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Abstract: Disturbance monitoring is an important application of the Landsat times series, both to
monitor forest dynamics and to support wise forest management at a variety of spatial and temporal
scales. In the last decade, there has been an acceleration in the development of approaches designed
to put the Landsat archive to use towards these causes. Forest disturbance mapping has moved from
using individual change-detection algorithms, which implement a single set of decision rules that may
not apply well to a range of scenarios, to compiling ensembles of such algorithms. One approach that
has greatly reduced disturbance detection error has been to combine individual algorithm outputs in
Random Forest (RF) ensembles trained with disturbance reference data, a process called stacking
(or secondary classification). Previous research has demonstrated more robust and sensitive detection
of disturbance using stacking with both multialgorithm ensembles and multispectral ensembles
(which make use of a single algorithm applied to multiple spectral bands). In this paper, we examined
several additional dimensions of this problem, including: (1) type of algorithm (represented by
processes using one image per year vs. all historical images); (2) spectral band choice (including both
the basic Landsat reflectance bands and several popular indices based on those bands); (3) number
of algorithm/spectral-band combinations needed; and (4) the value of including both algorithm
and spectral band diversity in the ensembles. We found that ensemble performance substantially
improved per number of model inputs if those inputs were drawn from a diversity of both algorithms
and spectral bands. The best models included inputs from both algorithms, using different variants
of shortwave-infrared (SWIR) and near-infrared (NIR) reflectance. Further disturbance detection
improvement may depend upon the development of algorithms which either interrogate SWIR and
NIR in new ways or better highlight disturbance signals in the visible wavelengths.
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1. Introduction

Forests are critically important for global ecological functions, including processes such as
moderating climate, conserving biodiversity, and maintaining the hydrologic cycle [1–3]. Consequently,
the monitoring of forest disturbance is a key concern globally [4,5], and remote-sensing via earth
orbiting satellites has played an increasingly important role [6–8].

Landsat data have become the premier remote sensing dataset for monitoring forest
disturbance [9–11] since the opening in 2008 of the global, high-quality, and well-calibrated multidecade
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data archive, offering free access to its collections [12]. Methods for characterizing forest disturbance
with Landsat time series have greatly advanced over the recent past. Perhaps the most important
advancements have been the greater use of denser time series [13], which has led to automated solutions
for removal of clouds, cloud shadows, and snow [14,15], and the development of a number of highly
sophisticated algorithms to detect and characterize disturbance [16].

As discussed by Zhu [16], two of the most widely used algorithms for processing Landsat
time series to monitor disturbance have been LandTrendr [17] and Continuous Change Detection
and Classification (CCDC), [18]). Cohen et al. [19] compared these and several other contemporary
algorithms against a reference disturbance dataset that encompassed a broad range of forest types,
disturbance intensities, and disturbance agents. That study highlighted the challenges of broadening
the application domain of somewhat locally and finely tuned automated algorithms, revealing a
propensity for increased detection errors when tested outside the conditions for which the algorithms
were originally developed and tested. This was especially true when the algorithms encountered
lower-severity disturbances, a ubiquitous class of disturbances that tend to have rather subtle spectral
change magnitudes [20].

Following the algorithm comparison study of Cohen et al. [19], Healey et al. [21] tested an ensemble
approach called stacking (or stacked generalization, [22]) that combined outputs from a number of
algorithms in a secondary classification model trained with reference data. Specifically, a Random
Forests (RF, [23]) model was applied to several disturbance-related outputs (e.g., spectral change
magnitude, duration) from nine different algorithms and a few ancillary datasets (i.e., topography,
forest type, Landsat spectral data). The RF model was calibrated with the broadly encompassing
disturbance reference dataset of Cohen et al. [19]. Stacking greatly reduced disturbance classification
errors relative to those associated with the original algorithm classifications.

Most of the algorithms included in the Cohen et al. [19] and Healey et al. [21] studies, including
LandTrendr, relied on a single Landsat spectral band or index (hereafter collectively referred to as
bands). Given the success of secondary classification based on a reference disturbance dataset and
ensemble modeling by Healey et al. [21], Cohen et al. [24] used the approach to integrate LandTrendr
outputs from multiple spectral bands. That study revealed the power of an explicitly multispectral
approach, when relying on a single algorithm such as LandTrendr, to classify forest disturbance with
Landsat data. In addition, the Cohen et al. [24] study highlighted the importance of shortwave-infrared
bands and spectral indices that include those bands for the accurate detection of forest disturbances.

With evidence of stacking’s effectiveness using inputs both from different algorithms [21] and
from different bands using the same algorithm [24], there was an outstanding operational question of
whether applications should focus on building ensembles from multiple algorithms, multiple bands,
or both. Subsidiary to that question was a need for insight into the relative strengths of different
classes of algorithms and bands in an ensemble context. We address these questions in this study by
testing alternate ensembles composed of different numbers of inputs from varying bands and two
different algorithms: LandTrendr and Continuous Monitoring of Land Disturbance, [25] (COLD).
COLD is based on CCDC, but, whereas CCDC searched for breakpoints in a time series associated
with relatively large spectral change magnitudes, it was not sensitive to the subtler change magnitudes
often associated with forest disturbance. COLD was designed to address this deficiency.

This study had several objectives, including: (1) comparing the performance of LandTrendr
and COLD for forest disturbance detection in a Landsat multispectral ensemble modeling context;
(2) evaluating the power of integrated, multialgorithm (LandTrendr+COLD) ensemble models for
forest disturbance detection; and (3) determining which Landsat spectral bands and regions are most
important for forest disturbance detection in a multialgorithm, multispectral context.



Remote Sens. 2020, 12, 1673 3 of 15

2. Methods

2.1. Sample-Based Disturbance Reference Data

A sample of 3828 forested Landsat pixel (i.e., plot) locations, selected via a two-stage stratified
cluster design, was used in this study (Figure 1). This sample (trimmed from the original 3861 locations),
along with the broad mix of forest types it contained and the estimation strategy, was thoroughly
described in Cohen et al. [20], where it was used to estimate forest disturbance trends between 1985
and 2012 across the conterminous United States. For that study, disturbance data for the sample
were collected with TimeSync, a tool for Landsat time-series visualization and disturbance data
collection [26]. For a given plot, the Landsat time series consisted of, to the extent possible, one growing
season cloud-free Landsat image chip (256-by-256 image pixels, centered on the plot) per year.
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As described by Cohen et al. [20], using TimeSync, Landsat time-series data (1984–2013) for
each plot was examined to determine if there was a disturbance (e.g., harvest, fire, etc.) at some
time during the time series (between 1985 and 2012) and, if so, the year the disturbance occurred.
As TimeSync provides segment-based observations, similar to LandTrendr [17], where disturbances
lasted for multiple years (e.g., progressive tree mortality within a plot associated insect and disease
spread), both the start date and end date were noted and the disturbance observations were annualized.
Disturbance interpretations were supported by multiyear high-resolution image chips for the same
locations available in Google Earth and other related data.

2.2. Landsat Data Preparation and Algorithm Application

For each of the 3828 sample plot locations, two new Landsat time-series datasets (1984-2013)
were created for the current study: one for LandTrendr and one for COLD. The data used were from
the Landsat Collection 1 dataset (https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-
1?qt-science_support_page_related_con=1#qt-science_support_page_related_con). Note that the 33
plots trimmed from the original Cohen et al. [20] sample were scattered across many individual
Landsat scenes containing few or no other plots and were thus not cost-effective to recover for this
study using the newer Collection 1 datasets. Both algorithms were run on the six primary spectral

https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1?qt-science_support_page_related_con=1#qt-science_support_page_related_con
https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1?qt-science_support_page_related_con=1#qt-science_support_page_related_con
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reflectance bands (i.e., blue, green, red, near-infrared, and two shortwave-infrared). Additionally,
seven common spectral indices were used, including Tasseled Cap brightness (TCB), greenness (TCG),
wetness (TCW), and angle (TCA), the normalized difference vegetation index (NDVI), the normalized
difference moisture index (NDMI), and the normalized burn ratio (NBR), as described in Table 1 of
Ref. [24]. Because most of the Landsat data were from TM and ETM+, we used the conventional
assignment of band numbers to spectral regions: for visible (VIS) b1 = blue, b2 = green, b3 = red;
b4 = near-infrared (NIR); and shortwave-infrared (SWIR) b5 = SWIR1, and b7 = SWIR2.

We sought a simple classification for the various indices that was consistent with the VIS, NIR,
and SWIR terminology above. Among the included indices (see Table 1 in [24] for formulations), TCW,
NDMI, and NBR exploit the contrast between SWIR and other spectral regions (NIR for NDMI and
NBR; both NIR and VIS for TCW). Consequently, we refer to these as SWIR-based bands. As NDVI
contrasts NIR against red, and TCG contrasts NIR against both VIS and SWIR, we refer to these as
NIR-based bands. TCB expresses more balance among the three spectral regions and was originally
designed to encompass pixels having little to no vegetation [28,29]. Because TCA contrasts TCG with
TCB, it can be thought of as strongly related to NDVI; thus, in this context, we consider it an NIR-based
band. In keeping with our earlier statement that we will refer to indices and bands alike simply as
bands, for further simplification, we will refer to b5, b7, and SWIR-based indices as SWIR bands and
b4 and NIR-based indices as NIR bands.

2.2.1. LandTrendr

LandTrendr is a time-series segmentation algorithm that processes a temporal stack of spectral
data for a single cloud-free observation from the mid-growing season for each year, using a standard
compositing approach to reduce cloud-contaminated observations [17]. Following the methods
(Section 2.2) of Cohen et al. [24], for the current study, LandTrendr was run on each plot once for
each of the aforementioned 13 bands. For each band examined, the plot-level segmentations used the
LandTrendr segmentation parameter value set from Table 2 of Kennedy et al. [30]. Initial segments
had either a positive or negative slope, or, in rare cases, a slope of zero (stable). The sign of the slope
and its interpretation as disturbance or recovery/regrowth (i.e., non-disturbance) is band-dependent.
To reduce disturbance omission and commission, LandTrendr normally uses a spectral change filter
applied to the resulting segment slopes [17]. However, our approach utilized a secondary statistical
classification model (Random Forests) which obviated the need for a spectral change filter. To minimize
omission, we declared as a tentative disturbance any LandTrendr segment having a non-zero slope of
spectral change in the band-relevant direction of disturbance. Due to this intentional tolerance for
disturbance, and inherent LandTrendr segmentation errors, this knowingly increased false positive
disturbances. As such, the primary function of the RF model was to minimize commission. The labels
for all tentative disturbance and non-disturbance segments were annualized prior to use of the RF
modeling. For example, a disturbance segment lasting four years from, say from 1999-2002, would
contain a disturbance call for each year in that time span: 1999, 2000, 2001, and 2002.

Band-specific application of the RF model used a purposively selected band-specific training
dataset derived from a combination of TimeSync interpretations of real disturbance and false positive
disturbances from the LandTrendr segmentation (called the union dataset). For all model runs,
regardless of band, the annualized disturbance observations from any plot where TimeSync declared
a disturbance were used to represent the disturbance class. For a specific band in a given year,
where LandTrendr declared a disturbance that was not matched by a TimeSync disturbance, those
observations represented the non-disturbance (false positive) class. This purposive, union dataset
sample had the effect of minimizing the imbalance in annualized disturbance and non-disturbance
observations in the training dataset, and had the collateral benefit of feeding the model the most
challenging observations [24].

The RF prediction of disturbance probability for any given band in any given year, as described in
Cohen et al. [24], was a function of three predictor variables: the band value for that year, the spectral
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difference between that year and the previous year, and the number of years duration of the original
segment containing that year. Each RF model used 500 trees, and out-of-bag (OOB) errors for the
training dataset were reported as a function of RF probability threshold. As we sought a balance of
omission and commission errors, we adjusted the threshold until that balance was realized among the
two relevant cells of the disturbance/non-disturbance error matrix. Although models were trained
with a subset of the full dataset that focused on TimeSync disturbance observations and false-positive
LandTrendr detections, the probability threshold adjustment was applied to the entire reference dataset.
As in Cohen et al. [24], we created multispectral LandTrendr ensembles using all combinations of all
bands, taken 2–13 at a time (Table 1). The above approaches based on training via a union dataset,
followed by full dataset OOB error balance adjustment, were applied to each combination.

2.2.2. COLD

In parallel with LandTrendr, a COLD-specific time-series (1984-2013) Landsat dataset was
constructed for each of the 3828 sample plot locations using the process described by Zhu et al. [25].
First, for each plot, all available Landsat data were downloaded and then, using the Landsat metadata
and a new variant of the Tmask algorithm [15], screened for clouds, cloud shadow, and snow.

As described by Zhu et al. [25], using all clear observations, COLD fitted a harmonic time-series
model separately for each band. Once established in the early period of the time series, the model was
used to predict future observations. When four or more consecutive future observations (adjusted to
the density of time series data) were not within the expected range of both spectral change magnitude
and direction, a breakpoint was identified. After the initial breakpoint, a new harmonic model was
established, future predictions were compared to future observations, and new breakpoints were
declared as specified. This process was repeated for the full time series for each band. Four consecutive
observations were less than the six used by Zhu et al. [25]. Likewise, here a change probability
threshold of 0.90 was used, compared to the 0.99 value used by Zhu et al. [25]. As for LandTrendr,
the expectation here was that these parameter adjustments were more tolerant of commission error
and would thus help to minimize COLD disturbance omissions, while the RF model was expected to
minimize commissions.

The spectral direction of most breakpoint changes was in the band-specific direction of disturbance
and, as such, declared as a disturbance. Typically, the post-disturbance harmonic model trended in the
opposite spectral direction associated with disturbance (i.e., towards recovery/regrowth) and lasted for
several years. In this case, for our application of COLD, the duration of the disturbance was declared
as one year. If the new post-disturbance model trended in the direction of disturbance, a disturbance
with multiyear duration was detected and the duration of the disturbance was declared. The duration
of the multiyear disturbance was equivalent to the number of years before a new breakpoint was
established that trended in the direction of recovery/regrowth. As with LandTrendr, for multiyear
disturbances the spectral change magnitude was annualized. This enabled the extraction of the same
predictor variables as those used for LandTrendr to calculate the probability of disturbance occurrence
in any given year via secondary RF classification: the band value for the prediction year, the spectral
difference between the prediction year and the previous year, and the number of years’ duration of the
original segment containing that year.

RF modeling for secondary classification was handled exactly as for LandTrendr, with band-specific
model runs using purposively selected band-specific union training datasets. Likewise, for any given
band, the probability of disturbance in any given year was a function the band value for that year,
the spectral difference between that year and the previous year, and the number of years duration
of the original segment containing that year. Each RF model used 500 trees and OOB errors for the
training dataset were reported as a function of RF probability threshold, and the thresholds were
adjusted using the full dataset to achieve error balance. Similarly, we created multispectral COLD
ensembles using all combinations of all bands taken 2–13 at a time (Table 1). Relevant union datasets
were created, and full dataset error balances were achieved by adjusting the RF threshold.
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Table 1. Number of bands (N) included for models based on the individual algorithms and their combination, the number of unique band combinations for each N,
and balanced error rates for the medians of all models and the means of the top five models for each N. Also shown are error differences for the means of the top five
models based on the individual and combined algorithms, using both the six best and six worst bands for the combined models.

Unique Combinations LandTrendr COLD LandTrendr
v. COLD

LandTrendr+COLD
(best)

Best v.
LandTrendr Best v. COLD LandTrendr+COLD

(worst)
Best v.
Worst

Number
of bands Individual Combined Median

Error
Top 5
Mean

Median
Error

Top 5
Mean

Mean
Difference

Median
Error

Top 5
Mean

Mean Difference
(LandTrendr)

Mean Difference
(COLD)

Median
Error

Top 5
Mean

Mean
Difference

1 13 12 0.626 0.464 0.487 0.469 −0.005 0.486 0.454 −0.010 −0.015 0.643 0.607 −0.153
2 78 66 0.429 0.374 0.448 0.389 −0.015 0.406 0.347 −0.027 −0.042 0.588 0.406 −0.059
3 286 220 0.397 0.354 0.405 0.358 −0.004 0.359 0.317 −0.037 −0.041 0.519 0.371 −0.054
4 715 495 0.373 0.339 0.381 0.338 0.002 0.332 0.301 −0.039 −0.037 0.475 0.357 −0.056
5 1287 792 0.362 0.334 0.365 0.328 0.006 0.317 0.292 −0.041 −0.035 0.441 0.347 −0.055
6 1716 924 0.353 0.330 0.352 0.320 0.010 0.305 0.286 −0.044 −0.034 0.401 0.339 −0.053
7 1716 792 0.346 0.327 0.343 0.314 0.013 0.296 0.280 −0.047 −0.034 0.367 0.336 −0.056
8 1287 495 0.342 0.327 0.336 0.311 0.017 0.291 0.279 −0.049 −0.032 0.354 0.335 −0.057
9 715 220 0.337 0.326 0.329 0.309 0.016 0.286 0.278 −0.048 −0.032 0.347 0.333 −0.055
10 286 66 0.334 0.325 0.321 0.309 0.017 0.282 0.277 −0.048 −0.032 0.341 0.332 −0.055
11 78 12 0.331 0.325 0.314 0.307 0.018 0.278 0.277 −0.049 −0.031 0.337 0.333 −0.056
12 13 1 0.332 0.329 0.313 0.310 0.019 0.279 0.279 −0.050 −0.031 0.337 0.337 −0.058
13 1 - 0.329 0.329 0.310 0.310 0.019 - - - - - - -
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2.2.3. LandTrendr+COLD

The primary objective of this study was to test a multialgorithm, multispectral RF ensemble
approach to forest disturbance detection. For this purpose, we had available results from 13 individual
bands run through two algorithms, for a total of 26 possible predictor variable sets (i.e., N = 26). Testing
models using all possible combinations of inputs from N = 1 to 26 would involve over 67 million
RF models, each involving the production of 500 decision trees, which was not computationally
feasible. Cohen et al. [24] demonstrated that most of the predictive power was achieved with an
N≤10. Thus, for this study we sought to select the six most important (i.e., best) bands from each
of the two algorithms (for a total N = 12). We did so with an algorithm-specific band-importance
weighting scheme.

For a given algorithm, each N (from 1-13) of the RF runs for an individual algorithm produced
results for a different number of combinations (from 1–1716, Table 1). For each N, this resulted in
a concomitant number of balanced error predictions which could be ordered from low to high (note that
N = 13 was not used here because it included all bands, and thus added no information). From these
results, we selected the five models having the lowest errors (top five models) for each N (from 1–12
for a total of 60), and then scored the bands according to how often they were used in the collection of
models. For each band in each of the 60 models, we applied a weight of 1–model error (balanced) and
then summed the scores by band. We then chose the six bands with the highest (best) weighted scores
for the given algorithm to use in the multialgorithm ensembles. As for the multispectral ensembles for
the individual algorithms, the multialgorithm ensembles used all combinations of all bands taken 2–12
at a time (Table 1). Relevant union training datasets were created, and error balances were achieved by
adjusting the RF threshold.

To gain additional insight into the importance of which bands were selected for the multialgorithm,
multispectral ensembles we ran an additional test based on a second set of RF models. This new
test used the six bands with the lowest (i.e., worst) weighted scores from the runs of the individual
algorithms (N = 12). This informed our understanding of the importance of thoughtful band selection
in a multialgorithm ensemble context where band selection is conservative (i.e., only a modest number
of bands are used).

3. Results and Discussion

3.1. Individual Algorithm Detection Errors

Distributions of balanced model errors as a function of number of input bands (N) revealed quite
similar patterns for both algorithms (Figure 2a,b, Table 1). Specifically, as N increased the range of
errors tightened and the median error values decreased. Although median error values continued to
decrease through the range of N, the greatest impact was realized from the first 2–3 bands.

As described earlier for the band weighting scheme, the top five models for each N were used to
select the six best bands from each algorithm to include in the multialgorithm, multispectral ensembles.
Examining the mean errors for the top five models we see that those decreased with increasing N,
but generally reached an asymptote by N = 7 (LT) or 9 (COLD) (Figure 2d, Table 1). It is worth noting
that the distribution of errors for LandTrendr were somewhat greater here compared to similar results
in Cohen et al. [24]. This is likely due the fact that different Landsat plot locations were used between
the two studies, suggesting that LandTrendr performed less well across the greater diversity of forests
represented by the plots in this study (a similar observation to that of Cohen et al. [19]).

The median errors for each algorithm at different values of N were mixed (Figure 2a,b, Table 1).
At N = 1 and N > 5, COLD had a lower median error, whereas LT had lower median errors for N of
between 2 and 5. However, the median error differences between the algorithms were all generally low
(<0.02) above N = 1. Similarly, the mean errors for the top five models (Figure 2d, Table 1) were higher
for COLD at lower N (1–3), but lower than LandTrendr for higher N (>3). However, those differences
were all generally low (<0.02).
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Figure 2. Distributions of balanced omission and commission errors among all combinations for each
number of bands used, for (a) LandTrendr, (b) COLD, and (c) their combination. Also shown are the
mean errors for the top five models of each modeling set, including those from the best and worst six
bands for the combined models (d). Note that, for all modeling sets, error balances were achieved
using probability thresholds of considerably less than 0.5, increasing and converging at approximately
0.3 as number of bands approached 4 or greater.

3.2. Combined Algorithm Detection Errors

The multialgorithm ensembles based on the best six bands from each algorithm clearly performed
better than either of the individual algorithm ensembles. This was expressed both in the tighter error
distributions among models for a given N (Figure 2a–c) and among the errors for the top five models
(Figure 2d, Table 1). Relative to LandTrendr, the error differences for the means of the top five models
varied from −0.010 (N = 1) to −0.050 (N = 12) for the multialgorithm ensembles. Because COLD
generally performed better than LandTrendr at higher N, for COLD the mean errors for the top five
models compared to the multialgorithm ensemble models were slightly less than for LandTrendr at
higher N (<−0.035 at N>5).

In comparison to using the best six bands, the multialgorithm ensembles based on the worst six
bands from each algorithm had considerably higher mean errors for the top five performing models
(Figure 2d, Table 1). For example, errors for models using the best bands were between 0.053 and 0.059
lower than errors for models using the worst bands for N = 2 and greater. Although this may not be
surprising in general, errors differences between the multialgorithm ensemble models based on the best
and worst bands (>0.05 above N = 2) were substantially greater than comparative differences between
the single algorithm multispectral models (<0.02 at all N) (Table 1, Figure 2d). This suggests a need
for the thoughtful selection of bands to use for disturbance detection in either the single algorithm or
multialgorithm context.

3.3. Band Importance

For reference to bands in the context of the multialgorithm ensembles, we use lower case for
LandTrendr (b1–b5, b7, tcb, tcg, tcw, tca, ndvi, ndmi, and nbr) and upper case for COLD. Based
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on the weighted scores (Table 2), the best six bands from the LandTrendr ensembles were, in rank
order: nbr (35.17), b5, twc, tcg, b7, and tca (23.44). For COLD, the ranks from highest to lowest were:
NBR (36.29), B4, TCB, B7, NDMI, and NDVI (25.39). The bottom-ranked six bands for LandTrendr
were (from worst to best): b1 (8.07), b3, b2, tcb, b4, and ndvi (16.78). For COLD, the bottom ranked
bands were: B1 (6.90), TCG, B3, B2, TCW, and TCA (17.93). Clearly, based on these weighted scores
(ranks 11–13 for LandTrendr and 10, 11, and 13 for COLD), VIS bands appear to have had low
information content for forest disturbance detection. In contrast, the NIR and SWIR bands provided
most of the detection power.

Table 2. Weighted scores and ranks for each band used in the LandTrendr, COLD, and combined models.

LandTrendr COLD LandTrendr + COLD

Rank Band Score Band Score Band Score
1 nbr 35.17 NBR 36.29 NBR 35.26
2 b5 33.23 B4 33.31 nbr 33.21
3 tcw 29.12 TCB 28.62 tcw 28.30
4 tcg 26.76 B7 26.36 B7 26.21
5 b7 24.04 NDMI 25.78 tcg 21.52
6 tca 23.44 NDVI 25.39 b5 19.32
7 ndmi 19.28 B5 23.66 NDVI 18.73
8 ndvi 16.78 TCA 17.93 TCB 15.79
9 b4 14.74 TCW 15.52 B4 13.70

10 tcb 11.43 B2 8.97 NDMI 12.26
11 b2 10.09 B3 8.96 tca 10.82
12 b3 8.08 TCG 7.59 b7 8.31
13 b1 8.07 B1 6.90 - -

To highlight the relative importance of SWIR and NIR bands for forest disturbance detection,
we summed the weighted scores for the relevant bands from each region and then divided the sums.
For LandTrendr and COLD, respectively, the sums of scores for the SWIR bands were 140.85 and
127.62 (Table 2), revealing a somewhat greater dependence of the former on SWIR. In comparison to
COLD (sum = 84.21), LandTrendr (sum = 81.73) relied slightly less on NIR. The ratio of score sums
for SWIR to NIR for each provides an objective measure of the relative reliance of SWIR vs. NIR
bands by the algorithms for disturbance detection in this study: 1.72 and 1.52 for LandTrendr vs.
COLD, respectively.

One possible reason for the greater reliance of non-SWIR bands by COLD could be the use
of harmonic functions that rely on all available images for the time series. This enabled COLD
to more fully exploit the shoulders of the growing season where many disturbances occur and
where non-SWIR (particularly NIR) bands may be more important. The propensity of studies using
NDVI and related NIR bands for forest phenology characterizations, focusing on such metrics as
the start and end of the growing season would seem to support this contention [31–33]. In contrast,
LandTrendr uses only one clear image per year taken from the mid-growing season where, possibly,
SWIR reflectance is more critical for detecting forest disturbance. This suggestion is well supported
by the numerous studies that rely on SWIR bands relative to non-SWIR bands for forest disturbance
detection [24,34,35]. However, there are many examples in the literature where non-SWIR bands are
successfully employed to detect forest disturbance [36,37] and where SWIR bands have proved useful
for phenology characterizations [38–40]. Given the results of this study and conflicting information
regarding band preferences from the literature, exploring the relationships between forest phenology
and disturbance in relation to spectral band strengths and their timing would be a fruitful area of
future research.

Weighted scores and band ranks for the combined (best) ensemble models (LandTrendr+COLD)
revealed unequivocally the importance of SWIR bands relative to NIR bands for forest disturbance
detection in this study (Table 2). First, this is clearly evident from the fact that the top four and five of
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the top six bands weighted most highly were SWIR bands. Interestingly, the normalized burn ratio
from both algorithms was included in the top two bands. Second, and more quantitatively, the ratio of
summed weighted scores (SWIR/NIR bands; 162.88/64.78) was 2.51, considerably higher than for either
algorithm individually. The interpretation of this ratio, of course, must be tempered by the fact that
seven of the 12 bands used were SWIR-based, vs. the five of the 12 that were NIR-based.

Examining the specific bands selected by the top five ensemble models from each algorithm and
the combined ensembles based on the best bands (for N = 1–7, given the asymptotic nature of the
models at higher N) provides more detailed insight into which bands and band combinations were most
important for the ensembles (Table 3). Tasseled Cap wetness was the single most important variable
(i.e., lowest error) for models when N = 1, with tcw from LandTrendr having the lowest error (0.429)
followed by TCW from COLD (0.450). Consequently, tcw was chosen as the most important single
spectral band for the combined ensemble based on the best bands from each algorithm. The normalized
burn ratio, normalized difference moisture index, and bands 5 and 7 were selected as the next most
important bands for the top five models by both algorithms, clearly highlighting the importance of
SWIR when only a single band is used.

Not unexpectedly, for higher N, non-SWIR bands were increasingly included in the top five
models. For N = 2, this occurred for ranks 4 and 5 (tcg and tca) for LandTrendr and for rank 4 (TCB) for
COLD (Table 3). For the combined ensembles, only SWIR bands were included for N = 2. For N = 3–7,
LandTrendr, COLD, and the combined ensemble models (and consistent with the ratio of the sums of
weighted scores), SWIR bands represented more than half the total number of bands in the models.

Patterns in the top-performing band combinations for the combined models (Table 3) showed
that ensemble diversity was positively correlated with classification accuracy. When inputs from both
algorithms were available, the top 2-band models all had one output from LandTrendr and one from
COLD. Moreover, with increasing N, a mix of bands from both algorithms was consistently chosen.
Additionally, several of the combined models (e.g., N = 2, rank 2, N = 3, rank 1, and others) selected
the same spectral band from the two algorithms. The only plausible explanation for the algorithm
predictor variables derived from the same input bands being co-selected by a given combined model is
that differences between the algorithms themselves are an important factor. These differences included
the use of all available data and harmonic functions to find breakpoints for COLD vs. the use of only
one image per year and an iterative temporal segmentation approach by LandTrendr. The relative
importance for the disturbance detection of multiple algorithms compared to multiple spectral bands
cannot be determined from this study, but should be worth exploring in different contexts.

Finally, while Tables 2 and 3 both indicate the dominance of SWIR, the importance of NIR should
not be minimized. Although we categorize Tasseled Cap wetness and three of the five normalized
spectral indices as SWIR bands, all three are dependent on the contrast of NIR (band 4) against
SWIR. The physical explanation for why NIR and SWIR appeared complimentary with respect to
identifying forest disturbance is beyond the scope of this paper. However, ensemble diversity is
generally recognized as an important element in the combination of classifiers [41,42] and Figure 2d
shows that combining inputs from both different algorithms and different bands consistently improved
forest disturbance detection.
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Table 3. Balanced errors and bands used for the top five models for N = 1–7 from LandTrendr, COLD, and the combined modeling sets.

LandTrendr COLD LandTrendr + COLD

N Rank Error Bands Error Bands Error Bands
1 1 0.429 tcw 0.450 TCW 0.430 tcw
1 2 0.463 b7 0.454 B7 0.453 NBR
1 3 0.468 ndmi 0.458 NBR 0.454 B7
1 4 0.477 nbr 0.487 NDMI 0.458 b7
1 5 0.485 b5 0.498 B5 0.474 nbr
2 1 0.366 nbr.tcw 0.383 NBR.TCW 0.334 tcw.NBR
2 2 0.369 b5.nbr 0.384 B7.NBR 0.347 nbr.NBR
2 3 0.377 ndmi.tcw 0.390 B5.NBR 0.347 b7.NBR
2 4 0.380 tcg.tcw 0.393 NBR.TCB 0.352 nbr.B7
2 5 0.380 tca.tcw 0.396 B7.NDMI 0.356 tcw.B7
3 1 0.352 b5.nbr.tcw 0.355 B4.B7.NBR 0.314 nbr.tcw.NBR
3 2 0.354 nbr.tca.tcw 0.357 B4.B5.NBR 0.317 tcw.tcg.NBR
3 3 0.354 b5.nbr.ndmi 0.359 B4.NBR.TCW 0.318 tcw.NBR.TCB
3 4 0.355 b4.b5.nbr 0.360 B4.B7.NDMI 0.318 nbr.b7.NBR
3 5 0.355 b5.nbr.tcg 0.360 B7.NBR.TCB 0.320 nbr.b5.NBR
4 1 0.337 b5.nbr.tcg.tcw 0.333 B4.B7.NBR.TCB 0.300 nbr.tcw.NBR.B7
4 2 0.338 b4.b5.nbr.tcw 0.338 B4.B5.NBR.NDVI 0.300 nbr.b5.tcw.NBR
4 3 0.340 b5.b7.nbr.tcg 0.339 B4.NBR.TCB.TCW 0.301 nbr.tcw.NBR.TCB
4 4 0.340 b5.nbr.tca.tcw 0.339 B4.B5.NBR.TCB 0.301 nbr.b7.NBR.B7
4 5 0.341 b5.nbr.ndvi.tcw 0.339 B4.B5.NBR.NDMI 0.301 nbr.b5.NBR.TCB
5 1 0.330 b4.b5.nbr.ndvi.tcw 0.326 B4.B5.NBR.NDVI.TCW 0.290 nbr.tcw.tcg.NBR.B7
5 2 0.334 b5.b7.nbr.ndmi.tcg 0.327 B4.B5.NBR.NDMI.TCB 0.292 nbr.tcw.NBR.TCB.B7
5 3 0.335 b5.nbr.ndvi.tcg.tcw 0.328 B4.B5.NBR.NDVI.TCB 0.293 nbr.b5.b7.NBR.B7
5 4 0.335 b5.b7.nbr.tcg.tcw 0.328 B4.B7.NBR.NDMI.TCB 0.293 nbr.tcg.b7.NBR.B7
5 5 0.335 b2.b5.nbr.tcg.tcw 0.329 B4.NBR.NDVI.TCB.TCW 0.294 nbr.b5.tcw.tcg.NBR
6 1 0.329 b4.b5.b7.nbr.ndvi.tcw 0.319 B4.B5.B7.NBR.NDMI.TCB 0.284 nbr.tcw.tcg.NBR.B7.NDVI
6 2 0.329 b5.b7.nbr.ndvi.tcg.tcw 0.319 B4.B7.NBR.NDMI.NDVI.TCB 0.286 nbr.b5.tcw.NBR.B4.B7
6 3 0.330 b5.nbr.tca.tcb.tcg.tcw 0.320 B3.B4.B7.NBR.NDMI.TCB 0.287 nbr.b5.tcw.tcg.NBR.NDMI
6 4 0.330 b5.nbr.ndvi.tca.tcg.tcw 0.320 B4.B7.NBR.NDVI.TCB.TCW 0.287 nbr.b5.tcw.tcg.NBR.NDVI
6 5 0.331 b2.b5.b7.nbr.tcg.tcw 0.321 B4.B5.NBR.NDVI.TCB.TCW 0.287 nbr.tcw.NBR.B4.B7.NDVI
7 1 0.326 b1.b5.b7.nbr.tca.tcg.tcw 0.312 B4.B7.NBR.NDMI.NDVI.TCA.TCB 0.278 nbr.b5.tcw.tcg.NBR.B7.NDVI
7 2 0.327 b2.b5.b7.nbr.ndmi.tca.tcg 0.313 B4.B5.B7.NBR.NDMI.NDVI.TCB 0.281 nbr.tcw.tcg.tca.NBR.B7.NDVI
7 3 0.327 b5.b7.nbr.ndmi.tca.tcg.tcw 0.315 B4.B7.NBR.NDMI.TCA.TCB.TCW 0.281 nbr.b5.tcw.NBR.B4.B7.NDVI
7 4 0.328 b1.b5.nbr.ndmi.tca.tcg.tcw 0.315 B2.B4.B7.NBR.NDMI.NDVI.TCB 0.281 nbr.tcw.tcg.NBR.TCB.B7.NDVI
7 5 0.328 b5.b7.nbr.ndmi.tca.tcb.tcg 0.315 B4.B5.NBR.NDMI.NDVI.TCA.TCB 0.281 nbr.tcw.tcg.NBR.B4.TCB.B7
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4. Conclusions

This study confirmed the high value of stacking (secondary classification)—in this case using
Random Forests (RF) ensemble models—as an effective means of combining predictor variables derived
from single-band runs of a given disturbance algorithm to predict forest disturbance occurrence from
Landsat time series. In particular, we retested LandTrendr in this context using Landsat Collection
1 data and a significantly broader set of plot locations relative to our earlier test [24]. Moreover,
for comparison, we tested a second algorithm (COLD) using the same stacking methods and found
similar trends in improvement as additional bands were added. As LandTrendr was developed with
the expectation that only a single band would be used for disturbance classification, the specific band
chosen was an important decision [17]. With stacking, this decision was less important because results
from several bands could be combined. Although COLD algorithmically combines information from
multiple bands to detect disturbance, it does so without the advantage of reference data training.
In the context of earlier studies (e.g., [19,21,24]), the results of the current study strongly suggest
that a combination of using multiple bands and reference data training significantly improved the
performance of a given, single algorithm for forest disturbance detection.

Differences in the performance of the two algorithms across N (from 1–13 bands) were generally
small (Table 1, Figure 1). Far more important were the differences between the multialgorithm
ensembles using the best bands from each algorithm and either of the individual algorithm ensembles.
However, it is not enough to simply combine bands from different algorithms to improve results;
the specific bands chosen are also important, as indicated by the comparison of results from the
combined models using the best and the worst six bands from each algorithm.

Using a weighting scheme based on the top five models for each N (from 1–12), we determined
that, for both LandTrendr and COLD, SWIR bands were more important than non-SWIR bands for
forest disturbance detection. However, given that several of the spectral indices used contrast NIR
and SWIR, NIR reflectance is also important. Although the spectral change-disturbance information
relationship for any given date of image and pixel location would be exactly the same, differences
between the LandTrendr and COLD algorithms enabled improvements in disturbance detection from
otherwise collinear inputs. Further change detection improvement may depend upon the development
of algorithms which either interrogate SWIR and NIR in new ways or better highlight disturbance
signals in the visible wavelengths. Additionally, taking advantage of newer datasets such as those from
Sentinel satellites, to incorporate new spectral regions, could improve the results of forest disturbance
monitoring [43].
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