
extensive wet and dry heathlands occur. They provide essential ecological services (e.g., breeding 
and foraging habitats for waterbirds, fish and crustaceans, [54]) for the maintenance of local and 
regional biodiversity. Wetland conservation is a major challenge facing the management of the 
Manning River Estuary due to the increasing threats of SLR and land clearing [54]. Although seagrass 

Figure 1. Manning River Estuary and the distribution of major wetland types. The Crowdy Bay National
Park (>11,700 ha) is to the north of the estuary entrance. The broad vegetation classes are derived from
aggregating vegetation classes recently mapped by EcoLogical in 2019 [55]. Background (aerial photo)
shows extensive agricultural development. Inset map shows the location of the study site (marked) in
New South Wales, Australia.
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The Manning River Estuary has diverse relic wetlands including open freshwater lagoons
dominated by floating macrophytes, large sedgelands, shrublands, forested wetlands dominated
by tree species such as Swamp Oak (Casuarina glauca), Swamp Mahogany (Eucalyptus robusta),
and Broad-leaved Paperbark (Melaleuca quinquenervia), saltmarshes, and open fringing mangrove
forests and mudflats [55]. These wetlands are typically patchy and small, scattered across the foreshore,
inter-tidal, riparian and floodplain areas; except the Crowdy Bay National Park (~11,700 ha) where
extensive wet and dry heathlands occur. They provide essential ecological services (e.g., breeding and
foraging habitats for waterbirds, fish and crustaceans, [54]) for the maintenance of local and regional
biodiversity. Wetland conservation is a major challenge facing the management of the Manning River
Estuary due to the increasing threats of SLR and land clearing [54]. Although seagrass beds are also
important wetlands with conservation and economic values, they are excluded from this study because
mapping seagrass requires different data sources.

2.2. Data Source and Preparation

2.2.1. Wetland Map

Using the recently available detailed wetland map [55], we created a wetland dataset of 9704 random
points using stratified sampling [56]. We only sampled the wetland polygons with high credibility (i.e.,
verified by field survey or drone imagery, [55]) to ensure the data quality. The original map discriminates
wetlands into 13 major groups based on dominant plant species. Since large-scale wetland classification
with satellite imagery has practical limitations to the number of classes [45], we aggregated the 13 groups
into five broad wetland types based on the vegetation structure and the salinity; including three freshwater
types (i.e., forested wetland, shrubland wetland, and grassy wetland) and two saline wetlands (i.e.,
mangrove and saltmarsh). In addition, we randomly sampled 2888 points from other land covers
using the land use/land cover map of NSW (NSW Landuse 2017, downloaded on 12 August 2019
from https://data.nsw.gov.au/data/dataset/nsw-landuse-2017) as “background” points. When creating
background points, we excluded built-up areas, artificial waters, and intensive agriculture land (mainly
modified pastures) because the hydrological connectivity in these areas is greatly interrupted. Most of
the background points were sampled from terrestrial forests and bushlands. The final wetland dataset
contained 12,592 data points with six classes.

2.2.2. Sentinel-2 Fractional Cover

Land Fractional Cover (FC) provides information about the proportions of green photosynthetic
vegetation (PV), non-photosynthetic vegetation (NPV) and bare soil (BS) of the ground surface. The FC
products are developed by the Joint Remote Sensing Research Program using Sentinel-2 imagery by
the Copernicus Programme (https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus),
and the algorithm is described in Reference [57]. In this study, we used only two of the three
components of FC, i.e., PV and BS, since theoretically the three parts sum up to 100%. From https:
//data-access.jrsrp.org.au/, we obtained all available FC images with less than 5% cloud cover of the
study area for the period of January 2019–December 2019 inclusively (a total of 36 images).

We first aggregated the 36 FC images to regular monthly time series of PV and BS using the
maximum function. With the regular monthly time series, we calculated three variables: the maximum
(max), minimum (min), and coefficient of variation (cov) values. Additionally, we calculated two
additional variables to represent the trend of FC by fitting a quadratic regression for each grid:

FC = a + bT + cT2 + ε (1)

where T = 1, 2, . . . , 12 is the month, and b and c are the linear and quadric trend, respectively.
A total of 10 FC metrics were computed for further analysis. The “Raster” package [58] within R

version 3.6.1 [59] was used for all raster manipulations and calculations.

https://data.nsw.gov.au/data/dataset/nsw-landuse-2017
https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus
https://data-access.jrsrp.org.au/
https://data-access.jrsrp.org.au/
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2.2.3. Hydro-Geomorphological Variables

We downloaded the 5 m LiDAR DEM (digital elevation model) covering the study site from
Geoscience Australia (https://elevation.fsdf.org.au/). The 5 m DEM was corrected for streams and
water bodies using field survey transects and has a fundamental vertical accuracy of at least 0.30 m
(95% confidence) and horizontal accuracy of at least 0.80 m (95% confidence). The 5 m DEM was
resampled to 10 m using bilinear interpolation. Several morphological variables were derived from the
corrected DEM, including.

1 and 2 degree detrended DEM: the residuals of the linear regression of polynomial (x, y) with a
degree of 1 and 2 (Figure 2),

DEMdetrend1 = DEMmean + X + Y + ε (2)

DEMdetrend2 = DEMmean + a0 + a1X2 + a2XY + a3Y2 + a4X + a5Y + ε (3)

where Equation (2) is the first-order detrended DEM and Equation (3) is the second-order detrended
DEM, and x and y are the longitude and latitude of the centre point of a grid cell.

CTI (Compound Topographic Index)—a steady-state wetness index calculated using

cti = ln
[
α

tanθ

]
(4)

where α = catchment area [(flow accumulation + 1) × (pixel area in m2)], and θ is the ground slope
angle in radians.

Local deviation from global (LDFG):

LDFGi = y− yi (5)

where y is the mean evaluation of the 3 by 3 window, and yi is the elevation of the focus grid.
Dissection: dissection in a continuous raster surface within a 3 × 3 window calculated using

dissection =
h− hmin

hmax − hmin
(6)

where h is the elevation of the focus grid and hmax and hmin are the maximum and minimum elevation
within a 3 × 3 window.

TPI (Topographic Position Index): the difference between the value of a cell and the mean value
of its 8 surrounding cells

TPI = h− hmean. (7)

These variables were computed using the ‘spatialEco’ package by Reference [60] and package
‘Spatstat’ by Reference [61].

In addition, with the modelled tidal plane of High High-Water Solstice Springs (HHWSS) acquired
by Reference [62], we calculated two geohydrological variables as predictors: Distance to water edge
(Distance) and water depth at highest tide (Tidal). To calculate the distance to water edge, we first
defined the area of inundated land at HHWSS as all positive values of the difference between the tidal
plane and the DEM. The inundated polygons were then converted to polylines, and a raster with 10 m
resolution of Euclidean distance to polyline was created using ArcMap. The water depth at HHWSS
was the magnitude of the difference between the tidal plane and DEM; therefore, negative values
indicate higher grounds that are not inundated at HHWSS and positive values suggest lowlands that
are flooded by tidal inundation.

To limit the effect of collinearity on model performance, we excluded the highly correlated variables.
We calculated the Pearson correlation coefficients R between every pair of the variables. For the pair
with absolute R greater than 0.70, we kept only one variable for further analysis. This procedure

https://elevation.fsdf.org.au/
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resulted in a set of 17 variables; namely CTI, De_trend1, De_trend2, Tidal, Distance, TPI, LDFG,
bs.trend.1, bs.trend.2, pv.trend.1, pv.trend.2, bs.max, bs.min, bs.cov, pv.max, pv.min, and pv.cov.
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Figure 2. Training performance of the 18 machine learning models for wetland classification. Black dots
are the mean value; box shows the 1st and 3rd quartiles; the dashed whiskers are the maximum and
minimum values; grey dots are outliers based on the repeated-CV resampling. If there is no overlap of
the quantile box, the difference is statically significant. See Table 1 for classifier description.

3. Modelling

We applied 18 classifiers (Table 1) to discriminate the wetland types in the Manning River Estuary.
Details of the algorithms can be found in the listed references. Among these classifiers, seven are single
and the rest are an ensemble. Each of the classifiers in Table 1 was tuned to find the best combination
of parameters for optimising the prediction power. The entire dataset was split into training (75%,
9445 samples for model building) and testing (25%, 3147 samples for model verification) subsets using
stratified random sampling. With the training dataset, we used the repeated K-fold cross-validation
resampling method (repeat = 3 and k = 5 in this study) to tune the model parameters. In addition,
since the classes are imbalanced, we adopted the “up-sampling” strategy, i.e., randomly sampled (with
replacement) the minority class to be the same size as the majority class, to prevent biased prediction [63].
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Final model selection was based on AUC (area under the receiver operating characteristic curve,
see below). We used the caret package [63] for model training.

Our focus was to investigate the effectiveness of the three most popular EL methods (i.e., bagging,
boosting, and stacking) to improve model performance and prediction accuracy, so we provide a brief
description below.

3.1. Bagging

Bagging or bootstrap aggregating, introduced by Reference [39], is an ensemble method that involves
training the same algorithm many times by using different subsets sampled from the training data.
The final output prediction is then averaged across the predictions of all the sub-models. Bagging generally
improves classification accuracy by decreasing the variance of the classification errors [39,64]. Breiman [39]
suggests that bagging can improve accuracy greatly if perturbing the learning set can cause a significant
change in the predictor constructed. Prediction of a test sample is made by taking the majority vote of the
ensemble [65]. As each ensemble member is trained using a different set of samples, they differ from
each other. By voting the predictions of each classifier, bagging seeks to reduce the error level due to the
variance of the base classifier [39].

Table 1. The 18 classifiers evaluated in this study.

Family/Classifier R Package Reference

Single

rpart: regression and classification tree rpart [67]
RDA: regularised discriminant analysis MASS [68]
kknn: weighted k-Nearest Neighbours kknn [69]

nn: feed-forward neural network nnet [70]
naiveBayes: the Bayes rule klaR [71]

svm: Support Vector Machines with Radial Basis Function Kernel kernlab [72]
GLM: elastic net regression glmnet [73]

Boosting

gbm: Stochastic Gradient Boosting gbm [74]
C50: rule-based models C5.0 [75]
adaBag: Boosted CART adabag [76]

extreme gradient boosting: regression (xgbLinear) xgboost [46]
extreme gradient boosting tree (xgbtree) xgboost [46]

Bagging

RF: Random Forests * randomForest [39]
wsrf: weighted subspace random forest * wsrf [77]

parRF: Parallel Random Forest * e1071 [78]
treeBag: Bagged CART Ipred [66]

avNNet: averaged neural networks NNet [69]

stackModel: stacking of top four classifiers with GBM Various [79]

* Extension of bagged decision trees with increased diversity through randomly selecting of subsets of predictor variables.

3.2. Boosting

In boosting, multiple models are trained sequentially, and each model learns from the errors of its
predecessors [66]. The learning is achieved using adaptive resampling, in that a misclassified data
point produced by an earlier classifier is selected more often than a correctly classified one. For each
cycle in the training iteration, a weight is assigned to each training data point. In the next iteration,
the classifier is obliged to concentrate on reweighted data points that were misclassified in the previous
iteration. The final classifier is a weighted sum of the ensemble predictions.
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3.3. Stacking

Stacking is concerned with combining heterogeneous machine learning models (base learners)
using another data mining technique [80]. First, the base learners are trained, then a combiner
(also called meta-classifier), is trained to make a final prediction based on the predictions of the
base learner [81]. Such stacked ensembles tend to outperform any of the individual base learners
(e.g., a single RF or GBM) and have been shown to represent an asymptotically optimal system for
learning [42,78].

3.4. Performance Metrics for Classification Assessment

Many performance metrics or measures, such as Log-Loss, kappa coefficient, producer’s and
user’s accuracy, and AUC, are given in the literature with the aim of providing a better measure of
mapping accuracy [82]. Among these metrics, overall and individual class accuracies derived from
the error matrix are the simplest, therefore have been widely used to evaluate model performance
(e.g., References [45,83]). The kappa coefficient, which measures the difference between the actual
agreement in a confusion matrix and the chance agreement, provides a better measure for the accuracy
of a classifier than the overall accuracy as it takes into account the whole confusion matrix rather than
the diagonal elements alone [84]. AUC is another widely used evaluation metric for checking the
classification model’s performance [85]. ROC (receiver operating characteristic curve) is a probability
curve; AUC represents degree or measure of separability. It tells how much the model is capable of
distinguishing between classes. The higher the AUC, the better the model is at predicting. In this study,
we used the kappa coefficient, overall accuracy (OAA), mean balanced accuracy (MBA), and AUC to
compare the models. In addition, for model validation, we also reported the class-level producer’s and
user’s accuracy.

4. Results

4.1. Training Performance

Performance summary of the 18 tested classifiers is shown in Figure 2. In general, the rank of
performance of the classifiers is consistent between the performance metrics kappa and OAA but
not AUC and MBA (Figure 2). The ensemble classifiers had higher performance than the benchmark
classifiers except for bagged neural networks (avNNet), which were among the less accurate performers
(Figure. 2). The single tree classifier (rpart) had the worst performance in terms of the kappa coefficient
of agreement (0.34), OAA (0.46), MBA (0.47). In addition, the resampling statistics indicated that rpart
performed significantly worse than all other classifiers indicated by all assessment metrics except AUC
(Figure 2). Naive Bayes was also among the low performers with a kappa of 0.41, and OAA and MBA
of 0.52. Using the performance lexicon of Landis and Koch [86] for kappa coefficient, rpart was fair for
discriminating wetland types whereas all other individual classifiers achieved moderate performance.
All ensemble classifiers except gbm and avNNet had substantial power to separate wetland types [86].

Bagging classifiers with extended methods to add diversity between its ensemble members (i.e.,
wsrf, RF and parRF in this study) had significantly higher predictive power than boosting algorithms like
xgbtree, xgblinear and adaBag, in terms of kappa, OAA and AUC (Figure 2). In addition, the differences
between wsrf, RF and parRF were insignificant (Figure 2). In contrast, bagging algorithms based purely
on bootstrapping (e.g., treeBag and avNNet) generally performed poorer than boosting ELs (such
as xgbtree and adaBag) although the difference might not be significant (Figure 2). The rule-based
ensemble trees (i.e., C50) were also among the highest performers, having comparable predictive
powers with RF, parRF and wsrf.
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Based on OAA, kappa and MBA, the stacking ensemble ranked as the best model although the
difference was not significant for OAA and Kappa. The stacking ensemble was built with the four top
classifiers (i.e., wsrf, parRF, rf, and C50) using GBM as the top layer learner. The predictions of the top
four classifiers had a very low correlation (<0.38), thus the application of stacking is likely to have
better performance [37].

4.2. Testing Performance

We validated trained classifiers with an independent testing dataset, and the summary of testing
performance was presented in Table 2. As with the training performance, all ensemble classifiers
showed good testing performance indicated by a high kappa coefficient of agreement (Kappa > 0.6,
Table 2) between prediction and observation. Similarly, the individual classifiers all had moderate
predictive power except rpart, which had fair predictive power (kappa = 0.33, Table 2).

Table 2. Summary of the testing performance of the 18 machine learning classifiers.

Classifier Accuracy Kappa MBA
Balanced accuracy (BA)

BG Forest Grass Shrub Saltmarsh Mangrove

stackModel 0.7655 0.6817 0.8439 0.8817 0.8315 0.8699 0.8174 0.7701 0.8928
RF 0.7734 0.6865 0.8321 0.8826 0.8386 0.8606 0.8145 0.7198 0.8765

wsrf 0.7722 0.6833 0.8293 0.8846 0.8336 0.8490 0.8046 0.7299 0.8743
parRF 0.7684 0.6765 0.8220 0.8778 0.8343 0.8556 0.7893 0.7167 0.8583

C50 0.7639 0.6693 0.8173 0.8734 0.8285 0.8578 0.7905 0.7015 0.8521
xgbtree 0.7426 0.6511 0.8286 0.8668 0.8154 0.8704 0.8049 0.7502 0.8640
adabag 0.7410 0.6408 0.8099 0.8598 0.8130 0.8493 0.7914 0.7121 0.8339

xgblinear 0.7350 0.6437 0.8326 0.8668 0.8052 0.8591 0.8234 0.7741 0.8671
treeBag 0.7363 0.6347 0.8098 0.8562 0.8077 0.8446 0.7888 0.7305 0.8307

gbm 0.6969 0.6035 0.8286 0.8434 0.7800 0.8577 0.8315 0.7839 0.8751
svm 0.6740 0.5797 0.8229 0.8485 0.7632 0.8429 0.8147 0.8114 0.8564

kknn 0.6657 0.5346 0.7523 0.8196 0.7618 0.8092 0.7288 0.6626 0.7317
rda avNNet 0.6060 0.5002 0.7869 0.7949 0.7236 0.7947 0.7825 0.7684 0.8575

nn 0.5875 0.4814 0.7828 0.8088 0.6913 0.8280 0.7816 0.7552 0.8320
GLM 0.5647 0.4500 0.7625 0.7431 0.7057 0.7799 0.7705 0.7393 0.8367
rda 0.5405 0.4272 0.7620 0.6870 0.7085 0.7921 0.8090 0.7683 0.8073

naiveBayes 0.5297 0.4201 0.7611 0.7001 0.6912 0.7901 0.8147 0.7340 0.8364
rpart 0.4474 0.3301 0.7080 0.7090 0.6203 0.7449 0.7006 0.6878 0.7851

See Table 1 for model description. Balanced accuracy = (Sensitivity + Specificity)/2. MBA=mean balanced accuracy.

In terms of OAA and Kappa coefficient, RF was the best classifier followed by wsrf. However,
the stacking EL ranked first in terms of MBA (Table 2). At the wetland type level, all ensemble classifiers
achieved high discriminating power for background, forested wetlands, mangroves, and grassy
wetlands (BA > 0.8, Table 2). In contrast, all those classifiers were less effective at separating saltmarsh,
with the highest balanced accuracy of 0.7701 achieved by stacking ensemble. The discrimination
power for freshwater shrubland varied with classifiers, and some individual classifiers such as SVM,
Naïve Bayes and rda achieved satisfactory results (BA > 0.8).

SVM was superior to other tested methods in discriminating the minority classes (i.e.,
shrub wetlands and saltmarshes, which have less distribution than other wetland types in the
Manning River area, Figure 3). One boosting classifier, GBM, also achieved good performance in
discriminating minority classes but was less effective than other ensemble classifiers in classifying the
majority classes (such as background and forested wetlands, Figure 3) (Table 2).
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4.3. Predicted Wetland Type Maps

We selected three classifiers, (wsrf for bagging, xgbtree for boosting, and svm for the individual
classifier, they were the best performers among their corresponding category) to predict the wetland
type distribution in the study area. In comparison with the original map, all classifiers over-estimated
wetland distribution at the northern part of the Crowdy Bay National Park and areas adjacent to the
northern border of the park categorised as “grazing native vegetation” in the NSW land use map.
In these areas, many parts of the background were misclassified as forested wetlands, and to less
extent, as shrub wetlands, but the misclassification between wetland types was uncommon (Figure 3).
In other areas, where agricultural land uses dominate, and wetlands occur as relic small patches or
linear features along the riverbanks and the edge of modified pastures, the predictions were relatively
accurate in terms of the occurrences and types of wetland although overestimating the size was
common (Figure 3).

The single classifier svm tended to misclassify background to saltmarsh, and to less extent,
mangrove, across the estuary. The overestimation was more profound in Mitchells Island near the
entrance (Figure 3). In addition, the overestimation mainly occurred at the small openings within a
large forest (or shrub) patch.

The locations where the three algorithms agree and disagree are shown in Figure 4. In most of the
locations (70% of the grids), all three classifiers agree in class allocation. There are also many locations
(27%) where two classifiers agreed with each other, and a small proportion of grids (3%) where there
was no agreement between the predictions of the classifiers. The disagreements appeared randomly
distributed across the study area.



Remote Sens. 2020, 12, 1683 11 of 18

Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 20 

 

shrub wetlands and saltmarshes in the Crowdy Bay National Park at the upper right of the estuary is 
evident for all ensemble classifiers. 

The locations where the three algorithms agree and disagree are shown in Figure 4. In most of 
the locations (70% of the grids), all three classifiers agree in class allocation. There are also many 
locations (27%) where two classifiers agreed with each other, and a small proportion of grids (3%) 
where there was no agreement between the predictions of the classifiers. The disagreements 
appeared randomly distributed across the study area. 

  

Figure 4. Map showing the locations where three classifiers (wsrf, xgbtree and svm) agree and 
disagree in predicting wetland types. The three classifiers predicted the same types for the majority 
of grids. 

4.4. Variable Importance 

We extracted the contribution of predictor variables to model performance for four classifiers: 
one boosting tree (xgbtree), one bagging tree (RF), and two individual classifiers (NN and rpart). 
With the exception of one tree classifier, the contribution of tidal height was far more important than 
other predictors (Figure 5). Other hydro-geomorphological variables, such as distance to the water’s 
edge and LDFG, also made a large contribution to the discriminative power of ensemble classifiers. 
The contribution of predictors derived from Sentinel-2 fractional cover was also substantial, 
especially for the individual classifiers, which are the top predictor for rpart (Figure 5). 

Figure 4. Map showing the locations where three classifiers (wsrf, xgbtree and svm) agree and disagree
in predicting wetland types. The three classifiers predicted the same types for the majority of grids.

4.4. Variable Importance

We extracted the contribution of predictor variables to model performance for four classifiers:
one boosting tree (xgbtree), one bagging tree (RF), and two individual classifiers (NN and rpart).
With the exception of one tree classifier, the contribution of tidal height was far more important
than other predictors (Figure 5). Other hydro-geomorphological variables, such as distance to the
water’s edge and LDFG, also made a large contribution to the discriminative power of ensemble
classifiers. The contribution of predictors derived from Sentinel-2 fractional cover was also substantial,
especially for the individual classifiers, which are the top predictor for rpart (Figure 5).Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 20 
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5. Discussion

The recent rapid progress in ML has resulted in a variety of algorithms, including individual
classifiers (e.g., ANN, SVM and DT), boosting and bagging ensembles (such as adaboost, GBM and
RF), and stacking ensembles. Some of these methods (e.g., RF and SVM) have been widely applied in
remote sensing classification [28,29] while the applications of others (e.g., extreme gradient boosting)
are relatively new with limited applications to date [64,87]. Therefore, comparative studies that
evaluate the predictive power of classifiers are necessary to guide application-oriented research [87].
This is particularly true for mapping wetland types in dynamic environments such as coastal
catchments, where the loss, transition and degradation of wetlands are accelerating [88]. In this study,
we provided a comprehensive comparison of some advanced ensemble techniques in discriminating
wetland types in a highly modified estuary using the combination of Sentinel-2 fractional cover and
hydro-geomorphological variables. Our findings contributed to improving the applicability of ML for
detailed coastal wetland mapping.

5.1. Overall Performance of Boosting, Bagging and Stacking Classifiers

There is a general consensus in the literature that ensemble classifiers outperform individual
approaches in many applications [36,37,39,42,78]. Our results confirm this belief by indicating that
all ensemble classifiers, except avNNet, had a significantly higher performance than the individual
classifiers in both training and testing based on several performance metrics; OAA, kappa and MBA.
Moreover, our results suggest that bagging classifiers with additional processes to add diversity
between its ensemble members (for example, randomly selected a subset of predictor variables in RF)
achieved significantly higher predictive accuracy compared to the other classifiers, including bagging
methods based purely on random resampling (e.g., treeBag) and all boosting techniques. This finding
suggests that ensemble diversity may be the key factor affecting overall classification performance [89].
For the high-performance ensemble classifiers, our results also show that differences in discrimination
capacity were not significant (there were overlaps in the 1st and 3rd quartile between the performance
metrics, Figure 2). Note that the rule-based bagging C50 produced comparable accuracy to other high
performing classifiers.

Through combining different independent classifiers using a meta-classifier [81], stacking ensembles
is one of the most active research areas in ML [29]. Many studies have demonstrated that stacking ensemble
classifiers could improve the classification accuracy in comparison to their member classifiers [34,41,78,90].
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In this study, we used GBM as the meta-learner to combine four top classifiers. Although the stacking
model was among the top performers, the assessment using the four performance metrics (i.e., OAA,
Kappa, MBA and AUC) was inconsistent for both training and testing (Figure 2 and Table 2). While the
stacking model has significantly higher training MBA than any of its component classifiers, the AUC
was significantly lower. In addition, the training performance of the stacking model is comparable
(i.e., no significant difference) with the member classifiers’ Kappa and OAA. Thus, our study did
not demonstrate the superiority of stacking ensemble over well-tuned bagging or boosting classifiers.
Nevertheless, we only tested one stacking model, and the potential for using other algorithms [91] and
other deep learning methods (such as a deep belief network, [92]) to fuse the independent classifiers,
and the effects of classifier selection [78,91], were not evaluated. A further comprehensive study is needed
to evaluate fully the potential of stacking ensemble algorithms in mapping the distribution of wetlands in
coastal landscapes.

5.2. Individual Class Performance

At the class level, the top ten classifiers (all ensembles) achieved high accuracy for background,
forest, grassy wetland, and mangrove. However, all these classifiers were less effective at discriminating
the less common classes (i.e., shrubland and saltmarsh), even though we adopted the “up-sampling”
strategy [63] in model tuning to limit the bias towards the majority class [93]. For example, the producer’s
accuracy (results not shown) of the top 10 classifiers for saltmarsh was particularly low, ranging from
42% (C50) to 62% (gbm). Learning from imbalanced data sets is a challenging problem in knowledge
discovery in many real-world applications [94] and remains an active research area in land use land
cover classification [95] including wetland mapping.

Of the targeted classes, saltmarsh is the least abundant wetland type. It often occurs as a small
patch, surrounded by forest or shrubland (Figure 3). The highest performance of MBA 81% (producer’s
accuracy 70%) was achieved by svm. However, visual comparison of svm prediction and the original
map (Figure 3) revealed that svm overestimated saltmarsh distribution (mainly the extent of wetland)
at many locations. The overestimation was mainly due to misclassification of the adjacent background
(and to less extent shrubland) as saltmarsh, reflecting the importance of mapping scale and spectral
resolution of the remotely sensed data [96].

5.3. Variable Importance

In this study, two groups of predictor variables were combined to model wetland distribution.
By using the statistical summary calculated from the land fractional cover time series derived from
multi-temporal Sentinel-2 data, this study followed earlier studies which linked the land phenology
with plant community type (e.g., References [32,97]). Including hydro-geomorphic factors, which force
typical zonation of vegetal settlement according to the plant tolerance of salinity and inundation [8,10],
can enhance the discrimination capacity of the classifiers [98]. The importance of tidal depth, which was
calculated as the difference between the DEM and HHWSS tidal plane, and distance to water edge,
was consistent across most classifiers, confirming the key roles of inundation regime and salinity
gradient in determining the coastal vegetation distribution [8].

The contribution of metrics summarising the time series of fractional cover to the discriminating
power varied across the classifiers and was generally lower than that of hydro-geomorphological
variables in ensemble models (but not in individual classifiers). This is surprising since many previous
studies demonstrated the dominant contribution of vegetation indices derived from remote sensing data
in vegetation mapping (e.g., References [41,98–100]). Due to data availability, the FC variables in this
study were based on the Sentinel-2 images in 2019 (to match the time of wetland mapping), which was
extremely dry (total rainfall 453 mm, less than half of the long-term mean, [52]). Under drought
conditions, coastal vegetation, especially freshwater species, are stressed [101]. Therefore, plant growth
characteristics such as growth rate, growth seasonality and peak growth might not be as distinguishable
between vegetation types as they would otherwise be. Future research using longer time series of
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FC data that arrest the full features of land phenology are likely to provide enhanced and improved
wetland distribution maps in coastal areas.

6. Conclusions

This study has demonstrated the advantages of using ensemble classifiers to accurately map wetland
types in a coastal landscape. All ensemble models except avNNet (averaged neural networks) had
significantly higher performance than individual classifiers. Enhanced bagging DTs, i.e., classifiers with
additional methods to increase ensemble diversity such as random forest and weighted subspace random
forest, show comparably high predictive power. For the stacking method investigated in this study, i.e.,
using stochastic gradient boosting (GBM) to combine the four non-correlated top performers, our results
are inconclusive, further comprehensive study is encouraged. Our findings also suggest that the ensemble
methods are less effective to discriminate minority classes (saltmarsh in our case) in comparison with
more common classes. Finally, the variable-importance results indicate that hydro-geomorphic factors,
such as tidal depth and distance to water edge, are among the most influential variables across the top
classifiers. However, vegetation indices derived from longer time series of fractional cover data that reflect
the full features of land phenology are likely to improve wetland type separation in coastal areas.
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