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Abstract: Mountain-basin systems (MBS) in Central Asia are unique and complex ecosystems,
wherein their elevation gradients lead to high spatial heterogeneity in vegetation and its response
to climate change. Exploring elevation-dependent vegetation greenness variation and the effects
of climate factors on vegetation has important theoretical and practical significance for regulating
the ecological processes of this system. Based on the MODIS NDVI (remotely sensed normalized
difference vegetation index), and observed precipitation and temperature data sets, we analyzed
vegetation greenness and climate patterns and dynamics with respect to elevation (300–3600 m) in a
typical MBS, in Altay Prefecture, China, during 2000–2017. Results showed that vegetation exhibited
a greening (NDVI) trend for the whole region, as well as the mountain, oasis and desert zones, but
only the desert zone reached significant level. Vegetation in all elevation bins showed greening, with
significant trends at 400–700 m and 2600–3500 m. In summer, lower elevation bins (below 1500 m) had
a nonsignificant wetting and warming trend and higher elevation bins had a nonsignificant drying
and warming trend. Temperature trend increased with increasing elevation, indicating that warming
was stronger at higher elevations. In addition, precipitation had a significantly positive coefficient and
temperature a nonsignificant coefficient with NDVI at both regional scale and subregional scale. Our
analysis suggests that the regional average could mask or obscure the relationship between climate
and vegetation at elevational scale. Vegetation greenness had a positive response to precipitation
change in all elevation bins, and had a negative response to temperature change at lower elevations
(below 2600 m), and a positive response to temperature change at higher elevations. We observed
that vegetation greenness was more sensitive to precipitation than to temperature at lower elevations
(below 2700 m), and was more sensitive to temperature at higher elevations.
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1. Introduction

As an important part of ecosystem, vegetation affects land cover, water and carbon cycle, and the
near-stratigraphic climate [1,2]. Meanwhile, climate change such as precipitation, temperature and
radiation, by changing the energy and water available for plant growth, have an impact on the carbon
accumulation process, water cycle process, and soil organic carbon decomposition and conversion
process, and thus affect the growth process and distribution pattern of vegetation [3,4]. Exploring
the spatial and temporal pattern of vegetation greenness and discussing the driving role of climate
factors has become one of the main contents of current global change research, which has important
theoretical and practical significance for evaluating the quality of terrestrial ecosystems and regulating
the ecological processes of vegetation.
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Previous studies have given a substantial attention to vegetation variation and the effects of climate
factors. With the advantages of large-scale, long-term, and relatively continuous observations, remote
sensing (RS) has become an effective means of vegetation greenness monitoring [5,6]. Vegetation
indices derived from satellite images have been used to monitor vegetation greenness. Among
them, the normalized difference vegetation index (NDVI), based on the reflectance in the red and
near-infrared bands, closely related to photosynthetically active radiation [7,8], leaf area index [9–11],
and biomass [12–14], and has been widely used as a proxy parameter of vegetation greenness over
both regional and continental scales. Enhanced vegetation index (EVI) was designed to overcome the
disadvantage of being saturated in high vegetation areas, and susceptible to noise of NDVI [15,16].
To explore the effects of climate factors to NDVI, the correlation coefficients between them were
widely used, including simple linear correlation coefficient, partial correlation coefficient, and complex
correlation coefficient [17–19]. Generally, the climatic factors affecting vegetation greenness mainly
include precipitation temperature and radiation, which vary from place to place [20]. The dominant
factor in rainforests is radiation, in arid and semiarid regions is precipitation, and in the high latitudes
of the northern hemisphere is temperature [21–23].

Central Asia is far from the influence of any ocean, and one of the most arid regions in the world [24],
containing fragile and sensitive ecosystems due to scarce precipitation and high evaporation [25].
This region is rich in vegetation, including forests, grasslands, shrublands and croplands [26,27]. An
alternating distribution of mountains and basins is the basic feature of the natural geography in Central
Asia. This has been defined as a mountain-basin system (MBS), consisting of mountain, oasis, and
desert zones [28,29]. The oasis zone covers the irrigated agricultural oasis belt and the oasis–desert
transition belt, which is irrigated by glacial melt-water and mountain precipitation in the form of
surface runoff and subsurface flow. These oasis areas are conducive to crops and artificial grasslands
due to their proximity to rivers and lakes, and also are the place where people live, and the center
of economy, culture, and transportation [30]. Strong and varied elevation gradients yield the unique
landform of the MBS [31]. Elevation gradients lead to differing climatic conditions, forming the vertical
zonality of vegetation. Furthermore, climate changes are elevation-dependent and would result in
diverging responses of vegetation at different elevations. It is therefore necessary to consider the spatial
heterogeneity when exploring vegetation changes in response to climate change in Central Asia.

Previous studies have given some attention to vegetation variation and its driving factors in
Central Asia. Li et al. found that NDVI in Central Asia during 1982–2013 had an increasing trend.
To improve this trend interpretation [32], De Beurs et al. analyzed land surface dynamics using
multiple remote sensing indicators and found that NDVI, EVI, and tasseled cap greenness have very
similar dynamics (r > 0.8), and the variation of vegetation indices and their influencing factors have
obvious spatial heterogeneity [31]. As for driving factors, precipitation and temperature are the
main climate factors [33], although grazing pressure and land abandonment are key anthropogenic
factors [34]. Additionally, a number of studies focused on vegetation variation for certain area of
Central Asia, particularly the Xinjiang Uygur Autonomous Region [35–37] and the Qinghai-Tibetan
Plateau [38–40]. However, previous studies usually treated these study areas as uniform entities,
without consideration of spatial heterogeneity. Numerous studies about other regions have shown
that vegetation changes have obvious spatial and temporal heterogeneity, and that the impacts of
climate change on vegetation are also varied spatially and temporally. Barriopedro et al. analyzed the
tempo-spatial pattern of vegetation in southwestern China from September 2009 until March 2010,
and found that there was significant tempo-spatial variability in the range and intensity of impact of
one drought event [41]. Based on GIMMS-NDVI3g data and Arctic bioclimate subzones (essentially
latitudinal-based), Reichle et al. found different patterns of arctic tundra vegetation and temperature
dynamics over North American and Eurasian continents [42]. Vegetation changes across China’s silk
road economic belt during 1982 to 2015 were examined using an AVHRR NDVI dataset; vegetation
greenness was positively and negatively related to precipitation and temperature respectively in both
semiarid and arid regions, but the opposite relationships were found for subhumid regions [43]. To
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date, some studies have evaluated the ecosystem services of different subregions of the MBS, according
to the division into desert, oasis, and mountain zones [30,44]. However, the elevational heterogeneity
of vegetation greenness variation and the effects of climate factors in MBS are unclear. Considering that
vegetation dynamics (and the effects of climate changes) should be elevation-dependent, it is necessary
to examine the elevational heterogeneity of vegetation greenness variation and the effects of climate
factors in these systems.

Altay Prefecture is located in northernmost China and is a typical representation of MBS. It has
substantial vegetation coverage and is the source of the Ulungur River and the Irtysh River, which play
an important role in the regional ecological environment. The elevation gradient within Altay leads to
clear vertical distribution characteristics of climate and vegetation. The purpose of this study is to
quantify vegetation greenness variation and the effects of climate factors along an elevation gradient in
a MBS in Altay Prefecture, China, from 2000 to 2017, which can provide us with evidence for ecological
environmental management for this region and other similar arid mountain-basin systems. More
specifically, we address the following questions:

1. What are the spatial and temporal patterns of vegetation greenness in the MBS of Altay Prefecture
during 2000–2017? How did vegetation greenness vary, and how did it change across an
elevation gradient?

2. How did precipitation and temperature change throughout the Altay Prefecture and along the
elevation gradient during 2000–2017?

3. How do precipitation and temperature affect the dynamics of vegetation greenness at the regional
scale, subregional scale (desert, oasis, and mountain zones), and along the elevation gradient?

2. Materials and Methods

2.1. Study Area

Altay Prefecture (44◦59′35”−49◦10′45”N, 85◦31′57”−91◦01′15”E) belongs to the Xinjiang Uygur
Autonomous Region, which is located in northernmost China, bordering Kazakhstan, Russia, and
Mongolia. The region has a typical temperate continental climate, with an annual precipitation ranging
from 164.93 mm to 327.19 mm and an annual average temperature ranging from 2.31 ◦C to 5.04 ◦C
(2000–2017). The total area is approximately 118,000 km2, and the elevation gradually declines from
northeast to southwest (the range is 302–4375 m). This region extends from the southern foothills of
Altai Mountain to the northern margin of Junggar Basin, which is a typical representation of MBS [44].
Based on the difference of physical geographical conditions in Altay region, DEM, vegetation type
map and geomorphologic type map were used as references to divide the study area into three zones:
mountain zone (I), oasis zone (II) and desert zone (III) (Figure 1a). According to land use data from 2000,
Altay has vegetation cover of 97.30%. Grasslands occupy the largest proportion (60.48%), followed by
forest (34.62%), and cropland occupies only 2.20%. Due to the effect of desert climate, desert grasslands
are the main grassland type and account for over 70% of the total grassland area. Ecosystems that have
developed in high, cold and dry environments are fragile and vulnerable to climate change and human
activity. Low precipitation and high evapotranspiration resulted in sparse vegetation, soil erosion, and
frequent sandstorm activities [45]. Additionally, human disturbance such as grazing and mining have
had negative consequences on the fragile ecological environment [46].
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 Figure 1. Location map of the study area and distribution map of mountain, oasis, and desert zones (a),
distribution map of vegetation and nonvegetation in Altay Prefecture (b).
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2.2. Data

2.2.1. NDVI Time Series Data

NDVI and EVI have been widely used as a proxy of vegetation greenness over both regional and
continental scales. In arid or semiarid areas where vegetation coverage is low, there is little difference
in the monitoring capability of the two indexes [15]. In this study, NDVI was chosen to descript
vegetation greenness. The NDVI data set for the period from 2000 to 2017 was extracted from the
MOD13Q1 Version 6 product (from the Moderate-Resolution Imaging Spectroradiometer (MODIS)),
which was downloaded from the United States Geological Survey Land Processes Distributed Active
Archive Center (https://lpdaac.usgs.gov/). The NDVI data have a spatial resolution of 250 m and a
temporal resolution of 16 days (maximum value composite). To eliminate the effects of snow and
clouds, the study focuses on annual maximum NDVI (hereafter referred to simply as NDVI).

2.2.2. Climate Data

The climate data sets were obtained from the China Meteorological Information Center (https:
//data.cma.cn/). Daily precipitation and temperature data from 18 weather stations inside and around
the study area during 2000–2017 were downloaded and aggregated to annual and summer variables
(Figure S1). Considering the annual maximum NDVI generally occurs in summer, we calculate and
analyze total summer precipitation (TSP) and mean summer temperature (MST) in addition to total
annual precipitation (TAP) and mean annual temperature (MAT). Then, the aggregated data were
interpolated to generate spatially continuous data sets with a 250 m spatial resolution, to match the
NDVI data, with ANUsplin software (using the thin-plate smoothing splines method) [47,48]. This
software has a higher accuracy than other interpolation methods for mountainous areas, because a
covariate of elevation is used in the interpolation process.

2.2.3. Land Use Data

Land use data for 2000 were derived from the Data Center of Resources and Environmental
Sciences, Chinese Academy of Sciences (http://www.resdc.cn/). The land use data with a resolution of 1
km were produced by supervised classification and manual correction of Landsat TM images. We
extracted three vegetation types: grassland, forest, and cropland. There is a conflict however between
these land use data and the grassland resource type map from the Altay grassland station; there are
some sparse grasslands classified as unused land in the land use data. Therefore, we adjusted the range
of grasslands according to the local grassland resource type map. Finally, we obtained the vegetation
coverage boundary, and nonvegetation coverage was displayed in Figure 1b.

2.2.4. Elevation Data

We downloaded the advanced spaceborne thermal emission and reflection radiometer (ASTER)
global digital elevation data from https://earthexplorer.usgs.gov/. The data were resampled from a
30 m spatial resolution to a 250 m resolution with bilinear method to match the other data sets. Then,
the resampled data were used as the basis for binning elevation (from 300–400 m to 3900–4000 m) and
as the covariate for interpolating climate data. To avoid the influence caused by an insufficient number
of pixels for a given elevation bin, we excluded elevation bins with pixels fewer than 100 (3600–3700 m,
3700–3800 m, 3800–3900 m, 3900–4000 m).

2.3. Methodology

In this study, linear regression was used to analyze the change trends of NDVI, precipitation,
and temperature for the whole study area, each zone, each elevation bin, and each pixel. Then, the
significance of the trend was determined by the F test to represent the confidence level of trend
variation. This method is used to model the relationship between an independent variable (year) and a

https://lpdaac.usgs.gov/
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dependent variable based on the least squares linear regression method, which has been widely used
in trend analysis [17,49]. The NDVI trend was calculated as follows:

T =

n×
n∑

i=1
i×NDVIi −

(
n∑

i=1
i
)(

n∑
i=1

NDVIi

)
n×

n∑
i=1

i2 −
(

n∑
i=1

i
)2 (1)

where T represents the temporal change trend of NDVI, n is the cumulative number of years in the
study period (in this study the n is 18), and i is the number of the year (i = 1,2,3, . . . ,n). A positive T
value indicates an increased trend in vegetation greenness and a negative value indicates a decreased
trend. The larger the absolute value of T is, the larger the change. The trends of precipitation and
temperature were determined in a similar manner.

To compare the effects of annual and summer climate factors on vegetation greenness, standardized
regression coefficients between NDVI and annual or summer climate data were calculated. To compare
the effects of precipitation and temperature on vegetation, we quantified the effects of precipitation
and temperature on vegetation greenness variation using standardized regression coefficients in a
multiple regression [50].

y− y
STDy

= a1
x1 − x1

STDx1

+ a2
x2 − x2

STDx2

+ b (2)

where y is a dependent variable array, y is the mean value of y; x1 and x2 are concurrent arrays of two
independent variables, x1 and x2 are the mean values of x1 and x2, respectively; STDy, STDx1 and
STDx2 are the standard deviations (STD) of y, x1 and x2, respectively; b is the intercept, and a1 and a2

are the standardized regression coefficients of two independent variables, respectively.

3. Results

3.1. Spatiotemporal Variation of Vegetation Greenness

Figure 2a shows spatial attribution of mean annual NDVI values in Altay Prefecture during
2000–2017. Clearly, NDVI had a strong spatial heterogeneity throughout the region, ranging from 0
to 0.93. The areas with high NDVI values were mainly distributed in the mountain and oasis zones,
whereas the values in the desert zone are low. More than 80 percent of the region had a positive
NDVI trend (Figure 2b, Table S1). Stable (between −0.001 year−1 and 0.001 year−1) and slightly
greening (between 0.001 and 0.002 year−1) areas were mainly located in the desert zone. Moderate
greening (between 0.002 and 0.01 year−1) was largely distributed in the mountain zone, and strong
greening (>0.01 year−1) was found in the oasis zone. Less than 10 percent had browning with a trend
<−0.001 year−1, which scattered throughout the region. NDVI for the entire region and three zones
all showed an increasing trend, but only the increase in the oasis area was significant (p < 0.001)
(Figure S2).

In order to explore the distribution and change characteristics of NDVI along the elevation
gradient, we divided the study area into 33 elevation bins of 100 m (300–3600 m). Two peak values
of NDVI appeared along the elevation gradient, at 400–500 m and 2100–2200 m (Figure 3a). NDVI
sharply increased from about 0.13 at 300–400 m to approximately 0.32 at 400–500 m, decreased to
~0.17 at 800–900 m, then gradually increased to 0.71 at 2100–2200 m, and finally decreased to 0.06 at
3500–3600 m. The vegetation in all elevation bins was generally greening, with significant levels at
400–700 m and 2600–3500 m (Figure 3b). The smallest trend (0.0007 year−1) occurred at 1500–1600 m,
while the greatest trend (0.0038 year−1, 5.43 times the minimum) appeared at 500–600 m.
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Figure 2. Spatial distribution of mean annual normalized difference vegetation index (NDVI) values
in Altay Prefecture during 2000–2017 (a) and trend map of NDVI values in Altay Prefecture during
2000–2017 (b).
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Figure 3. Average NDVI during 2000–2017 for each elevation bin (a), and mean NDVI trend for each
elevation bin (b); the red dots indicate that the trend is statistically significant (p < 0.05).

3.2. Spatiotemporal Variation of Precipitation and Temperature

Figure 4 displays the values and trends of precipitation and temperature along the elevation
gradient. The distribution of precipitation and temperature in annual and summer were clearly
dependent on elevation. As the elevation increases, the precipitation increases and the temperature
decreases. Total annual precipitation and summer precipitation both had wetting trends in lower
elevation bins and a drying trend in higher elevation bins (Figure 4c,d). The maximum precipitation
trend appeared at 800–900 m. The trends of annual precipitation were negative above 2400 m, while
they became negative above 1500 m for summer precipitation. We can see from Figure 4e,f that all
elevation bins showed warming trends in both the annual and summer periods except 300–400 m in
summer. The temperature trend increased with increasing elevation, indicating that warming was
stronger at higher elevations.
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Figure 4. Cont.
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Figure 4. Average annual precipitation and temperature (a), average summer precipitation and
temperature (b), annual precipitation trend (c), summer precipitation trend (d), annual temperature
trend (e), and summer temperature trend (f) during 2000–2017 for each elevation bin.
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3.3. Response of Vegetation Greenness to Climate Factors

For most elevation bins, climate in summer had better correlation coefficients with NDVI than
annual values (Table S2), so we therefore focused on summer climate when analyzing the effects of
climate factors. As shown in Table 1, for the whole region, the standardized coefficient of TSP was
positive and statistically significant, and the standardized coefficient of MST was nonsignificantly
negative. The relative contribution ratio of TSP to MST for NDVI was 2.98, indicating that precipitation
plays a more important role than temperature. Similarly, in the mountain, oasis and desert zones,
precipitation had a significantly positive coefficient and a nonsignificant coefficient with NDVI. Figure 5
depicts the regression correlation coefficient between vegetation and precipitation, and temperature.
Standardized coefficients of TSP for all elevation bins were positive and reached significant levels below
2000 m; standardized coefficients of MST were negative at lower elevation bins and became positive
above 2600 m, but only reached significant levels above 3200 m (Figure 5). The ratio of precipitation to
temperature effects on NDVI were >1 below 2700 m and <1 above 2700 m, indicating that vegetation
greenness was more sensitive to precipitation at lower elevations and more sensitive to temperature at
higher elevations.

Table 1. Standardized regression coefficients between NDVI and total summer precipitation, mean
summer temperature.

Area Factor Unstandardized Coefficient Standardized Coefficient P-Value

Whole region TSP 0.0004 0.623 <0.01
MST −0.005 −0.209 0.331

Mountain zone TSP 0.0004 0.514 <0.05
MST −0.003 −0.147 0.533

Oasis zone TSP 0.001 0.475 <0.05
MST 0.008 0.181 0.430

Desert zone TSP 0.0004 0.677 <0.01
MST −0.006 −0.233 0.212

Figure 5. Standardized regression coefficients between NDVI and total summer precipitation (TSP),
mean summer temperature (MST) at each elevation bin.
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4. Discussion

4.1. Dynamics of NDVI, Precipitation, and Temperature

Our results demonstrate that vegetation showed greening over the period 2000–2017, which is
consistent with previous studies [51,52]. However, the increasing rate of NDVI (0.002 year−1) observed
in this study is higher than that observed by Du et al. [52] (0.0003 year−1, during 1982–2012) and
Zhang et al. [52] (0.001 year−1, during 2003–2011). The difference can be explained by several possible
reasons. First, the difference in the study area might lead to the difference in value. Previous studies
regarded the Xinjiang Uygur Autonomous Region as the study area. In this study, Altay Prefecture
was selected as study area, which is part of the Xinjiang Uygur Autonomous Region. Second, the
difference in study period might be another cause. In addition, the difference in NDVI calculation
could be also cause difference in results. Previous studies used mean NDVI of the growing season
when analyzing interannual vegetation greenness. In this study, we used maximum NDVI to avoid the
effects of snow and clouds.

According to our results, pixels with a higher NDVI generally distributed in the mountain zone
and oasis zone, which can be explained by main vegetation types in these two zones (Table S3). In the
mountain zone, meadows, forests, and mountain steppe are the main vegetation type, accounting for
more than 70%. Cropland is the main vegetation type in the oasis zone. These vegetation types have a
higher NDVI than desert types that make up more than 90% the desert zone. Vegetation exhibited a
greening trend for the whole region, as well as the mountain, oasis and desert zones, but only the oasis
zone had a significant greening trend. The development and expansion of agriculture in the oasis zone
should be related to the increase of vegetation greenness.

Climate data used in our study were obtained from weather stations. Because weather stations
conducting long-term meteorological observations are scarce in and near Altay Prefecture, the reliability
of the spatial interpolation of precipitation and temperature data are challenging to verify. In order to
ensure the reliability of our climate data, we compared the results with previous research and found
that the wetting and warming in this study is supported by earlier studies [26,53].

4.2. Vegetation Greenness Patterns in Relation to Elevation

In our results, vegetation greenness presented a bimodal curve with increased elevation. Peak
values occurred at 400–500 m and 2100–2200 m. This is closely related to the distribution of vegetation
types in elevation gradient. As indicated in Figure 6, desert grassland had lowest NDVI value (0.18),
followed by alpine meadow, cropland, mountain meadow, and forest. According to Figure S3a, desert
grassland is mainly distributed in 300–1300 m. This is why the NDVI is low on these elevation
gradients. Above 1300 m, with the disappearance of desert grassland and the increased proportions
of mountain meadow and forest, NDVI increased along the elevations until 2200 m. Above 2200 m,
the appearance of alpine meadow led to decreases in NDVI. This change in vegetation type is also
a response to climate change in elevation graduation. The unimodal pattern essentially was caused
by differences in precipitation and temperature at different elevations [54], mainly the precipitation
increase and temperature decrease with elevation. At lower elevations, where precipitation is scarce
and temperatures are high (greater evapotranspiration), drought limits the growth of vegetation. With
the increase of elevation, precipitation increases, temperature decreases, drought stress eases, and
vegetation greenness increases. Decreasing temperatures at higher elevations result in decreasing
vegetation greenness. It is noteworthy that there was a smaller peak in greenness at 400–500 m, near
the Ulungur Lake and Irtysh River, which might be attributed to the distribution of cropland. Water
availability is the main reason for the phenomena. The advantage position close to rivers and lakes
brought higher water availability, which is conducive to the growth of vegetation.

As shown in Figure 3b, we found that all elevation bins had a greening trend, and significant
greening trends were found at 400–700 m, near the lake and rivers. This could be attributed to
higher water availability and anthropological intervention. On the one hand, the dramatic wetting
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trend at these elevations, in addition to ice and snow melt caused by warming at higher elevations,
has increased the water availability in these locations. On the other hand, anthropological reason,
such as the expansion of cropland and the establishment of artificial grasslands, also enhanced
vegetation greenness.

Figure 6. Average NDVI value for main vegetation types during 2000–2017 in Altay Prefecture.

4.3. Climate Change in Relation to Elevation

According to our findings, the annual precipitation had a wetting trend at lower elevation bins,
whereas there was a drying trend at higher elevation bins; with the most dramatic wetting occurring at
800–900 m. The summer precipitation trend had similar patterns. Atmospheric water vapor in Altay
Prefecture mainly comes from the north Atlantic, which forms a warm air mass over the European
continent that enters Central Asia from the gap in the northwest edge of the Junggar Basin and
encounters cold air to form precipitation [55]. The North Atlantic Oscillation (NAO) is therefore the
direct cause of precipitation variability in Altay Prefecture [56]. Stronger airflow leads to more water
vapor in the low altitude areas and hence greater precipitation. However, as elevation increases, the
airflow gradually weakens.

Annual and summer temperature at all elevation bins had a warming trend, except for summer
temperature at 300–400 m. In addition, warming trends became stronger with increasing elevation,
especially in summer. Previous studies have shown similar findings in other mountain areas or
high-elevation plateaus, such as the Tibetan Plateau [57], the Colorado Rocky Mountains [58,59], and
the Swiss Alps [60,61]. Elevation-dependent warming could be attributed to snow/ice albedo feedbacks,
cloud cover, water vapor, radiative fluxes, and aerosols [62].

4.4. Effects of Climate Change on Vegetation Greenness

Precipitation played a more important role than temperature in affecting vegetation greenness
for the whole region, the mountain zone, the oasis zone, and the desert zone. These findings are
somewhat consistent with a previous study [47] finding that precipitation is the dominant climatic
factor affecting the vegetation dynamics of Xinjiang. In general, water availability is the driving factor
for vegetation growth in arid regions [63]. Precipitation is the main water source, directly determines
the water availability, and is closely related to vegetation growth. Altay Prefecture is an arid area, has
scarce precipitation, which limits vegetation productivity. Therefore, precipitation is the dominant
factor influencing vegetation greenness at the regional and subregional scales.
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Our analysis suggests that the regional average could mask or obscure the relationship between
climate and vegetation that occurs at the elevational scale. In different elevations, the dominant driving
factors of vegetation greenness change are different. In this study, we found that vegetation greenness
had a positive response to precipitation change in all elevation bins, and had a negative response
to temperature change at lower elevations, and a positive response to temperature change at higher
elevations (above 2600 m). In addition, vegetation greenness was more sensitive to precipitation
than to temperature at lower elevations, and more sensitive to temperature at higher elevations.
These results differ from previous findings in Li et al. [25] and Tao et al. [64]. The phenomenon
that elevation-dependent effects vary across different regions is caused by different thermal regimes
and disparate water sources [65,66]. In Altay, at lower elevations, scarce precipitation and high
temperature limited the vegetation growth by influencing water availability [67]. Precipitation is
the main source of water and directly affects the water availability. Temperature indirectly affects
water availability by affecting evaporation. Remarkably, precipitation is more influential because
changes in precipitation could bring more changes in water availability than that in temperature. With
the elevation increase, precipitation increases and temperature drops, and low temperature becomes
the more important factor constraining vegetation growth [68]. Small increase in temperature might
represent relative larger increase in thermal balance in colder regions [69], which can explain the
finding that vegetation greenness is more sensitive to temperature at higher elevations. On the one
hand, warming at higher elevations could directly stimulate vegetation growth by enhancing the
decomposition of vegetation litter, soil organic matter and nitrogen mineralization [70]. On the other
hand, an increase in temperature might bring higher water availability by declining snowpacks and
shifting snow disappearance earlier [71,72]. In summary, in our study region, the wetting trends at
lower elevation bins could promote vegetation growth, while warming trends have a negative effect
on vegetation growth. On the contrary, the warming trends at higher elevation bins could encourage
vegetation growth, while the drying trend inhibits the greening trend to some extent. It is noteworthy
that above 2600 m, temperature plays a negative role in greenness, and it is from this elevation that
alpine meadow becomes the main vegetation type with a proportion of more than 90% (Figure S3d). It
can be proved that the alpine meadow has a positive response to temperature change.

4.5. Limitations and Future Work

In this study, we only analyzed the impact of precipitation and temperature on vegetation, without
considering the impact of human activities, such as grazing and mining, which can be taken into
account in future studies. Furthermore, climate data used in this study were obtained from weathers
stations. Because the weather stations conducting long-time meteorological observations are scarce in
and near Altay Prefecture, the reliability of spatial interpolation data of precipitation and temperature
can only be verified by comparison with the results in the previous study. Climate datasets from
remote sensing images that have a good relationship with observation data [73] can be explored in
future studies.

5. Conclusions

We investigated vegetation greenness dynamics and the effects of climate factors at the regional,
subregional and elevational scales in a mountain-basin system, in Altay Prefecture, China from
2000 to 2017. We found that vegetation exhibited a greening trend for the whole region, as well as
the mountain, oasis and desert zones, but only the desert zone reached significant level, which is
attributed to the higher water availability and the expansion of agriculture. Accordingly, vegetation
greenness presented a bimodal curve with increased elevation; all elevation bins showed greening,
with significant trends at 400–700 m and 2600–3500 m. The elevation dependence of NDVI is closely
related to vegetation type, but is essentially caused by climate change, including temporal and spatial
changes. In summer, lower elevation bins (below 1500 m) had a nonsignificant wetting and warming
trend, and higher elevation bins had a nonsignificant drying and warming trend. Additionally, the
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temperature trend increased with increasing elevation, indicating that warming was stronger at higher
elevations. At the regional scale and subregional scale, precipitation and temperature together led to
the vegetation greenness change, but precipitation played a more important role. Vegetation greenness
had a positive response to precipitation change in all elevation bins, and had a negative response
to temperature change at lower elevations, and a positive response to temperature change at higher
elevations. Finally, vegetation greenness was more sensitive to precipitation than to temperature
at lower elevations, and more sensitive to temperature at higher elevations. Our analysis suggests
that the regional average could mask or obscure the phenomenon that occurs at the elevational scale.
Monitoring the elevation-dependent variation of vegetation greenness and the effects of climate factors
in a MBS can significantly improve our understanding of the relationships between vegetation and
climate, and provide us with evidence for ecological environmental management for this region and
other similar arid mountain-basin systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/10/1665/s1,
Figure S1: Location of weather station inside or near Altay Prefecture, Table S1: Results of the NDVI trend of all
pixels in Altay Prefecture during 2000–2017, Figure S2: Trends of NDVI of Altay Prefecture from 2000 to 2017,
Table S2: Correlation coefficient and P-value between NDVI and annual, summer climate data of Altay Prefecture
from 2000 to 2017, Table S3: Main vegetation types of three zones in Altay Prefecture, Figure S3: Percentage of
main vegetation types in every elevation bin.
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