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S1. Materials and Methods

S1.1. Modeling - Pixel’s background description

The parameters of a Diurnal Temperature Cycle (DTC) model can be considered to have a long-term trend
(i.e., an average behavior over time) and a short-term [daily] variation (i.e., a variability about that average). The
expected DTC parameters of a pixel location can be taken as the long-term trend and determined by averaging
parameters of a number of valid DTCs. In a real-time configuration, the expected parameters of an observed DTC
can then be determined once before the start of the observed DTC and kept constant throughout the observed DTC.
Therefore, in such case, the time would take a detector of a fire feature in a DTC to adapt to the non-fire change
in the DTC is more than a day, and after a fire – especially if a fired pixel location has burned areas – or after an
abrupt change in land cover (or the atmosphere), the time to adapt would be longer. One appropriate option to
adapt to the non-fire change much faster would be to estimate the DTC parameters at short intervals. In this study,
the DTC parameters are updated each time a valid sample is observed; and the process generating each of the
DTC parameters is represented by a first-order Markov process (with noise assumed additive) that is expressed
by

xxxk = fk (xxxk−1)+ vvvk−1 (S1)

where xxxk denotes the state variable of the process at time step k (or at discrete time tk: xxxk ≡ xxx(tk)) and is
a vector containing the parameters of the DTC. Function fk(·) is a forecast model operator (or state transition
function) that determines the time evolution of the state. The model is assumed to contain errors vvvk ≡ vvv(tk) –
due, for example, to neglected physics and numerical approximations. The form of the function fk(·) can be
approximated theoretically or empirically. In this study, the DTC parameter vector is modeled as a Gaussian
random walk process; therefore, the state equation given by Equation (S1) becomes

xxxk = xxxk−1 + vvvk−1; (S2)

with xxxk containing the forecast model prognostic variables (free DTC parameters) given by xxxk ≡(T0,k , Ta,k ,
tm,k, ts,k, ω1,k, ω2,k) for the BER06 DTC model [1] used in this study. The interpretation of the forecast model
variables is given in Table S1. The model diagnostic variable βk is obtainable from xxxk by assuming continuity at
the start of night time attenuation ts and is given by

βk =
ω2,k

π
tan−1(

π

ω2,k
(ts,k− tm,k)) (S3)

where tan−1(·) = 1/ tan(·). The process noise vector vvvk (i.e., the uncertainties in the DTC parameters)
is assumed to be a Gaussian white-noise random variable with density pvvvk ∼ N (vvvk;000,QQQk) where QQQk is the
model error covariance matrix. vvvk represents change of parameters due to unmodeled effects such as frequent or
occasional changes in, among others, cloud condition, soil moisture, wind condition, sunglint condition, land
cover condition (e.g., land surface emissivity) on a pixel location during times of non-fire . Theoretically, there
are discrepancies between parameters of consecutive days due to, among others, the difference in DTC daylight
width (ω1 and ω2), and the difference in DTC full width (i.e., the length of a DTC from its start to the start of the
next DTC) due to the variation in the sunrise times of consecutive days on a given pixel location [2].
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Table S1. Symbols used in the physics-based DTC models.

Parameter Meaning

T0 (K) ‘residual’ temperature (at sunrise approximately)
Ta (K) temperature amplitude
ω (hh : minutes) half-period of cosine/sine term
tm (hh : minutes) time of maximum temperature
ts (hh : minutes) start of decay function (start of night time attenuation)
β (hh : minutes) attenuation constant
tsr (hh : minutes) sunrise time
ttsr(hh : minutes) ‘thermal’ sunrise time

t represents time (and is expressed in (hh : minutes)). A pseudo-physics-based approach [1] uses (ω1,ω2) instead of a single
ω , one as a quarter-period of cosine/sin term before t = tm (i.e., ω1) and another as a quarter-period (ω2) after t = tm.

The process model generates at time tk an observation yyy(tk), a vector made of the observed brightness
temperature y1(tk) taken from Spinning Enhanced Visible and Infrared Imager (SEVIRI) IR3.9 and the observed
offset y2(tk) of the thermal sunrise (ttsr) from the sunrise (tsr) of the day. The transformation from model space
to observation space is achieved through the measurement equation given by

yyyk = hk (xxxk)+ nnnk (S4)

where yyyk ≡ yyy(tk) denotes the observation at time step k (i.e., at time tk), and nnnk ≡ nnn(tk) represents the
measurement noise. Function hk(·) is the observation (or forward) operator that transforms vectors in model
space, into their corresponding vector in observation space. The state-space model is then represented by Equation
(S1) and Equation (S4). Transformation from the model space to the observed temperature is realized through
BER06 model [1]. Hence, the measurement equation (Equation (S4)) is developed into

y1(tk) = n1(tk)+ h1,k(xxxk)

= n1(tk)+


T0,k +Ta,k cos

(
π

ω1,k
(tk− tm,k)

)
ttsr,ν ≤ tk < tm,k

T0,k +Ta,k cos
(

π

ω2,k
(tk− tm,k)

)
tm,k ≤ tk < ts,k

T0,k +Ta,k cos( π

ω2,k
(ts,k− tm,k))e

−
tk−ts,k

βk ts,k ≤ tk < ttsr,ν+1

(S5)

and

y2(tk) = h2,k(xxxk)+ n2(tk)

= c(tk) = tm,k−
ω1,k

2
− tsr,k + n2(tk) (S6)

where tk is a time between the start of the current DTC, ttsr,ν , and the start of the next DTC, ttsr,ν+1, while k
is a time step that starts from the launch of the first data assimilation cycle. The offset of the thermal sunrise
from the sunrise c(tk) is equal to ttsr,k− tsr,k (the observed ttsr,k and tsr,k are the current values, i.e., ttsr,ν and
tsr,ν , that change to ttsr,ν+1 and tsr,ν+1, respectively, at the start of the next cycle). The observed offset ck is
the mean of the recent observed 7 offsets ck’s, including the offset of the current DTC. The measurement
noise (i.e., the uncertainties in observations) nnnk is assumed to be Gaussian white-noise random variable and
statistically independent of vvvk, with density pnk ∼N (nnnk;000,RRRk) where RRRk is the observational error covariance
matrix. The measurement noise nnnk represents satellite sensor errors (navigation errors), errors in observation
operator hk(·) and the presence of subpixel-scale variability not represented in the pixel-average values of
brightness temperatures (commonly known in data assimilation literature as representativeness error), and in
general, the short term random errors that do not contribute to change of the forecast model (e.g., the DTC
model fit on different observed DTCs can yield same DTC parameters). The forecast state xxx f

k is transformed to
the forecast observation by hk(·). The true state before the start of the initial data assimilation cycle (i.e., the
start of the simulation) xxxt

0 is assumed Gaussian distributed and {vvvk,nnnk,xxxt
0} are assumed mutually, statistically
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independent. At a given time while in the current DTC, the predicted offset ĉ(tk) is the expected offset of the next
cycle and is used to derive the expected thermal sunrise of the next cycle ttsr,ν+1. DTC parameters are estimated
at each time step and having forecast DTC parameters, the value of the forecast temperatures can be calculated.

S1.2. Data assimilation

In the context of numerical prediction, data assimilation is used to determine the initial state of a forecast
model given observations; and is implemented to assist a numerical prediction system to produce accurate
estimates of the condition (or the evolution) of a flow of an atmospheric or oceanic system or other systems [3].
At the initial time (also known as analysis time) t0, the data assimilation is used to combine a first guess estimate
of the model variable at time t0 (xxxb, the best estimate without consideration of observations at the initial time t0
and is also known as background state or prior) and observed data at t0 (i.e., yyyo), so to generate the best initial
estimate of the state (xxxa, also known as analysis state) at t0 and its quality if possible, for a better initialization of
the forecasts at t0. During assimilation, the quality of the background state and observations must be considered
to weigh between the background and the observations, which one contributes more to the analysis of a field
of model variables. Data assimilation considers the fact that, globally, observations are limited and available at
irregularly spaced points. Currently, short-range forecasts as a first guess estimate of the state at the initial time are
universally adopted in analysis (or data assimilation) cycles, especially in operational numerical predictions [4,5].
At the completion of the data assimilation cycle, the analysis estimate is used to derive the short-range forecast
for the next data assimilation cycle and the long-range forecast (an operational forecast). The three commonly
used data assimilation methods that consider the temporal evolution of observations and produce a smooth
and continuous evolution in the temporal dimension are Four-Dimensional Variational Assimilation (4D-Var),
Ensemble Kalman Filter (EnKF), and Sampling Importance Resampling (SIR) particle filter. Hereafter in this
section, the background state refers only to the first guess at an analysis time, and the background temperature of
a given pixel (a term commonly used in fire detection products) is only referred to as the non-fire temperature.

Variational method in four dimension (i.e., 4D-Var) [e.g., 6–9] assimilates global observations of the
3-D meteorological field and adds the deviations of observations distributed over a time interval (assimilation
window t0 to tNa) from the model integrated in the interval from the initial time of the window t0 to each
observation time in the assimilation window. Observations are therefore assimilated into the forecast model
at their observation times. The approach minimizes a cost function that penalizes both misfit to the valid
observations (e.g., non-fire observations) in 4D and deviation from the background. The inclusion of the estimate
of model error (vvvk in Equation (S2)) into a 4D-Var data assimilation problem results in a variational assimilation
with the forecast model used as a weak dynamical constraint and referred to as weak-constraint 4D-Var [10]. For
serial uncorrelated model errors, serial uncorrelated observation errors, and uncorrelated model and observation
errors (and the true state at t0 uncorrelated to both model errors and observation errors), the state estimation of
the forecast model with model error for the weak-constraint 4D-Var problem is given by the cost function:

J (xxx0,vvv0, · · · ,vvvNa−1) =
1
2

(
xxx0− xxxb

0

)ᵀ
BBB−1

0

(
xxx0− xxxb

0

)
+

1
2

Na

∑
n=0

[hn (xxxn)− yn]
ᵀ RRR−1

n [hn (xxxn)− yyyn]

+
1
2

Na

∑
n=1

vvvᵀn−1QQQ−1
n−1vvvn−1

= Jb + Jo + JM (S7)

where n is the time step number in the assimilation window, and the control variable is made of xxx0 (the
model state vector at t0) and model errors

{
vvvi

n
}Na−1

i=0 (vvvn−1 = xxxn− fn (xxxn−1)). xxxb
0 is the background state at

the start of the window t0, BBB0 is the background error covariance matrix, yyyn is the observation, hn(·) is the
observation operator, RRRn is the observation error covariance and QQQn is the model error covariance matrix. Jb is
the background component of the cost function, Jo is the observation cost function (for observations distributed
within the data assimilation window) and JM is the contribution to the cost function of model error (random
or systematic error). For data assimilation using the weak-constraint 4D-Var window of length Na, Na + 1
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best-fit variables must be determined (i.e., the analysis at t0 [xxxa
0] and Na model errors; equivalently (xxxa

0, · · · ,xxxa
Na

)).
Apart from the formulation of the commonly used weak-constraint 4D-Var presented by Equation (S7), known
as the weak-constraint 4D-Var with model error forcing, other practical formulations of the weak constraint
4D-Var exist [11]. For a tractable 4D-Var analysis (i.e., quadratic cost function that gives obviously a single
minima), errors are modeled as independent Gaussian random noise, and model errors and observation errors
are uncorrelated (and the true state at t0 uncorrelated to both model errors and observation errors). Under
these circumstances, the posterior distribution (or analysis distribution) can be parametrized by only the mean
and the covariance. In this study, a one-dimensional variational data assimilation method compatible with
4D-Var is used where only the time dimension is considered – usually in data assimilation, a name has been
established for a variational data assimilation method in one vertical dimension (usually pressure levels) as
1D-Var data assimilation, commonly used for 1D-Var retrievals. The horizontal and vertical dimensions are not
considered because an image pixel is processed independently of its neighbor pixels and only one vertical level
is considered. A sliding assimilation time-window that moves by one sample from one analysis cycle to the
next analysis cycle (i.e., a sequential “analysis cycles”) is implemented, and the assimilation window is in actual
fact extending from the launch of simulation (or indefinitely in the past); and such implementation is equivalent
to a fixed-lag Kalman smoother. However, analysis is implemented when a non-fire sample is observed and
is implemented with only non-fire observations (i.e., fire observations assumed to have an infinite variance).
In this study, the weak-constraint 4D-Var is solved using Naval Research Laboratory (NRL) Atmospheric
Variational Data Assimilation System - Accelerated Representer (NAVDAS-AR) [12,13], a representer-based
algorithm that implements an observation space search; coupled Euler-Lagrange equations are derived and solved
using representers. A gradient-based search method is used to derive the minimum point of the cost function
given that the state-space model introduced in Section S1.1 presents a forecast model function that is smooth
and a non-linear observation function that is at least of class C2. The minimum point is obtained through a
gradient-based method that has been used with the NAVDAS-AR, namely, the flexible (preconditioned) conjugate
gradient (untruncated version) [13,14]. The Jacobian of the nonlinear forward observation operator hk(·) (an
observation model that varies with time) is needed in the computation of the gradient of the cost function. It has
elements ĤHHk,i, j =

∂hk,i
∂xxxk, j
|xxxkkk=xxx f

k
that yield an approximate linear observation operator at a time step k given by

ĤHHk =





1 0

cos
(

π

ω1,k
(tk− tm,k)

)
0

Ta,k
π

ω1,k
sin
(

π

ω1,k
(tk− tm,k)

)
1

0 0

Ta,k
π

ω2
1,k

tk sin
(

π

ω1,k
(tk− tm,k)

)
− 1

2

0 0



ᵀ

ttsr,ν ≤ tk < tm,k



1 0

cos
(

π

ω2,k
(tk− tm,k)

)
0

Ta,k
π

ω2,k
sin
(

π

ω2,k
(tk− tm,k)

)
1

0 0
0 − 1

2

Ta,k
π

ω2
2,k

tk sin
(

π

ω2,k
(tk− tm,k)

)
0



ᵀ

tm,k ≤ tk < ts,k



1 0

cos
(

π

ω2,k
(ts,k− tm,k)

)
γk 0

Ta,k
π

ω2,k
γk sin

(
π

ω2,k
(ts,k− tm,k)

)
1

0 0
0 − 1

2

Ta,k
π

ω2
2,k

ts,kγk sin
(

π

ω2,k
(ts,k− tm,k)

)
0



ᵀ

ts,k ≤ tk < ttsr,k

(S8)
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where ᵀ is the transpose operator, γk = e
−

tk−ts,k
βk , xxxk ≡ (T0,k , Ta,k , tm,k, ts,k, ω1,k, ω2,k, )ᵀ. The covariance

BBB0 is kept constant in time and is calculated once for the whole region of interest. BBB0 is given by Equation (S26).
The estimation of the background error covariance BBB0 and the model error covariance QQQn that are kept constant in
time, and the estimation of the observation covariance RRRn that varies with observed DTC are described in Section
S1.3. From one DTC to the next, the estimated RRRk of the outgoing DTC is considered in each assimilation cycle
until the start of the sliding assimilation window is completely out of the outgoing DTC, and RRRk is always constant
in the assimilation window. For the first analysis (at launch of the simulation), xxxb

0 = xxx f
1 is assumed Gaussian

distributed with mean and covariance specified in Section S1.3. The choice of the length of an assimilation
window is crucial as a short assimilation window is required for a fast adaptation to the change on land and in the
atmosphere, and a long assimilation window is needed for a robust initialization of a forecast but risks introducing
the problem of multiple minima due to nonlinearity in state space model or time varying error statistics [e.g., 15].
In this study, a data assimilation window of length Nw = 6 (i.e., equal to the number of degrees of freedom of the
forecast model) is considered; and given that, the 6 samples must be under non-fire condition, the window can
extend further in the past to accommodate 6 non-fire samples. It is assumed that for the first 5 samples after the
start of the simulation (i.e., the first analysis cycle), no pixel location is burning, and any subsequent sixth sample
to include in the assimilation window for a given pixel location must first be evaluated to determine whether is
a fire pixel given a non-fire temperature fit and observation at the time of the sixth sample. In this study, The
NAVDAS-AR’s stopping criteria (for notations, refer to [12,16]) are for the outer loop: maximum number of
outer-iterations = Na + 1 or ‖(δxxxp) j+ggg‖

‖xxx j‖ < 0.001. The stopping criteria for the inner loop are: maximum number

of inner-iterations equals to the double of the dimension of the observation space or ‖bbb−AAAβββ
j‖

‖bbb‖ < 0.001 where

bbb = yyy−H(xxx j−1)−HHH j−1
δ (xxxp) j and AAA = HHH j−1(PPPb) j−1[HHH j−1]ᵀ+RRR.

The EnKF method, originally developed by [17], approximates via Monte Carlo (MC) methods, both the
forecast probability density function (pdf) that represents the background state and the analysis pdf (the posterior)
with the densities represented by ensemble of model states. An ensemble of Ne data assimilation cycles, carried
out simultaneously, assimilates the same real observation. After completing the ensemble of analyses at time
tk−1, i.e., {xxxa

k,i}
Ne
i=1 (i for ensemble member i), the “forecast” step of EnKF advances the forecast and the forecast

error covariance matrix at the next analysis time tk (i.e., EnKF is made of sequential “analysis cycles”). The
forecast estimate of the state at current initial time tk given by xxx f

k,i = fk−1(xxxa
k−1,i) is a short-range model forecast

same as the background state xxxb
0 mentioned for 4D-Var in Equation (S7) when the background state is taken

as the short-range forecast. At the assimilation of observations, various implementations of EnKF algorithm
update ensembles (i.e., generate analysis ensemble) differently. One group implements a stochastic update of
the ensembles (stochastic approach) while another implements a deterministic update of the ensembles. This
study implements the EnKF algorithm with perturbed observations (perturbed observation filters) [e.g., 18,19])
– the main method of the group whose ensembles are updated stochastically. Ensemble members are updated
during analysis using a random perturbed observation {yyyk,i}Ne

i=1, which is created by adding random noise to the
real observation yyyk = yyy0

k (i.e., yyyk,i = yyyk + εεε i with εεε i ∼ N (000,RRRk) and RRRk is the observational error covariance
matrix) [18,19]. For a state space model given by Equation (S1) and Equation (S4), given the ensemble forecast
(i.e., prior ensemble) at tk, {xxx f

k,i}
Ne
i=1, and the current random perturbed observation {yk,i}Ne

i=1 as well as the
second-order statistics of the forecast estimate and observation errors, the data assimilation by EnKF with
perturbed observations combines the short-range forecast (i.e., the background state) and the observations to
produce the analysis estimate of the state at time tk (xxxa

k) given by

xxxa
k,i = xxx f

k,i +GGG f ,k[yyyk,i−hk(xxx
f
k,i)] ∀ i = 1 : Ne (S9)

where GGG f ,k is a weight matrix (also referred to as Kalman gain) at time k. The analysis point estimate
is computed as xxxa

k = 1
Ne

∑
Ne
i=1 xxxa

k,i. Equation (S9) expresses the statistical interpolation mechanism in data
assimilation [20]. In this study, the weight matrix GGG f k is derived according to [21], given by

GGG f k = PPP f
k HHHᵀ(RRRk +HHHkPPP f

k HHHᵀ
k )
−1 (S10)
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where

xxx f
k =

1
Ne

Ne

∑
i=1

xxx f
k,i (S11)

hk(xxx
f
k ) =

1
Ne

Ne

∑
i=1

hk(xxx
f
k,i) (S12)

XXX f
k,i = xxx f

k,i− xxx f
k ∀ i = 1 : Ne (S13)

HHHXXX f
k,i = hk(xxx

f
k,i)−hk(xxx

f
k ) ∀ i = 1 : Ne (S14)

PPP f
k HHHᵀ

k =
1

Ne−1

Ne

∑
i=1

XXX f
k,i[HHHXXX f ]ᵀk,i (S15)

HHHkPPP f
k HHHᵀ

k =
1

Ne−1

Ne

∑
i=1

HHHXXX f
k,i[HHHXXX f ]ᵀk,i (S16)

EnKF produces state-dependent uncertainty (i.e., provides analysis perturbations that represent analysis
error covariance, and ensemble forecasts that represent the forecast error covariance matrix). While the forecast
error covariance matrix of the standard 4D-Var at the start of the assimilation window t0 (i.e., the background
error covariance BBB0) is assumed constant and the forecast error covariance evolves only and implicitly in the
assimilation window [20,22], the analysis by EnKF replaces the constant background error covariance matrix
by a forecast error covariance matrix that evolves in time from one analysis to another. The ensemble-evolved
forecast error covariance matrix PPP f

k at time step k can be estimated from the Ne forecasts {xxx f
k,i}

Ne
i=1. From one

data assimilation cycle to the next, EnKF updates the forecast error; and the forecast error at a given analysis
time depends on the initial (analysis) error at the last analysis, on the errors introduced by the forecast model
from one data assimilation cycle to the next, and the model errors. The EnKF was designed with the aim of
reducing the computational complexity of the standard Kalman filter (or the extended Kalman filter for nonlinear
state-space model) in case of a model with a very large number of degrees of freedom. The standard Kalman
filter requires a cost increase of the order of the number of degrees of freedom of the model. This cost emanates
from the forward integration in time of the full analysis error covariance matrix using a linear forecast model
operator, which is of the size of the model space, to update the forecast error covariance. The EnKF reduces
the cost of the standard Kalman filter by deriving a low-rank error covariance approximated using ensemble
with very few members compared to the size of the model space. The performance of EnKF depends on the
number of ensemble members. However, the EnKF has been proven to perform relatively well with 10 to
100 ensemble members for a model with a number of degrees of freedom greater than 105 (e.g., [18,23,24]).
The EnKF accommodates nonlinearity in a state-space model by statistical linearization of nonlinear functions
through ensemble (an implicit linearization). In all different implementations of EnKF, for a tractable EnKF
analysis, errors are modeled as independent Gaussian random noise, and model error and observation error are
uncorrelated at each time step (the true state at initial analysis cycle is uncorrelated to both model errors and
observation errors). The posterior distribution (or analysis distribution) is then parametrized by only the mean
and the covariance. The estimate of model error and observation error covariances QQQ and RRRk, respectively, are
explained in Section S1.3. At the launch time of the EnKF, xxx f

1 is assumed Gaussian distributed with mean and
covariance specified in Section S1.3, and realizations of xxx f

1 form the ensemble of background field valid at the
launch time. The forecast model (see Equation (S2)) has 6 degrees of freedom per pixel (i.e., number of state
variables). In this study, the number of ensemble members is considered to be Ne = 51 (few ensemble members),
with the expectation of a full-rank forecast error covariance. Noting that, the full benefit of the EnKF can be
exploited if the number of ensemble members would be better less than 6. Otherwise, the number can be kept to
51 and, at the same time, take into consideration the spatial correlation between neighbor pixels to have a state
variable whose size equals the product of 6 and the number of pixels.

The SIR particle filter uses MC method to estimate, at time step k (i.e., observation time tk), the true analysis
pdf (i.e., the posterior pdf of a state of a dynamical system p (xxxk|Yk), where xxxk is the state at time step k and
Yk = {y1,y2, · · · ,yk} is the set of observed data from the launch time of the filter until the present time step k)
through a recursive Bayesian estimation [25]. The SIR approximates the true analysis pdf by a discrete weighted
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distribution represented by a set of Np random samples of the state and their associated weights. The true analysis
pdf is estimated using a sequential version of the Importance Sampling (IS) approach (i.e., Sequential Importance
Sampling (SIS)) that represents the density at time step k by a set of Np MC samples (i.e., particles) of the state
{xk,i}

Np
i=1 and their associated importance weights {wk,i}

Np
i=1, and propagates particle points and their associated

weights from one time step to the next (e.g., from k−1 to k for the case of the propagation in time) continuously
as observations are received sequentially. The approximation to the analysis density at time step k is given by

p (xxxk|Yk) ≈
Np

∑
i=1

wk,iδ (xxxk− xxxk,i)

∑
Np
j=1 wk, j

(S17)

where δ (·) is the Dirac delta function and the normalized importance weight wk,i/∑
Np
j=1 wk, j is an

approximation to the analysis probability of the particle xxxk,i. Different importance densities have been used in
approximation of the true analysis density in case of SIR particle filter, and in this study the (state) transition prior
probability distribution p (xxxk|xxxk−1,i) as a choice of the importance (proposal) density to draw sample particles
from is considered (same as in the standard SIR particle filter presented by [25]). The particle xxxk,i and the
unnormalized importance weights wk,i (associated with a particle xxxk,i) at the observation of yyyk are then given by{

xxxk,i ∼ p(xxxk|xxxk−1,i) : xxx f
k,i = fk

(
xxxa

k−1,i

)
wk,i ∝ wk−1,i p(yyyk|xxxk,i)

(S18)

Given samples {xxxk−1,i}
Np
i=1 that represent the analysis estimate at k−1 (i.e., p (xxxk−1|Yk−1)), the transition

prior density will propose new samples {xxxk,i}
Np
i=1 (i.e., xxx f

k,i = fk−1

(
xxxa

k−1,i

)
). Then, to complete one iteration

of the recursion, the importance weights are computed where the likelihood function or measurement density
p (yyyk|xxxk) corresponds to the measurement equation given by Equation (S4) with known statistics of nnnk, i.e.,
known p(nnnk) . The recursion forms the SIS part of the SIR particle filter and it assumes that the sequence
{vvvk−1,k ∈ Z+} and the sequence {nnnk,k ∈ Z+} are mutually uncorrelated and the initial value of the state xxx0

(with known distribution) is uncorrelated to both vvvk and nnnk. The standalone SIS algorithm suffers mainly from an
undesirable effect named weight degeneracy (a phenomenon that is confirmed when only one or few particles are
significant and others have negligible weights) [26], and the standard SIR [25] mitigates the degeneracy problem
by including a resampling step after each SIS implementation. In the resampling step at time step k, a new set of
Np particles are reproduced from the SIS set at time step k by replacing the SIS particles with small weights with
replicates of the particles with large weights [27], and results in importance weights wk−1,i = 1/Np ∀i. In this
study, Np particles and their associated weights are computed in one data assimilation cycle of the SIR particle
filter, and are given by  xxxk,i ∼ p(xxxk|xxxk−1,i) : xxx f

k,i = fk

(
xxxa

k−1,i

)
+ g(vvvk−1)

wk,i ∝ p(yyyk|xxxk,i) = e−
1
2

(
yyyk−hk

(
xxx f

k,i

))ᵀ
RRR−1

k

(
yyyk−hk

(
xxx f

k,i

)) (S19)

that results in a set {xxxk,i,wk,i}
Np
i=1; and this step is followed by a normalization of importance weights:

wk,i = wk,i/∑
Np
j=1 wk, j, (S20)

and then resampling stage to derive particles that form the analysis ensemble:[
{xxxa

k,i,1/Np}
Np
i=1

]
= resample

[
{xxx f

k,i,wk,i}
Np
i=1

]
. (S21)

After each SIR analysis, particles are propagated forward for the next assimilation cycle (sequential “analysis
cycles”). The sample impoverishment is a loss of diversity among the particles explained by the fact that particles
with large weights are statistically selected many times during resampling, and the resultant sample set contains
then many repeated points and few distinct points. As the number of distinct points decrease, the particles can
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eventually coalesce into a single particle. To counter the sample impoverishment, a small perturbation g(vvvk−1)

(see Equation (S19)) is added to the resampled particles and is given by

g(vvvk) =
vvvk

erf−1(1− 1
N )
√

2ρ(QQQk)
(S22)

where N is the total number of generated random values at time step k (the product of the number of pixels,
the number of particles and the state dimension) and ρ(QQQ) is the spectral radius of the model error covariance
matrix QQQ. In this study, the resampling step is implemented using systematic resampling scheme [28]. The
standard SIR particle filter [25] with the systematic resampling that corresponds to the algorithm presented
by [29] is therefore the algorithm used in this study. The multinomial resampling is used in the standard SIR
particle filter but is more expensive per operation compared to the systematic resampling [e.g, 30,31] – systematic
resampling is also less expensive per operation compared to other commonly used resampling algorithms for
particle filters – and the quality of samples generated by the systematic resampling is as good as the quality
of samples generated by the multinomial resampling [e.g, 30–32]. The assumptions needed in order to use the
standard SIR are weak compared to the assumptions required by other particle filter algorithms [33,34]. However,
as the resampling is applied at every iteration, it is more prone to problems introduced by the resampling step such
as the sample impoverishment. Same as the EnKF, the background (or forecast) error covariance evolves with
time in the SIR particle filter through the forecast distribution (i.e., the prior distribution) p (xxxk|Yk−1). The EnKF
assumes the analysis distribution to be always Gaussian. However, the assumption is highly violated in case of
strong nonlinearity in a state-space model or long analysis steps (distance between two analysis cycles)even
under Gaussian environment. The SIR particle filter, on the other hand, represents any analysis density, which is
generally of an arbitrary function form (i.e., not necessary Gaussian) under Gaussian environment for nonlinear
state-space models or non-Gaussian environment. The particle filters have a limit on parallelization due to the
resampling step. The model error is accounted for in this study, and the estimate of model error and observation
error covariances QQQ and RRRk, respectively, are explained in Section S1.3 and the background (forecast) state at
the first analysis cycle, xxx f

1 , is assumed Gaussian distributed with mean and covariance specified in Section S1.3.
With the number of degrees of freedom being 6 (number of state variables) per pixel for the dynamical model in
Equation (S2), the same number of ensemble members considered for EnKF, are used for SIR particle filter in
this study, i.e., the number of particle Np = 51.

A new analysis is implemented at each time an observation is flagged as a non-fire observation (i.e.,
fire-contaminated samples are not assimilated). The analysis procedure during a possible fire condition is detailed
in Algorithm S1.

Algorithm S1. Data assimilation under possible fire conditions.
1: Initialize the time step k, and also derive QQQ, BBB0 and initial state at k = 1 as explained in Section S1.3.

2: for each time step k do

3: Retrieve background (or predicted) estimates – i.e., xxxb
0 = fk(xxxa

0,k−1) and BBB0 for 4D-Var, or {xxx f
k,i}

51
i=1 drawn from state transition prior

distribution p (xk|xk−1,i) for EnKF and SIR.

4: Collect yyyk for EnKF and SIR while for 4D-Var, 5 recent non-fire observations {yyyk−5, · · · ,yyyk−1} must also be collected.

5: if yyyk is a fire-contaminated observation (see Algorithm 1 in the main article) then

6: No data assimilation

7: else

8: RRRk ⇐ RRR∗ (RRR∗ is constant throughout the current observed DTC. Its estimation is explained in Section S1.3.)

9: Compute the analysis {xxxa
0,k , · · · ,xxxa

5,k} for 4D-Var or {xxxa
k,i}

51
i=1 for EnKF and SIR – i.e., evaluate Equation (S7) for 4D-Var using

NAVDAS-AR algorithm [12], Equation (S9) for EnKF; and Equations (S19), (S20), (S21) for SIR.

10: end if

11: end for
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S1.3. Derivation of pixel non-fire -state parameters

The measurement error [n1(tk),n2(tk)]ᵀ (see Equations (S5) and (S6)) provides the error in the observation
vector yyyk formed by the observed brightness temperature and the observed shift of the thermal sunrise from
the sunrise (the offset of ttsr from tsr ). In this study, the two elements of the measurement error are assumed
uncorrelated and the measurement error variance-covariance RRR∗ during data assimilation cycles in the current DTC
of a given pixel location, is then a 2×2 diagonal matrix with element RRR∗1,1 being the variance of n1(tk), considered
to be the sample variance of the misfits of observations on a DTC model (in this case, the BER06 model) from
previous valid 7 DTCs (valid according to the conditions set on DTC parameters, presented in Table S2).
Element RRR∗2,2 is the sample variance of the shifts c(tk)’s in previous valid 7 DTCs. RRR∗ is constant during all data
assimilation cycles implemented in a single DTC of a pixel location. It is estimated in 15 minutes before the start
of the current DTC, and is the only parameter that is learned online.

Table S2. Conditions that prompts the removal of a given DTC from the training set.

‘Rejection conditions’

tm < solar noon
tm > solar noon+ 6
tm > ts−1
Ta ≤ 0
ts < sunset−3
ts > sunset+ 3
β > 100
ω1 < 0

The constraints are linked by an OR operation.

The forecast model has 6 degrees of freedom (i.e., is made of 6 free DTC parameters), and the statistical
uncertainty in the model, vvvk (see Equation (S2)), is represented by a 6× 6 model error variance-covariance
matrix QQQk defined on a pixel location and kept constant on a pixel location throughout the simulation. Different
methods can be used to estimate the covariance matrix, and the natural estimate is the sample covariance as
an unbiased estimate of the actual covariance matrix. The size of the sample needed to compute the sample
covariance matrix of an n-dimensional random variable can be set to a value greater than the minimum sample
size that guarantees a certain quality or level of accuracy (with a high probability) of the sample covariance.
This minimum value depends on the probabilistic distribution and independence of the samples, and the size
of the population from which the samples are being drawn [35]. A pixel in a land surface image acquired by
a sensor at the Top Of the Atmosphere (TOA) can be described using sample data provided by the sensor on
the pixel location over a certain period. To ensure that enough information on the pixel location is extracted,
the period must be a compromise between a too-short period that increases the probability of extracting only
cloudy measurements and a too-long period that ignores changes in the land cover on the pixel location. The
problem is then one of defining the population. In this study, the covariance matrix QQQk is estimated using DTCs
extracted over 15 days (i.e., assumption of no abrupt change in land cover/atmosphere over the period) ending on
2007/August/05 (excluding this date) in the region of interest, and only valid DTCs in a single-pixel location
according to conditions set in Table S2 are chosen to estimate the covariance matrix in the pixel location. A
sample size of 15 DTCs (i.e., if all DTCs in 15 days are valid) complies with the minimum sample size required
to capture the covariance matrix in ensemble-based filters, EnKF-based and sigma-point Kalman filter-based
methods [18,23,24,36,37]. Sampling error in the estimate of QQQk, due to the small sample size, is reduced, and the
estimate improved by estimating QQQk using a pooling mechanism [38]. This mechanism is one of the methods that
are commonly used to estimate the covariance matrix of an n-dimensional random variable in case the sample
size is less than n. The reason for its use in this study is that it is simple and has a theoretical justification when
the dimensionality of the random variable is large. The method also gives potentially a full rank covariance
matrix estimate and does not exhibit a full or partial loss of information on the covariance matrix of a pixel
location. The pooled sample (variance-) covariance matrix of a pixel at location (i, j) is determined by taking
into consideration its 3×3 neighborhood and is defined as
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QQQ(i, j),k ≡ QQQ(i, j) =
∑

1
p=−1 ∑

1
q=−1 N(i+p, j+q)SSS(i+p, j+q)

∑
1
p=−1 ∑

1
q=−1 N(i+p, j+q)−9

(S23)

where N(i, j) and SSS(i, j), are the number of valid DTCs and the sample covariance matrix (unbiased
version), respectively, at location (i, j). The sample covariance matrix SSS(i, j) of an individual pixel location
(i, j) (considering the information received only from (i, j)) is given by

SSS(i, j) =
1

N(i, j)−1

N(i, j)

∑
d=1

(ppp(i, j),d− ppp(i, j))(ppp(i, j),d− ppp(i, j))
ᵀ (S24)

where ppp(i, j),d is a 6-dimensional vector of the free DTC parameters, of a single DTC on day d at the pixel
location (i, j). It is derived from the robust fitting of the observed DTC on the DTC model BER06 . In this study,
the robust fitting is achieved using the Geman-McClure error function and the Nelder-Mead simplex optimization
method. ppp(i, j) is the sample mean vector from N(i, j) DTCs. The pooled estimate at (i, j) is a consistent estimator
of the actual covariance matrix at (i, j), only when the actual covariance matrices in all pixel locations in a 3×3
neighborhood of location (i, j) are equal. Though pixels in a 3× 3 METEOSAT Second Generation (MSG)
Level 1.5 data used in this study overlap (due to an oversample factor of 1.6), statistical independence between
observations of neighbor pixels in a 3× 3 can hold under non-fire and no-cloud conditions due to the coarse
spatial resolution of the MSG pixels and due to the atmosphere. In case the DTC parameters from neighbor
pixels are uncorrelated, the sampling error in the pooled estimate reduces.

Background error variance-covariance BBB0 used in 4D-Var (see Equation (S7)) can be computed using
different methods [39]. In this study, it is estimated based on one of the operational approaches used to derive
the Three-Dimensional Variational Assimilation (3D-Var) background error variance-covariance presented by
[40], namely, the National Meteorological Center (NMC) (the current National Centers for Environmental
Prediction (NCEP)) method, which is widely adopted and referenced by different centers that conduct researches
on numerical weather predictions or that operate numerical weather predictions, and it is given by

BBB0 ≈ λE
[[

xxx f (48 h)− xxx f (24 h)
][

xxx f (48 h)− xxx f (24 h)
]ᵀ]

, (S25)

where λ is a scale parameter and xxx f (tk) is tk-forecast. BBB0 estimate is a statistic of the difference between
24-hour and 48-hour forecasts (two short-range forecasts, from 24-hour-apart initialization times, verifying at
the same time). Based on Equation (S25) and the forecast model given by Equation (S2), BBB0 is found by the
covariance of the difference between parameters (here, referring specifically to the free DTC parameters) of
two consecutive DTCs of a single-pixel location. BBB0 (a 6×6 matrix) for an individual pixel in the study area
is evaluated by randomly drawing 2,500 land pixel locations among land pixel locations not affected by fire
throughout 15 days ending on 2007/August/05 (excluding this date), according to MODIS MOD14/MYD14 and
EUMETSAT FIR products. It is computed as the sample covariance matrix (unbiased version) of the vector
difference between the fits of two, randomly chosen, consecutive valid DTCs per single-pixel location in the
period considered, and yields

BBB0 =



9.8178 −5.5937 −0.0562 0.2861 −2.4879 0.2050
−5.5937 9.6852 0.1932 −0.7335 1.3157 0.7264
−0.0562 0.1932 0.0938 −0.0529 0.2396 −0.2255
0.2861 −0.7335 −0.0529 0.4740 −0.2062 0.3343
−2.4879 1.3157 0.2396 −0.2062 1.8044 −0.8073
0.2050 0.7264 −0.2255 0.3343 −0.8073 1.9948


(S26)

BBB0 is constant in time and is the same for all pixel locations on the whole study region. The scale parameter
λ in Equation (S25) can also be considered, but instead, this study looked on case correlation between DTC’s
parameters is considered or ignored, and better results which are reported in this study were found when the
correlation is ignored (off-diagonal elements of the covariance matrix are set to zero).
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At the launch time of the simulation (i.e., the first data assimilation cycle), the background field (in case of
4D-Var) or model forecast (in case of ensemble-based filters) is assumed Gaussian distributed. The background
estimate xxxb

0 or the expected model forecast estimate E
[
xxx f

1

]
of a pixel location is set to the mean vector of the

free parameters of the valid DTCs in 15 days of the pixel location ending on 2007/August/05 (excluding this
date). The covariance matrix of the error in the predicted estimate at launch, or a priori estimate covariance PPP f

1 is
equal to the estimated process noise covariance matrix QQQ, and serves in the generation of the initial ensemble
(particles) for the ensemble-based methods at the start of the simulation.

S1.4. Ensemble forecasting-based change detection

After each data assimilation cycle (i.e., having established the initial condition of a forecast), a numerical
prediction system aims to predict or forecast far-off (i.e., over a long model integration time) with a small
error. Albeit errors in initial conditions and deficiency of the model, that cannot totally be removed and restrict
the limit of predictability (of atmospheric or oceanic system or other systems), some forecast techniques that
account for error in initial conditions and the model errors have been designed to improve predictability (i.e.,
achieve long-range predictability and together, gain a skillful forecast). The more preferable technique is the
ensemble forecasting [41,42]. The technique propagates the uncertainty, and its forecasts are derived from
various initial conditions and/or models. In this study, the ensemble forecasting method produces an ensemble
that, at initial/analysis time, reflects the uncertainty in the analysis. The EnKF and the SIR particle filter (i.e.,
methods that provide MC approximations to the analysis) produce an ensemble of analyses that serve as a basis
of ensemble forecasting – the ensemble analysis is also propagated forward for the next assimilation cycle.
The initialization of ensemble forecasts from the weak-constraint 4D-Var analysis is achieved, in this study,
through perturbations of the initial condition. These perturbations are generated using one of the operational
ensemble forecasting methods, the breeding approach [43,44]. An Ne-member ensemble consists of one control
forecast (control run) and (Ne− 1) perturbed members (perturbed forecasts). The breeding method seeks to
create perturbations for the initial condition that exhibit fast growth during the forecast. The faster the initial
error/perturbation growth, the better the perturbations for the ensemble prediction – the quality of ensemble is
measured by the skill of the mean of ensemble forecasts to approximate more closely the true evolution [41].
In this study, the ensemble initial conditions are created by generating perturbations in the background state
at launch time (i.e., around xxxb in the first analysis cycle). 1

2 (Ne−1) MC samples (random perturbations) are
drawn from a Gaussian distribution with zero mean and covariance matrix PPP f

1 = BBB0, and are added and subtracted
to xxxb

0. The forecast model is then integrated from the control and from the perturbed initial conditions; and
perturbations around the control run scaled at the end of assimilation window of each 4D-Var analysis (i.e., at
observation time of the latest assimilated data) to construct (Ne−1) perturbed members at analysis time (i.e., a
set {xxxa

k,i}
Ne
i=2). The perturbations are vectors of equal size measured by a norm ‖ · ‖WWW defined by a weight matrix

WWW given by WWWᵀWWW = AAA−1
k , where AAAk is an estimate of the analysis error covariance matrix computed at the end of

an assimilation window of an analysis cycle. AAAk can be estimated using different methods, each with its specific
assumptions (see [45] and references therein). In this study, the analysis error covariance of the extended Kalman
filter with a constant forecast error covariance BBB0 is adopted. It is a simple approximation given by

AAAk =
(

III−BBB0ĤHH
ᵀ
k (ĤHHkBBB0ĤHH

ᵀ
k +RRRk)

−1ĤHHk

)
BBB0 (S27)

where ĤHHk is the Jacobian matrix of the forward observation operator hk(·) (given by Equation (S8))
evaluated at xxx f

k . The norm of the ith perturbation vector pppi is defined by ‖pppi‖2
WWW = pppᵀi WWWᵀWWW pppi. The ith perturbed

member determined by adding the scaled perturbation to the (unperturbed) analysis xxxa
k – i.e., adding to the initial

of the control forecast – is given by

xxxa
k,i = xxxa

k +
pppiii

‖pppiii‖WWW
(S28)

The number of ensemble members used in the forecast is Ne = 51 when the initial condition of the forecast
is determined using either 4D-Var, EnKF or SIR particle filter. Though the accuracy or skill of the forecasts also
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depends on the number of ensemble members, 51 members are not optimal but sufficient for fulfilling the goal
of this initial study while preserving at a feasible level the computational complexity of the algorithms. The
ensemble forecasting is implemented pixel-wise, where for each pixel location, 51-member ensemble forecasts
are generated independently of the state and observations of its neighbor pixels. Each of the 51 ensemble
members is integrated with no data assimilation using the same model configuration (i.e., xxx f

k+1,i = fk(xxxa
k,i)),

starting from the analysis time up until the next non-fire brightness temperature is observed, when the forecast
is then updated. Predicted values of model variables (free DTC parameters) are produced from the analysis
time onwards at each MSG observation times (i.e., 15-minute forecasts for a variable length of time). The
shortest-range ensemble forecasts of brightness temperature verifying at time step k in a pixel location (i.e.,
y f

1,k, one of the two elements of the observational forecast computed from the integrated model) represents the
distribution of the background (non-fire ) temperature of the pixel location at time step k, and the mean of this
ensemble is the expected value of the background (non-fire ) temperature of the pixel location at time step k. The
expected forecast thermal sunrise t f

tsr,k, given the sunrise time of a day tsr,k is given by

t f
tsr,k = tsr,k +

1
Ne

1
Nl

Ne

∑
i=1

n[te
tsr,k ]−1

∑
k=n[ta

k ]+1
h2,k(xxx

f
k,i) (S29)

where n[·] rounds the time to the closest discrete time step from the launch of the simulation, te
tsr,k = tsr,k +ck

where tsr,k is the incoming sunrise, and ck is the mean of the recent observed 7 offsets ck’s of the thermal sunrise
from the sunrise (including the offset of the current DTC). Nl is the interval length from the analysis time ta

k to
te
tsr,k (i.e., Nl = n[te

tsr,k]−n[ta
k ]−1), and Ne is the number of ensemble members. n[t f

tsr,k] is set to n[ta
k ]+ 1 when

n[t f
tsr,k] < n[ta

k ] + 1, and set to infinity (∞) when t f
tsr,k > t f

k (where t f
k is the forecast verifying time). Figure S1

shows an example of forecasts, when the initial condition of the forecast is derived using the weak constraint
4D-Var with a data assimilation window of length Nw = 6 (in the main article, referred to as the 4D-Var-CD(Nw=6)

method), the EnKF with number of ensemble Ne = 51 (in the main article, referred to as the EnKF-CD(Ne=51)

method), and the SIR particle filter with number of particles Np = 51 (in the main article, referred to as the
SIR-CD(Np=51) method). The example displays the ensemble range (lower and upper bounds of the ensemble
members) of a quarter-hourly ensemble forecast of brightness temperatures for a forecast window of 3 days. Fire
is reported by EUMETSAT FIR product in this example on 3 August 2007 in an MSG pixel location whose center
is at (28.3699◦S,30.3394◦E). This fire that can be observed by visual inspection is reported by EUMETSAT
FIR as five fire events, all with high probability (i.e., probable fire events), at 11:15 a.m., 11:45 a.m., 12:00 p.m.,
12:15 p.m. and 12:30 p.m.
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(a) Weak-constraint 4D-Var [1.0493,0.6874,−0.0823]
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(b) EnKF with 51 ensembles [0.7699,0.5934,0.1626]
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(c) SIR with 51 particles [1.7858,1.0873,0.8797]
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(d) Weak-constraint 4D-Var [1.0538,0.7129,0.0583]

 

 

Predicted temperature ensemble range

Predicted temperature

Observed temperature

03-08-200702-08-200701-08-200731-07-200730-07-2007

B
ri
gh

tn
es
s
te
m
p
er
at
u
re

(K
)

UTC (Hour:Minute)

05:12 17:12 05:12 17:12 05:12 17:12 05:12 17:12 05:12
240

260

280

300

320

(e) EnKF with 51 ensembles [0.7599,0.5959,0.1888]
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(f) SIR with 51 particles [1.6535,1.0044,0.7246]

Example of ensemble generation/forecast for a last analysis at 10:42 a.m. on
31 July 2007 for a Level 1.5 image pixel at (898,951) whose center is at
(28.3699◦ S,30.3394◦E)

Example of an ensemble generation/forecast for a last analysis at 04:42 p.m.
on 31 July 2007 for a Level 1.5 image pixel at (898,951) whose center is at
(28.3699◦ S,30.3394◦E).

Figure S1. Example of ensemble forecast from 4D-Var-CD(Nw=6) , EnKF-CD(Ne=51) and SIR-CD(Np=51)
analyses. Quantities in square brackets are, respectively, the RMSE, the MAE and the bias between the mean
of one-step ahead forecasts and the observations from the launch time of the simulation (i.e., 5:12 a.m. on 30
July 2007) to the time of the last analysis cycle when all observations in this interval have been sequentially
assimilated.
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Abbreviations
The following abbreviations are used in the Supplementary Materials:

3D-Var Three-Dimensional Variational Assimilation
4D-Var Four-Dimensional Variational Assimilation
DTC Diurnal Temperature Cycle
EnKF Ensemble Kalman Filter
IS Importance Sampling
MAE Mean Absolute Error
MC Monte Carlo
MSG METEOSAT Second Generation
NAVDAS-AR Naval Research Laboratory (NRL) Atmospheric Variational Data Assimilation System - Accelerated

Representer
NCEP National Centers for Environmental Prediction
NMC National Meteorological Center
pdf probability density function
RMSE Root Mean Squared Error
SEVIRI Spinning Enhanced Visible and Infrared Imager
SIR Sampling Importance Resampling
SIS Sequential Importance Sampling
TOA Top Of the Atmosphere
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