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Abstract: Applied to grazing management, unmanned aerial systems (UASs) allow for the monitoring
of vegetation at the level of each individual on the pasture while covering a significant area (>10 ha
per flight). Few studies have investigated the use of UASs to describe the forage quality in terms
of nutritive value or chemical composition, while these parameters are essential in supporting
the productive functions of animals and are known to change in space (i.e., sward species and
structure) and time (i.e., sward phenology). Despite interest, these parameters are scarcely assessed
by practitioners as they usually require important laboratory analyses. In this context, our study
investigates the potential of off-the-shelf UAS systems in modeling essential parameters of pasture
productivity in a precision livestock context: sward height, biomass, and forage quality. In order
to develop a solution which is easily reproducible for the research community, we chose to avoid
expensive solutions such as UAS LiDAR (light detection and ranging) or hyperspectral sensors, as
well as comparing several UAS acquisition strategies (sensors and view angles). Despite their low
cost, all tested strategies provide accurate height, biomass, and forage quality estimates of timothy
pastures. Considering globally the three groups of parameters, the UAS strategy using the DJI
Phantom 4 pro (Nadir view angle) provides the most satisfactory results. The UAS survey using
the DJI Phantom 4 pro (Nadir view angle) provided R2 values of 0.48, 0.72, and 0.7, respectively, for
individual sward height measurements, mean sward height, and sward biomass. In terms of forage
quality modeling, this UAS survey strategy provides R2 values ranging from 0.33 (Acid Detergent
Lignin) to 0.85 (fodder units for dairy and beef cattle and fermentable organic matter). Even if their
performances are of lower order than state-of-art techniques such as LiDAR for sward height or
hyperspectral sensors (for biomass and forage quality modeling), the important trade-off in terms of
costs between UAS LiDAR (>100,000 €) or hyperspectral sensors (>50,000 €) promotes the use of such
low-cost UAS solutions. This is particularly true for sward height modeling and biomass monitoring,
where our low-cost solutions provide more accurate results than state-of-the-art field approaches,
such as rising plate meters, with a broader extent and a finer spatial grain.
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1. Introduction

The management of pastures through direct grazing is not an easy task, as managers have to act
on a complex system including the dynamic growth of multi-species grasslands in close interaction
with animals which graze them selectively and non-homogeneously in time and space. The tools
available to farmers for managing grazed pastures and adjusting forage demand to grass growth are
still rather static (e.g., fences). Applied to grazing management, precision livestock farming promotes
more dynamic management of ruminants on grasslands, at the level of each individual on the pasture.
Over the past decade, research developments in sensors and information technology have opened
up new monitoring approaches for grazing animals, especially cattle [1–4]. Such developments have
allowed for the monitoring of grazing processes in space and time at the smallest possible level,
namely, the individual bite [5]. This opens up the possibility for new management practices such as
virtual fencing [6]. In addition to the monitoring of individual grazing animals, new developments
in remote sensing allow for the characterization of grazed vegetation at similar to even finer spatial
scales through the use of unmanned aerial systems (UASs). UASs can cover areas relevant to a grazing
management perspective (>10 ha per flight) while providing imagery at a very high spatial resolution
(<0.1 m). Moreover, UASs are versatile tools which can be deployed on demand by the end-user
to synchronize the acquisition of aerial imagery with the need for data on the field. As they fly at
very low altitudes (generally <100 m above ground level), they can collect data under more diverse
weather conditions than other remote-sensing solutions, especially on cloudy days. In the context of
environmental monitoring, UASs can be used for quantitative crop monitoring [7], weed detection [8],
plant phenotyping [9], and early pest detection [10]. They have also been used for grazing applications
in research, including the monitoring of biomass [11] and the detection of invasive weeds [12]. Thanks
to their higher versatility, UASs can be used to acquire dense time-series [13,14], which opens up
new avenues in terms of vegetation phenology characterization. For example, UASs can be used for
the characterization of organismic-level variability vegetation phenology in forests [15] or to identify
different development stages and irrigation treatments in maize [16]. Moreover, UAS remote sensing
can reveal small-scale heterogeneities which could usually only be revealed by in situ observation and
missed by satellite remote sensing [17]. In terms of the imagery methods that are applied, UAS are
commonly used to produce 3D data using structure from motion (SFM) photogrammetry and spectral
information. SFM photogrammetry can be used to derive crop surface/height models from UAS
imagery at very low costs compared to LiDAR (laser detection and ranging). Depending on the sensor
used, the spectral information provided by a UAS can be simple RGB (red–green–blue) provided by an
off-the-shelf camera or may be more specific when using multispectral, thermal, or even hyperspectral
cameras [18].

In the context of precision grazing, UAS imagery can provide higher frequency, higher spatial
resolution, and more precise information about the biomass productivity of a pasture. Pasture height
information is of utmost importance for farmers; more critical than biomass, sward height is indeed
the most critical parameter driving the instantaneous efficiency of forage intake from an animal’s
perspective [19]. Hence, grazing management methods aiming to maximize the short-term intake
rate of animals must rely on the accurate monitoring of sward height, its spatial distribution, and
its change over time. However, such measurements are still typically taken with low-frequency and
time-consuming instruments, notably sward-sticks or rising plate meters [20]. The ability of UASs to
describe the sward height and biomass has been well-documented in the literature (see, e.g., [21–25]).
For the specific case of sward height, the methodological challenge can be addressed similarly to that
in other disciplines related to vegetation characterization. The vegetation height is typically computed
from a UAS photogrammetric digital surface model (DSM) combined with a digital terrain model
(DTM). Such photogrammetric approaches can compete with strictly LiDAR approaches in various
vegetation types (see, e.g., Michez et al. [26] in pasture, Yuan et al. [27] for wheat, and Lisein et al. [28]
in forest). The data sources of the DTM are various, depending on the application. In the case of
sward height, the DTM can be derived from a pre-existing LIDAR DTM [26,29], interpolated precision
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GNSS (Global Navigation Satellite Systems) points [30], or a UAS photogrammetric DSM based on
imagery acquired when the ground is bare or the pasture is freshly mowed [25]. Fewer studies have
undertaken the use of UASs to describe the forage quality mainly with hyperspectral sensors [31–33]
or a combination of RGB or multispectral sensors [34,35]. This parameter is essential to support the
productive functions of the animals once the forage has been consumed, and is known to change with
species composition (i.e., in space) over the area of the pasture, and with the physiological development
of forage plants over the grazing season (i.e., in time) [36]. Despite the interest of these parameters,
they are typically scarcely assessed by practitioners, as their assessment requires important laboratory
analyses. Hence, there is an important need for forage quality information at higher spatio-temporal
resolution, which could be fulfilled by UASs.

In this context, we propose to investigate the potential of off-the-shelf UASs to model essential
parameters of pasture productivity in a precision livestock farming context: sward height, biomass, and
forage quality. In order to develop a solution which is easily reproducible for the research community,
we chose to avoid expensive solutions, such as UAS LiDAR or hyperspectral sensors, and to focus on
low-cost solutions. More specifically, our objectives are twofold:

(1) compare low-cost off-the-shelf UAS approaches (between 1000 and 5000 €) to monitor essential
components of grassland heterogeneity in a precision livestock context;

(2) provide practical recommendation for researchers and practitioners willing to develop precision
grazing applications based on low-cost UASs.

2. Materials and Methods

2.1. Study Area

The study took place on the experimental farm of Michamps (50◦02′16.0′′N 5◦48′28.4′′E),
Wallonia, Southern Belgium, in the Ardenne ecoregion, where a field trial dedicated to timothy
grass (Phleum pretense L.) was set up in spring 2017. The field trial was composed of eighty 7 × 1.5 m
plots (Figure 1). All 80 plots were seeded with different varieties of timothy and were largely dominated
by timothy during the experiment. The mean sward height (±standard deviation) was 0.76 ± 0.18 m
when the study was conducted, with a mean (±standard deviation) dry above-ground biomass of
5494 ± 929 kg/ha. The topography was rather homogeneous across the study site, with a mean
(±standard deviation) altitude of 498 ± 1.6 m.

2.2. Acquisistion of Unmanned Aerial System Imagery

In order to ease the replicability of our approach, our study focused on low-cost UASs which
are among the most common found worldwide (the DJI Phantom 4 Pro and Mavic 2 Pro Platinum,
Shenzen, China), as well as the use of a multispectral sensor (Parrot Sequoia, Paris, France) which
has been widely established in the UAS community. The multispectral sensor was mounted with its
sunshine sensor on the DJI P4 Pro, thanks to a 3D printed mount, and a 6700 mAh powerbank for
the power supply. Compared to the on-board RGB sensors (FC6310-P4Pro and FC220-Mavic Pro),
the multispectral sensor had a lower spatial resolution (1.2 Mpx) but provided fine multispectral
information, covering green (550 nm), red (660 nm), near-infrared (735 nm), and red-edge (790 nm)
wavelengths. The full width at half maximum was 40 nm for red, green, and near-infrared, and 10 nm
for the red-edge wavelength.

The aerial images were acquired as close as possible to solar noon on the 6th of June, 2019, and
were further processed and analyzed following five different UAS survey modalities (Table 1). Before
each flight, a picture of a calibrated reflectance panel (see Figure 2) was taken, in order to further ensure
the radiometric calibration of the multispectral imagery. The flight height was set to 30 m for all flight
surveys listed in Table 1. The PixCapture Android application (PiX4D, Lausanne, Switzerland) was
used on an android device, with high overlap and lowest possible speed set in the app menu.
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Table 1. The unmanned aerial system (UAS) survey strategies evaluated. For each reference, the
associated mapping products describe the raster data used to predict pasture parameters. R: red; G:
green; B: blue; NIR: near-infrared; RE: red-edge; GSD: ground sampling distance.

Reference Sensor UAS View Angle UAS Mapping Product (GSD)

Mavic NADIR FC220 Mavic Pro 2
platinum Nadir Sward Height Model (0.02 m)

Orthophotomosaic RGB (0.01 m)

Sequoia NADIR Sequoia
multispectral

Phantom 4
Pro Nadir Sward Height Model (0.05 m)

Orthophotomosaic R G NIR RE (0.025 m)

Phantom NADIR FC6310 Phantom 4
Pro Nadir Sward Height Model (0.02)

Orthophotomosaic RGB (0.01 m)
Phantom
OBLIQUE FC6310 Phantom 4

Pro Oblique (70◦) Sward Height Model (0.02 m)
Orthophotomosaic RGB (0.01 m)

Phantom MERGED FC6310 Phantom 4
Pro Nadir Sward Height Model (0.02 m)

Orthophotomosaic RGB (0.01 m)
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 Figure 2. The left panel (a) is a zoom onto the RGB orthophotomosaic from DJI Mavic pro 2 Platinum (1
cm ground resolution) centered on a ground control point (GCP; 0.5 m plastic square), used to ensure
geometric calibration, as well as the take-off and landing device. The black and white pattern of the
GCP allows for automatic location by the photogrammetric software used in the study. The right
pannel (b) represents the white balance card used to perform radiometric calibration.
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Twelve ground control points (GCPs) consisting of black and white square plastic boards were
evenly spread across the surveyed area to ensure proper geometric calibration (Figures 1 and 2).
The GCPs were precisely georeferenced (XYZ accuracy <1 cm) with an Emlid Reach (Emlid Ltd.,
Hong Kong) RS+ GNSS (Global Navigation Satellite System) receiver using Real Time Kinematic and
corrections provided by the local CORS (Continuously Operating Reference Station) network.

2.3. Processing of Unmanned Aerial System Imagery

All UAS imagery was processed with the Agisoft Metashape 1.5.5 software, from photogrammetric
reconstruction to the spectral calibration. Agisoft Metashape has been widely used in the UAS scientific
community to reconstruct high-resolution and reliable 3D models from UAS surveys (see, e.g., [37–39]).
The image alignment step was realized in full resolution (“High” accuracy parameter in Agisoft),
while limiting the number of points to be matched at 40,000 points per image as well as a maximum of
4000 points per image after the matching steps (respectively, “Key points limit” and “Tie point limit”
in Agisoft). The geometrical quality of the 3D models was optimized on the basis of the GCP network.
Following the recommendations of James et al. [37] to avoid potential overfitting, the following
parameters were kept fixed during the optimization process: affinity and skew transformation
coefficients (b1 and b2 in Agisoft), and additional tangential and radial distortion coefficients (k4 and
p3/p4 in Agisoft). As the FC220 sensor of the Mavic Pro camera uses an electronic shutter, we applied a
specific calibration strategy to avoid the excessive reconstruction errors inherent to such cameras [40]
(“Enable rolling shutter compensation” activated in the Agisoft optimization process).

The depth map generation processing was realized on aggregated UAS imagery (aggregation
factor of 2), in order to reduce the total number of pixels by images by 4-fold, optimizing the
processing time and reducing potential noise (“Aggressive” depth filtering strategy and “High” level
of accuracy in Agisoft). The orthomosaic process was performed with the digital elevation model
(interpolation enabled) as the reference surface, using the “Average” blending mode strategy. For
the radiometric calibration of the multispectral camera, we followed the workflow recommended by
Agisoft, which integrates the use of a calibrated reflectance panel and the information provided by the
sunshine sensor. In terms of spectral information, the photogrammetric processing resulted in RGB
orthomosaics for the on-board RGB sensors and a reflectance orthomosaic for the embarked Parrot
Sequoia multispectral sensor, as listed in Table 1.

Sward height models were computed by subtracting a LiDAR digital terrain model (DTM) from
the high spatial resolution photogrammetric DEM, in order to provide a raster of the sward height.
The spatial resolution of the sward height models ranged from 0.02 to 0.05 m, depending on the sensor
used to perform the photogrammetric DEM (Table 1). The LiDAR DTM (1 m GSD) was acquired by
public regional administration. The study site was surveyed in February 2014.

2.4. Sward Height Reference Data

Sward height was assessed immediately after the UAS image surveys in 29 different plots,
providing a total of 296 sward height measurements (Figure 1). A minimum of 10 measurements were
carried out in each plot, in order to capture the structural heterogeneity. Sward height measurement
was carried out using a ruler tape unrolled on the pole of an Emlid Reach RS+ GNSS. The sward height
recorded was the height of the first blade of grass within a 5 cm wide torus around the GNSS pole.
Each sward height measurement was precisely geo-localized (centimetric accuracy) using Real Time
Kinematic and corrections provided by the local CORS network. At the plot scale, the sward height
was aggregated by mean for further comparison with UAS imagery.

2.5. Biomass and Forage Quality Data

The study area was harvested on the 7th of June, 2019. During the harvest process, the entire plot’s
fresh material was weighed using a Haldrup harvester (Haldrup, Ilshofen, Germany) and fresh material
was collected throughout the harvest process. Samples were then dried at 60 ◦C and weighed before
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being analyzed by means of near-infrared reflectance spectroscopy (NIRS) using a reference database
from the regional reference laboratory network (Requasud, Gembloux, Belgium). The NIRS estimates
were considered reliable, as the Mahalanobis distance between the spectra of the samples and those
in the NIRS calibration database (measured using standard wet chemistry reference methods) were
low. The following forage chemical composition parameters were assessed: dry matter content (DM),
crude ash, crude protein (nitrogen × 6.25), crude cellulose, neutral detergent fiber, acid detergent fiber,
and acid detergent lignin. In addition, several nutritive value parameters for cattle were determined:
in vitro DM digestibility (De Boever’s method), digestible organic matter, fermentable organic matter,
digestible protein, fodder unit for dairy and beef cattle (French “unités fourragères lait” and “unités
fourragères viande”, UFL and UFV), intestinal digestible protein allowed by energy and nitrogen
content of the forage (French “protéines digestibles dans l’intestin”, PDIE and PDIN), and rumen
protein balance (Dutch “onbestendig eiwit balans”, OEB).

2.6. Modeling the Height, Biomass, and Forage Quality

We used single and multiple linear regression (MLR) modeling to model sward height as well as
pasture biomass and forage quality with UAS imagery. The same modeling approach was tested for the
five different UAS survey strategies, in order to compare the different sensor types and configurations
(i.e., close to nadir angle and oblique imagery), and to provide practical recommendations to the UAS
research community.

The UAS spectral imagery was synthetized using the vegetation indices (VIs) listed in Table 2
for RGB sensors (Mavic and Phantom Pro on-board cameras) and in Table 3 for the multispectral
imagery (Parrot Sequoia). The choice of these VIs was made by considering their use in the existing
literature, as well as their ability to cover the full spectral ranges of the selected sensors. In terms of
UAS 3D variables, we used the mean sward height value as well as the coefficient of variation (standard
deviation / mean) of the UAS height, in order to take into account the heterogeneity of the UAS sward
height for the considered plots. The main goal of our approach was to test the modeling capacity of
the different UAS survey strategies, in order to provide practical recommendations for the research
community. We did not investigate the individual contributions of the different predictors, in order to
ease the reading. In an analogous manner, the potential collinearity among UAS parameters was not
assessed, as the individual contributions of the UAS parameters were not addressed in the study.

Table 2. Vegetation indices computed from the RGB imagery (FC220 for Mavic and FC6310 for Phantom
4). R: red; G: green; B: blue. Each layer was divided by the associated brightness (i.e., the mean value of
all bands).

Vegetation Index Formula Reference

Green Red Difference Index (GRDI) (G−R)
(G+R) [41]

Modified Green Red Vegetation Index (MGRVI) (G2
−R2)

(G2+R2)
[25]

Red Green Blue Vegetation Index (RGBVI) (R2
−(B∗R))

(R2+(B∗R))
[25]

Normalized Green Blue Index (NGBI) or Plant
Pigment Ratio Index (PPR)

(G−B)
(G+B) [42]

Normalized Red Blue Index (NRBI) (R−B)
(R+B) [13]

Visible Atmospherically Resistant Index (VARI) (G−R)
(G+R−B) [43,44]
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Table 3. Vegetation indices computed from the reflectance layers provided by the multispectral camera.
R: red; G: green; NIR: near-infrared; RE: red-edge.

Vegetation Index Formula Reference

Normalized Difference Vegetation Index (NDVI) (NIR−R)
(NIR+R) [45]

Normalized Difference Red Edge (NDRE) (NIR−RE)
(NIR+RE) [46]

Green NDVI (GNDVI) (NIR−G)
(NIR+G)

[47]

Green Ratio Vegetation Index (GRVI) NIR
G [48]

Chlorophyll Vegetation Index (CVI) NIR ∗ R
G2 [49]

Chlorophyll Index Red-edge (CIR) NIR
RE − 1 [49]

Normalized Green–Red Difference Index (G−R)
(G+R) [41]

Red Ratio Vegetation Index (RVI) NIR
R [50]

The sward height was modeled at two spatial scales: the individual sward height measurement
(Model 1) and the plot (Model 2). At the individual sward height measurement, the height value
provided by the associated UAS sward height model at the direct location of the field sward height
measurement was retained. At the plot scale, the mean field sward height was modelled with the
mean UAS sward height. Models 1 and 2 were fitted recursively for each UAS survey strategy. At each
step, the adjusted R2 value was kept as a model performance indicator, as well as the root mean square
error (RMSE).

Model 1:
Swardheightfield = f

(
SwardheightUAS

)
(1)

Model 2:
Swardheightfield = f

(
SwardheightUAS

)
(2)

Above-ground biomass (on a dry-matter basis, Model 3) and forage quality (Model 4) were fitted
using an MLR approach, in order to link both spectral and 3D information provided by UAS imagery.
Models 3 and 4 were fitted recursively for each UAS survey strategy. At each iteration step, the adjusted
R2 value was kept as a model performance indicator, as well as the root mean square error (RMSE).
For modeling of forage quality (chemical composition and nutritive value; Model 4), the process was
repeated for each parameter.

Model 3:
AGB = f( VIUAS, 3DUAS) (3)

Model 4:
Forragequality1

= f( VIUAS, 3DUAS)

Forragequality2
= f( VIUAS, 3DUAS)

. . .

(4)

3. Results

3.1. Sward Height Modeling with UAS

The sward height estimates provided by the UAS were in good agreement with the field-measured
sward height, as displayed in Figure 3. Similar model performance for Model 1 (individual sward
heights) was found across the five different UAS survey strategies. The R2 values ranged from 0.46 to
0.49, with relative RMSE (rRMSE) values at 19%. In terms of mean signed error (field height − UAS
height), all UAS survey strategies were associated with positive mean values, highlighting a trend
of UAS sward height model to underestimate the sward height measured on the ground. The UAS
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estimates provided by the DJI Phantom 4 presented lower mean signed error values: 0.07, 0.07, and 0.08
for “Phantom Nadir”, “Phantom Oblique”, and “Phantom Merged”, respectively.
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Figure 3. Biplots of sward height from UAS sward height model and from field measurements.
The mean error (err.) is computed from the difference between the reference field sward height and the
UAS sward height. Relative root mean square error (rRMSE) is computed from the RMSE ratio with
the mean field sward height measurements. The blue line is the regression line fitted over the plotted
data (Model 1). The grey area around the regression line represents the 95% confidence region.

When averaged at the plot scale (10.5 m2), the UAS sward height estimates presented a better
agreement with the field sward height averaged at the same plot scale (Figure 4). In terms of model



Remote Sens. 2020, 12, 1650 9 of 18

performance, the trends were similar at the plot (Model 2) and the individual (Model 1) measurement
scales (Figures 3 and 4). Indeed, all UAS survey strategies presented comparable R2 values (0.71–0.73)
and rRMSE values (9%–10%), while the UAS survey strategies using images from Phantom 4 presented
lower mean error (field height − UAS height) values. The same trend of underestimating the field
sward height was also highlighted at the plot scale.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 17 
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Figure 4. Biplots of the mean UAS sward height and field measurements. The mean error (err.) is
computed from the difference between the reference mean field sward height and the mean UAS sward
height. Relative root mean square error (rRMSE) is computed from the RMSE ratio with the mean of
the mean plot sward height measurements. The blue line is the regression line. The grey area around
the regression line represents the 95% confidence region.
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3.2. Above-Ground Biomass Modeling with UAS

From the multiple linear regression (MLR) modeling of the dry above-ground biomass (AGB,
Model 3), as highlighted in Figure 5, similar model performance was seen across the UAS survey
strategies. Nevertheless, the Sequoia Nadir UAS survey strategy presented the best performance,
with the lowest rRMSE (9%) and highest R2 value (0.74).Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 17 
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Figure 5. Modeling dry above-ground biomass (AGB) using five different UAS survey strategies
(Model 3). The solid lines represent the 1:1 lines (i.e., x = y). Relative root mean square error (rRMSE) is
computed from the RMSE ratio with the mean of reference AGB measurements.
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3.3. Forrage Quality Modeling with UAS

UAS imagery, whatever the survey strategy presented, satisfied forage quality modeling
capabilities for most of the forage quality parameters (Table 4). The RGB UAS imagery reached
similar performance results as the multispectral (Sequoia Nadir) survey strategy and even clearly
outperformed the multispectral system in some aspects (i.e., for volatile protein balance, digestible
protein, crude protein, intestinal digestible protein, bottom ashes, or dry matter rate). In the case of the
“Phantom Nadir” survey strategy, it (sometimes slightly) outperformed the multispectral strategy for
all parameters (except for the cellulose content). The “Phantom Nadir” strategy provided the best
results for 12 parameters among 17. For this strategy, the R2 values ranged from 0.33 (Acid Detergent
Lignin) to 0.85 (fodder units for dairy and beef cattle and fermentable organic matter).

Table 4. Modeling the forage quality using five different UAS survey strategies. For each parameter,
the best model’s accuracy values are italicized.

Parameters
Sequoia Nadir Mavic Nadir P4 Merged P4 Nadir P4 Oblique

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Chemical composition

Dry matter (%) 0.07 1.19 0.17 1.13 0.33 1.01 0.47 0.9 0.25 1.07

Crude ash (%) 0.23 0.53 0.3 0.5 0.34 0.49 0.48 0.43 0.29 0.5

Crude protein (%) 0.24 1.06 0.18 1.1 0.42 0.93 0.54 0.82 0.4 0.93

Crude cellulose (%) 0.84 1.25 0.8 1.43 0.82 1.33 0.84 1.27 0.84 1.27

Neutral detergent fiber (%) 0.83 1.77 0.73 2.24 0.83 1.81 0.82 1.83 0.84 1.75

Acid Detergent Fiber (%) 0.79 1.34 0.68 1.66 0.8 1.31 0.77 1.4 0.82 1.24

Acid Detergent Lignin (%) 0.51 0.41 0.36 0.47 0.53 0.4 0.33 0.48 0.6 0.37

Nutritive value

In-vitro DM digestibility
(%) 0.82 2.33 0.75 2.72 0.81 2.39 0.83 2.24 0.8 2.43

Fermentable organic matter
(g/kg) 0.82 12.51 0.71 15.93 0.82 12.44 0.85 11.6 0.82 12.46

Digestible organic matter
(g/kg) 0.82 12.81 0.74 15.52 0.81 13.06 0.84 12.19 0.81 13.1

Digestible protein (%) 0.24 10.31 0.18 10.67 0.42 9.01 0.54 7.99 0.41 9.1

PDI (g/kg) 0.67 3.77 0.68 3.73 0.68 3.7 0.74 3.39 0.68 3.74

PDI-E (g/kg) 0.42 3.91 0.44 3.86 0.51 3.59 0.61 3.22 0.51 3.62

PDI-N (g/kg) 0.24 8.58 0.18 8.89 0.42 7.51 0.54 6.67 0.4 7.58

OEB (g/kg) 0.29 7.59 0.12 8.45 0.49 6.4 0.6 5.65 0.48 6.46

Fodder units for dairy
cattle (UFL/kg) 0.83 0.02 0.74 0.03 0.82 0.02 0.85 0.02 0.82 0.02

Fodder units for beef cattle
(UFV/kg) 0.83 0.02 0.74 0.03 0.83 0.03 0.85 0.02 0.82 0.03

4. Discussion

In terms of individual sward height modeling (Model 1, Figure 3), comparison with other
studies is quite complex, as most studies have compared UAS sward averaged at a higher scale (e.g.,
Rueda-Ayala et al. [51], which evaluated the UAS sward height at the scale of 1 m2; plots) or compared
UAS height to other height metrics such as grass length [26] or compressed grass height using rising
plate meter [24] and drop disk approaches [22]. These two latter approaches allowed for higher model
accuracy (R2 values of 0.86 and 0.70, respectively, for [24] and [22]), similar to those found in our study
at plot scale (Model 2, Figure 4). These positive results confirm the potential of UAS to quickly and
accurately describe grassland heterogeneity. Sward height models were computed by subtracting
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a LiDAR DTM from the high spatial resolution photogrammetric DEM. Even if the availability of
aerial LiDAR surveys for entire regions/countries is still rare in most parts of the world, the use of
pre-existing LiDAR DTM should be promoted, as it implies no additional field work to build the UAS
sward height model and, thus, increases the operationality of UAS solutions. Nevertheless, attention
must be paid to the potential errors relative to the LiDAR DTM itself, which mainly relies on ground
point density and terrain complexity [52]. When a quality LiDAR DTM is not available, alternative
strategies can be implemented rather easily. For example, a reference digital terrain model can be
easily generated using a UAS survey performed when the field ground is bare or right after mowing of
the studied pastures [25], as well as using interpolated precision GNSS point surveys [30]. While the
aforementioned solutions do require extra field work, they can be performed using the same equipment
(UAS and precision GNSS), preserving the applicability of the proposed approach. Three-dimensional
modeling and mapping best practices generally advise the use of global shutter sensors and avoidance
of low focal length (i.e., fisheye) cameras [53,54]. Not surprisingly, UAS strategies using the Phantom 4
on-board RGB sensor equipped with a mechanical global shutter and an 8.8 mm focal length performed
the best, in terms of sward height modeling (Figures 3 and 4), regardless of scale considered (individual
or plot scale). Nevertheless, despite the fisheye focal length (4 mm) of the Sequoia multispectral sensor
and the rolling shutter of the Mavic on-board RGB sensors, the sward height models associated with
these sensors obtained comparable results to those using the higher-quality on-board RGB sensor of
the Phantom 4. UAS survey strategies using the Sequoia multispectral sensor and the RGB sensor
from the DJI Mavic Pro can, therefore, provide satisfactory results in terms of sward height modeling
at the individual field height measurement (R2 = 0.46 and 0.48 for Sequoia and Mavic, respectively),
as well as at the 10.5 m2; plot scale (R2 = 0.73 and 0.71, respectively). Authors in other disciplines
have also obtained satisfactory results using rolling shutter and fisheye lens cameras [40,54,55]. Recent
improvements in most commercial photogrammetric suites (e.g., PiX4D and Agisoft) have included
integrated specific calibration routines for rolling shutter sensors and fisheye lenses. This factor, in
addition to the even and dense GCP network used in our study, contributed to the good quality of
the sward height model based on a rolling shutter camera (FC220 from Mavic Pro 2) or a fisheye lens
camera (Parrot Sequoia).

In terms of biomass modeling using UAS imagery, the results found in the literature are quite
diverse and not easy to compare among each other, as they greatly vary depending on the type
of grassland monitored as well as the sensor (e.g., RGB, multispectral, or hyperspectral) and the
use of 3D data. Our biomass model (Model 4) reached ca. 0.7 R2 values while combining VI and
sward height information. These results are similar and even better than those obtained in most
comparable studies in the literature. The important heterogeneity of the experimental study site
can be a source of explanation for this. Our results were similar than those found by Lee et al. [11]
(R2 = 0.77) on a multi-site dataset in Korea, Batistoti et al. [30] in tropical Brazilian savanna (R2 = 0.74),
and Insua et al. [23] in Northern America (R2 = 0.8). Some authors have found lower values [26,51]
in less contrasting study sites in temperate European contexts. As highlighted by Grüner el al. [21],
the species composition of the modeled pastures has a significant impact. They highlighted better
model performance for clover-based pastures (R2 = 0.75) than for alfalfa-grass mixtures (R2 = 0.64).
In our case, the low species diversity in our experimental site (timothy-dominated pastures) probably
improved the biomass modeling process, as well as the use of sward height data. Nevertheless, our
result did not reach the outstanding performances of Viljanen et al. [56] (R2 = 0.96) using machine
learning modeling approaches in Finland in a similar species context (timothy grass/meadow fescue).
As for the sward height modeling, all UAS strategies presented similar performances for biomass
modeling, highlighting the interest of UAS strategies using a low-cost platform like the DJI Mavic Pro.
The potential of RGB approaches has also been highlighted by Lussem et al. [57], who reached similar
performance (R2 = 0.7) in biomass modeling using RGB or multispectral VIs. Näsi et al. [58] also
highlighted that, for biomass modeling, RGB can provide quality results; however, it was still lower
than the performance reached by hyperspectral sensors. Our results confirmed that UAS approaches
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can reach similar or even better ABG biomass modeling accuracy as that reached by state-of-the-art
tools like rising plate meters (R2 = 0.72 for lucerne in Czech Republic [59], R2 = 0.31 in various sites of
the USA [60]), while potentially covering the entire study area with a very high spatial resolution.

Our results highlight the ability of UAS RGB imagery and multispectral imagery to predict forage
quality heterogeneity (Table 4). To our knowledge, only a few recent studies have investigated to potential
of UAS using low-cost RGB or multispectral cameras to predict forage quality parameters [34,35].
These authors analyzed similar forage quality parameters, such as the crude protein, acid, and neutral
detergent fiber, and in-vitro digestibility. Our study successfully extended the forage quality parameters
to energetic parameters like quantitative parameters (e.g., ash or dry matter), as well as energetic
fodder units (for dairy/meat breeds). In the literature, most studies investigating such broad forage
quality parameters have used hyperspectral sensors [31–33]. Even if hyperspectral UAS approaches
outperform RGB or even multispectral approaches, the tradeoff in terms of cost is important to consider,
as hyperspectral sensors generally exceed 50,000 €. For comparison, a DJI Mavic cost around 1000 € and
the Phantom 4 Pro 1500 € (+3500 € for the Parrot Sequoia) at the time that this manuscript was written.

The different linear regression models of pasture characteristics cannot be directly reused in other
study sites, as their parameters integrate complex study site properties from sward structure and species
composition to even more complex ones such as past management practices or meteorological conditions.
For sward height, Forsmoo et al. (2018) highlighted that 10 sward height field measurements were
sufficient to estimate the coefficients of a linear model estimating the sward height based on UAS imagery.
To our knowledge, such mixed approaches have not been discussed in the peer-reviewed literature for
biomass and forage quality modeling. For these pasture characteristics, the situation is more complex,
as our modeling strategy integrates state-of-the-art UAS spectral reflectance information, which is
known to still present artefacts hampering repeated quantitative approaches [18]. Among the various
potential sources of noise in UAS reflectance products, the radiometric calibration workflow currently
promoted by the UAS industry has been criticized by many authors (see, e.g., [61]). This involves the
UAS operator taking a picture of a reference grey target before and/or after the flight, while a significant
part of the hemisphere can be shaded by the operator. Innovative reflectance sensing approaches have
been emerging (e.g., integrating target-less workflows [62]), which will improve the scalability of UAS
approaches based on reflectance information.

5. Conclusions

The different UAS survey strategies investigated in our study included different sensors (on-board
DJI RGB sensors and a multispectral sensor), as well as different approaches in terms of flight survey
(nadir and/or oblique images). Despite their relatively low cost (from 1000 € for Mavic to 5000 € for a
Phantom 4 Pro equipped with a Sequoia), these strategies provided accurate sward height, biomass,
and forage quality estimates of timothy pastures. Even if their performances were of lower order than
the state-of-the-art techniques, such as LiDAR for sward height or hyperspectral sensors for biomass
and forage quality modeling, the important trade-off in terms of costs between UAS LiDAR (>100,000
€) or hyperspectral sensors (>50,000 €) promotes the use of such low-cost UAS solutions in real-life
applications. This is particularly true for sward height modeling and biomass monitoring, where our
low-cost solutions were demonstrated to provide more accurate results than state-of-the-art field
approaches such as rising plate meters, at a broader extent and with a finer spatial grain [22–24,26].
Future work should focus on multi-site and multi-temporal forage quality modeling, for which the use
of process-based models, such as growth models, could improve the scalability and reproducibility of
the approach.
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