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Abstract: Airborne Laser Scanning (ALS) and Terrestrial Laser Scanning (TLS) systems are useful
tools for deriving horticultural tree structure estimates. However, there are limited studies to guide
growers and agronomists on different applications of the two technologies for horticultural tree
crops, despite the importance of measuring tree structure for pruning practices, yield forecasting,
tree condition assessment, irrigation and fertilization optimization. Here, we evaluated ALS data
against near coincident TLS data in avocado, macadamia and mango orchards to demonstrate and
assess their accuracies and potential application for mapping crown area, fractional cover, maximum
crown height, and crown volume. ALS and TLS measurements were similar for crown area, fractional
cover and maximum crown height (coefficient of determination (R2) ≥ 0.94, relative root mean square
error (rRMSE) ≤ 4.47%). Due to the limited ability of ALS data to measure lower branches and within
crown structure, crown volume estimates from ALS and TLS data were less correlated (R2 = 0.81,
rRMSE = 42.66%) with the ALS data found to consistently underestimate crown volume. To illustrate
the effects of different spatial resolution, capacity and coverage of ALS and TLS data, we also
calculated leaf area, leaf area density and vertical leaf area profile from the TLS data, while canopy
height, tree row dimensions and tree counts) at the orchard level were calculated from ALS data.
Our results showed that ALS data have the ability to accurately measure horticultural crown structural
parameters, which mainly rely on top of crown information, and measurements of hedgerow width,
length and tree counts at the orchard scale is also achievable. While the use of TLS data to map crown
structure can only cover a limited number of trees, the assessment of all crown strata is achievable,
allowing measurements of crown volume, leaf area density and vertical leaf area profile to be derived
for individual trees. This study provides information for growers and horticultural industries on the
capacities and achievable mapping accuracies of standard ALS data for calculating crown structural
attributes of horticultural tree crops.

Keywords: airborne laser scanning; terrestrial laser scanning; horticulture; tree crops; crown structure;
crown area; fractional cover; tree height; crown volume

1. Introduction

The canopy structure of a forest and individual trees influence ecosystem function, carbon cycle,
biophysical processes, wildlife habitat, tree health and productivity [1–3]. For horticultural tree crops,
canopy structure is also important, as it relates to yield, tree condition, light interception, pruning
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requirements, irrigation and fertilizer application, and orchard management practices [4–8]. Differing
from forests, horticultural tree crops generally have very short tree stems that have been mechanically
altered via limb removal, and as such, most of the biomass is concentrated in the canopy, and therefore,
canopy structure metrics are of significant interest to growers [9,10]. While forest inventory tends to
focus on crown detection, height and stem diameter, crown characteristics including crown height,
diameter, area and shape are desired parameters for orchard inventories [11]. For horticultural tree
crops, canopy structure influences light interception and distribution within tree crowns, which impact
yield, fruit quality and in some cases, pest and disease susceptibility [5]. The geometric character
of orchard trees is also important, as it can guide pruning, irrigation, fertilization and pesticide
applications and indicate tree health condition and vegetative growth [4,10,12]. It is complicated and
time-consuming to measure crown structure manually [13]. Although remote sensing technologies
have been applied to horticultural tree crop environments over the last decades, the main focus of
remote sensing technologies on mapping canopy structures is in forestry [4,14].

Light detection and ranging (LiDAR) data have been recognized as the most precise and reliable
technology for canopy structure mapping, as it provides both horizontal and vertical structure
information at the forest and individual tree level [5,12,15–17]. Although LiDAR data have been
applied for structural mapping of horticultural tree crops [4], there is limited information on the level of
detail that LiDAR data can provide and how it may be applied to tree crops in a precision agricultural
setting. While airborne laser scanning (ALS) data have been used for mapping tree crop structure,
including crown height, crown dimension and crown volume [11,18,19], the majority of horticultural
applications have focused on olive and apple trees [9,11,18,19]. Estornell et al. [9] demonstrated that
low point density ALS data (~0.5 points/m2) have the potential to estimate wood volume (coefficient of
determination (R2) = 0.70) and crown height (R2 = 0.67) of olive trees. With an average point density of
4 points/m2, Hadas et al. [11] estimated crown height (average error = 19%), crown base height (average
error = 53%), length of the longer diameter and perpendicular diameter (average error = 13% and 9%
respectively) of 25 olive trees. Estornell et al. [18] suggested that medium point density (4 points/m2)
ALS data underestimated crown volume due to underestimation of maximum crown height and
overestimation of the lowest part of the tree crowns, while crown area was accurately mapped. Crown
area and the maximum ALS intensity values within each tree were identified as the most important
parameters to predict the pruning residual biomass when compared against field measurements
(R2 = 0.89, Root-mean-square error (RMSE) = 2.78 kg) [18]. Jang et al. [19] illustrated that ALS data
underestimated apple tree crown height by about 1 m when compared to field measurements, but the
ALS data (horizontal point spacing < 50 cm) successfully detected 99.4% of trees, except for those with
a height below 1 m. Jang et al. [19] also acknowledged that factors such as crown height, irregular
crown form, centre-opened crown shape and overlapping branches affected crown detection accuracy.

Terrestrial laser scanning (TLS) data have been used for olive and walnut trees to map individual
crown architecture and advance orchard management [20,21]. Moorthy et al. [21] selected 24 olive
trees to demonstrate that TLS data can produce robust and highly accurate individual tree crown
architecture information. The crown architecture information included tree height, i.e., the difference
in laser pulse reflection from the top of the crown and the ground (R2 = 0.97, RMSE = 0.21 m), crown
width (R2 = 0.97, RMSE = 0.13 m), crown height (the top and bottom extents of the crown) (R2 = 0.86,
RMSE = 0.14 m), crown volume (R2 = 0.99, RMSE = 2.6 m3) and Plant Area Index (PAI) (R2 = 0.76,
RMSE = 0.26), defined as the total one-sided leaf and woody area [22]. They suggested that the TLS
system should replace traditional manual field measurements to generate crown structure information
for horticultural tree crops. Fernández-Sarría et al. [20] demonstrated a high correlation between
field and TLS calculated olive tree crown structure information such as crown height (R2 = 0.85),
crown diameter (R2 = 0.92) and crown volume (R2 = 0.87). Similar results for these crown structure
parameters were found in studies of walnut trees, therefore affirming the ability of TLS data to derive
accurate crown structure parameters in horticultural tree crops [23]. Estornell et al. [23] calculated
crown volume, crown diameter and crown height with high accuracy for walnut trees using TLS
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data. These structure measurements from TLS data showed strong correlations to field measurements.
They also indicated that further research needs to be conducted regarding the most suitable point
density of TLS data required to extract different crown architecture information of horticultural tree
crops, because the size of the TLS dataset can significantly influence the data collection time, the storage
costs and efficiency of data processing. Wu et al. [6] derived tree level leave area (LA), leaf area
density (LAD) and vertical leaf area profile of mango, avocado and macadamia tree crops. This study
demonstrated that TLS technology has the ability to quantify LA, LAD and vertical leaf area profiles for
horticultural tree crops and the LA change derived from TLS data were consistent with the expected
LA changes caused by canopy management, growth and a severe storm.

ALS and TLS data have been compared for their ability to derive canopy structure information
in forest plantations [24,25]. Factors such as point density, laser footprint size, scan angle and pulse
power can limit the ability of ALS data to measure lower parts of the canopy and stem structure [24].
However, ALS is better suited for assessing the upper canopy due to the aerial perspective during data
acquisition, while TLS can provide more detailed information about the lower canopy with potential
occlusion of the tree apex, depending on tree density, structure and scan angles [25]. Korhonen et
al. [26] estimated crown volume of 77 trees (mainly Scots pine, Norway spruce and birches) in a
boreal forest in southern Finland from ALS data. Due to insufficient returns from the lower canopy,
significant underestimation of crown volume (−24.7% on average) was found when compared against
field measurements. TLS data can provide a much higher spatial resolution than ALS data but with
limited spatial coverage, while ALS data can cover a large area but with a lower point density than
TLS data [25].

A thorough review of current literature failed to identify any publications comparing ALS and
TLS data for horticultural applications and estimation of crown structure of tree crops. In this paper,
we address this knowledge gap by calculating crown structure information for avocado, macadamia
and mango trees using both ALS and TLS data, including crown area, fractional cover, maximum crown
height, and crown volume. In addition, due to different data resolutions and spatial coverage, LAD, LA
and vertical leaf area profiles were calculated from the TLS data only, while tree row dimensions, crown
height and number of trees at the orchard level were calculated from the ALS data only. The main
objectives of this paper were to: (1) map tree crop (mango, avocado and macadamia) structure
information, including crown area, fractional cover, crown height and crown volume, from ALS data
and evaluate these measurements against TLS data; and (2) compare the practicality, vertical and
horizontal coverage, and scalability of ALS and TLS data for calculating tree crop structure information
for improved orchard management. Based on those objectives, we hypothesize that ALS data can be
used to derive orchard relevant information on crown area, fractional cover, height and crown volume
when evaluated against measurements obtained from TLS data, and that ALS data have capabilities
for deriving tree row and orchard scale information such as row dimensions and number of trees.
This research provides novel findings on mapping tree structure metrics from ALS and TLS data that
may guide growers and agronomists on horticultural tree crop applications.

2. Study Areas and Datasets

2.1. Study Area

The Bundaberg region is one of the largest horticultural regions in Australia, producing a large
variety of fruit and nuts from tree crops [27]. It has a subtropical climate, with a mean annual
rainfall of 1022 mm (1942–2019), mean maximum temperature of 26.80 ◦C (1959–2019) and the mean
minimum temperature of 16.40 ◦C (1959–2019) [28]. Bundaberg produces about 4000 tons of mangoes
a year [29]. It is also one of three major avocado production regions, and the largest and fastest
macadamia-growing region in Australia [30–32]. For this study, two avocado (Persea americana) cv.
Hass trees from commercial orchards and two avocado (Persea americana) cv. Hass trees from a research
station, one macadamia tree (Macadamia integrifolia) cv. Hawaiian Agricultural Experiment Station
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(HAES) 344, and two mango trees (Mangifera indica) cv. Calypso, including a high and low vigour tree,
were selected as representative samples for TLS data collection within the Bundaberg region (Figure 1).
ALS data were collected for the orchards within which these selected trees occurred. The mango,
avocado and macadamia orchards covered 1.22, 28.09 and 13.54 ha, respectively. The mango and
macadamia orchards had a spacing of 4 m between trees within a row, while the avocado trees were
planted 5 m apart.
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Figure 1. Unmanned aerial vehicle (UAV) imagery of (a) mango, (b) avocado and (c) macadamia
orchards, and associated field photos of (d) a mango, (e) avocado and (f) macadamia tree.

2.2. Datasets and Methods

2.2.1. Datasets

Crown structure information on avocado, macadamia and mango tree crops was collected from a
RIEGL VZ-400 (RIEGL Laser Measurement Systems GmbH, Horn, Austria) TLS system on 14 and 15
August 2016. The RIEGL VZ-400 TLS system was mounted on a tripod at a height of approximately
1.5 m. With a laser wavelength of 1550 nm in the near infrared part of the spectrum and a beam
divergence of 0.35 mrad, the RIEGL VZ-400 scanner sends out laser pulses that can reach up to a
distance of 350 m and records up to four returns per emitted pulse. Through inclination sensors and an
internal compass, the RIEGL VZ-400 also collects pitch, roll and yaw information. The RIEGL VZ-400
settings are provided in Table 1 and the accuracy of the scanner is ±5 mm. The scan resolution of the
TLS data is 0.06◦. Four scan locations were set up around each tree to minimize occlusion. Due to
the narrow row spacing and the scanner’s zenith view angle (30–130◦), a vertical and a 90◦ tilt scan
were conducted at each scan location for the two mature avocado trees from the commercial orchard
and the macadamia tree to ensure that the entire tree was scanned. Due to the time required to collect
high-resolution TLS data from multiple scan angles (to minimize occlusion), seven trees were selected
for evaluating the tree structural parameters derived from the ALS data. Reflector targets were set
up around each tree and were visible from all scan locations. These targets were used to register and
merge the TLS data collected at all four scan positions for each tree. Further details about the fieldwork
procedures can be found in [6].
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Table 1. RIEGL VZ-400 TLS scanner vs. RIEGL LMS-Q 1560 ALS scanner settings and data
acquisition parameters.

RIEGL VZ-400 TLS Scanner RIEGL LMS-Q 1560 ALS Scanner

Beam divergence 0.35 mrad <0.25 mrad
Pulse repetition rate 300 kHz 400 kHz

Laser wavelength 1550 nm 1064 nm
Minimum range 1.5 m 50 m

Maximum range 160 m (at 20% target reflectance)
350 m (at 90% target reflectance)

3500 m (at 20% target reflectance)
5100 m (at 60% target reflectance)

Field of view 0◦–360◦ (azimuth range)
30◦–130◦ (zenith range) 58◦

Recorded data Full waveform & up to four
returns per emitted pulse

Full waveform & up to seven
returns per emitted pulse

Accuracy ±5 mm ±20 mm

The ALS data were acquired on 31 July, 2016 using an airborne small-footprint RIEGL LMS-Q 1560
LiDAR system with the laser scanner collecting data at 1064 nm (Table 1). The average flying height
was 600 m above ground level with a pulse repetition of 400 kHz, an off-nadir angle of 30 degrees and
a beam divergence of 0.5 mrad. These acquisition settings yielded a point density of 13.63 points/m2.
The vertical and horizontal accuracies were determined to be 0.029 m and 0.018 m, respectively, based
on a calculation by the data provider of 120 ground control points.

2.2.2. Terrestrial Laser Scanning Data Processing

The TLS data were registered to the ALS data using the RiSCAN PRO (RIEGL, Horn, Austria)
coarse registration and the multi Station Adjustment tools. The “all nearest points” mode was selected,
and registration parameters, including search window radius, point cloud rotation angle, minimum
and maximum adjustment errors, outlier threshold and the least square fitting calculation mode were
used to perform the multi Station Adjustment. Registration errors were between 0.03–0.09 m for the
seven assessed trees, which were considered negligible in relation to the tree crown dimensions. Due to
the overlapping and continuous hedgerow canopy, a bounding box was created for each avocado and
macadamia tree to make sure that the ALS and TLS data were clipped to the same extent. The TLS
point cloud was classified into leaves and branches based on their geometrical properties, using the
CANUPO segmentation algorithm provided by the CloudCompare™ software (version 2.9.1, General
Public License software, http://www.cloudcompare.org/). The classification parameters are provided
by [6], which yielded accuracies of 94% for the macadamia tree and 99% for the mango and avocado
trees. Subsequently, manual corrections were undertaken, as some points were incorrectly classified as
leaves around first branches of the tree crops. Classified point clouds were then used to calculate the
vertical leaf area profiles as well as LA and LAD at the voxel (a three-dimensional (3D) equivalent of a
pixel) level. Here, LA, which was defined as the one-sided total leaf surface area, was calculated using
the formula LAD*(voxel side length)3 [6,33,34]. A voxel side length of 25 cm was chosen based on the
tree crown sizes to demonstrate the voxel level LA and LAD calculations based on crown geometry
and leaf sizes. Details of the data registration, classification, LA, LAD and vertical leaf area profile
calculation methods can be found in [6,35].

To calculate crown area, the crown point clouds were triangulated in the LAStools software
(rapidlasso GmbH, Gilching, Germany), i.e., las2tin along the convex hull of each of the point clouds.
Then these triangular irregular networks (TIN) triangles were merged into a single polygon for each
crown to calculate its crown area. TINs are vector-based data constructed by triangulating a group of
points [36]. To calculate fractional cover from the TLS data of the vertical view to relate to the ALS
data, we firstly calculated a canopy height model (CHM) at 0.1 m spatial resolution based on the point
density. Assuming that there was no occlusion, based on the crown size we gridded the CHM into
0.5 m grids to calculate the percentage of crown pixels that had a value higher than 0.15 m within each

http://www.cloudcompare.org/
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grid to derive the fractional cover. The crown height threshold was set to 0.15 m to omit understory
and ground features in the orchards. TLS points were classified as ground points and non-ground
points first using “lasground” and maximum crown height was calculated using “lasgrid” within the
LAStools software, where height was determined by the highest point above the ground TIN at their
x and y location. The crown point clouds were also used to calculate crown volume. Voxels with a
side length of 25 cm, deemed suitable for the crown size of the tree crops, were created based on point
clouds belonging to each crown, and then the crown volume was calculated based on counting the
filled voxels using the LAStools software. A detailed flowchart of the TLS data processing steps for
measuring crown structure metrics of the individual tree crowns is presented in Figure 2.
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2.2.3. Airborne Laser Scanning Data Processing

At the orchard level, a maximum CHM was created for each avocado, macadamia and mango
orchard. By selecting 0.15 m as the canopy height threshold, the CHM was converted into a shapefile
representing the hedgerows, and manual editing was conducted to separate the connected rows due to
branches reaching across tree rows. A minimum-bounding rectangle was created for each tree row
in ArcGIS 10.6. The tree row width and length were represented by the dimensions of the rectangle.
From the length of the rectangles and knowing the spacing between tree crowns from field assessment,
the number of trees per tree row and orchard were calculated. At the tree level, individual trees
were extracted from the ALS data using the same bounding boxes as those used to clip the TLS data.
Fractional cover was derived from the proportion of first returns (higher than 0.5 m) in relation to all
returns [37]. All ALS points except for the ground points of each clipped individual tree was used to
calculate crown volume using the same voxel-based approach as for the TLS data. The voxel-based
approach was used in this case, as it is a direct measurement of points as opposed to model-based
estimates. The same workflow was used for both the ALS and TLS for deriving crown area, maximum
crown height and crown volume (Figure 2).

2.2.4. Evaluation of ALS-Derived Tree Crop Structure

In this research, TLS-derived measurements of tree structure were used for evaluation of the
ALS-derived results. The TLS data were deemed suitable for evaluation purposes based on existing
research findings, e.g., by [38,39], and the much higher point cloud density, smaller laser footprint size,
integration of multiple scans of each tree from different view angles and measurement proximity to
each tree. We used linear regression to relate the ALS-derived results of the mapped crown structure
parameters to those produced from the TLS data of the corresponding trees. We used the R2 and the
line slope and intercept for interpretation of the relationship. A two-tailed t-test was performed to
evaluate if the intercept and slope of the equations of the line of best fit was significantly different
from zero and one, respectively, at a significance level of 0.05 [40]. Also, RMSE was calculated to
indicate the spread of the residuals, expressed as the standard deviation between estimated crown
structure values derived from the ALS and TLS data, using a linear model. In order to compare
the linear models between different crown structure measurements calculated in different units (i.e.,
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crown area, m2; crown height, m; and crown volume, m3), we also calculated the unitless relative
RMSE (rRMSE), by dividing the RMSE with the respective mean crown structure value estimated from
the TLS data. Hence, the lower the rRMSE is, the better model fit. For crown area evaluation, the
percentage difference of the ALS and TLS measurements were calculated. For tree crown fractional
cover and height, the values of individual pixels encompassed by each tree crown’s perimeter were
related to identify the maximum and minimum differences, average values as well as the RMSE for
each individual tree. The number of trees estimated per tree row and orchard from the ALS data were
evaluated against field counted numbers of trees for selected tree rows, including the entire mango
orchard, 10 avocado tree rows, and 5 macadamia tree rows.

3. Results

Our results showed that those crown structure measurements relying on information from the top
of the crown were largely similar when using both the ALS and TLS data (Figure 3). The measurements
of crown area achieved the highest correlation (R2 = 0.997) between the ALS and TLS data (Figure 3a).
The RMSE of the crown area derived from the ALS data evaluated against the TLS data was 1.11 m2 and
the rRMSE was only 4.47%. Low estimation differences between the ALS and TLS-derived fractional
cover (rRMSE = 3.46%) were also observed (Figure 3b). The RMSE of fractional cover determined from
the ALS data was only 0.03 when assessed against TLS measurements and the R2 was 0.94. The RMSE
of the linear model between maximum crown height derived from the ALS and TLS data was 0.29 m
and the R2 was 0.99 (Figure 3c). A linear model for maximum crown height estimates between the
ALS and TLS data achieved the best model fit (rRMSE = 2.59%) of all the linear models of crown
structure with a near 1:1 relationship. In fact, the relationships between the ALS and TLS estimates of
crown area, fractional cover and crown height all had near 1:1 relationships intercepting close to the
origin. Based on a two-tailed t-test, it was found that the slope was not significantly different from
1 at a significance level of 0.05 for crown area, fractional cover and maximum height. The intercept
was not significantly different from 0 for fractional cover, but the null hypothesis of the intercept was
rejected for crown area and maximum height at a significance level of 0.05. On the other hand, crown
volume measured from the ALS data was consistently smaller than that derived from the TLS data
for all tree types (Figure 3d), with the slope and intercept being significantly different from 1 and 0,
respectively, at a significance level of 0.05. While the R2 was 0.81 when evaluating the ALS against the
TLS-derived crown volume, the linear model had the poorest fit (rRMSE = 42.66%) of the four crown
structural parameters. In fact, the ALS-derived crown volume estimates were >10 times smaller than
those derived from the TLS data, which was attributed to the top-down viewing geometry of the ALS
data, preventing volume estimation of the lower parts of the tree crowns (Figure 3d).

3.1. Evaluation of ALS Crown Area Against TLS Data

The crown area of the avocado, macadamia and mango trees was derived in the same manner
for both the ALS and TLS data, using a TIN merged into a single polygon from which the crown
area was calculated. Crown areas estimated from the ALS data were consistently smaller than the
crown areas derived from the TLS data for all avocado, macadamia and mango trees in this study
(Figures 3a and 4). The maximum absolute crown area difference between the ALS and TLS data was
4.16 m2 (9.15% difference) for one of the avocado trees in a commercial orchard (Figure 4a), while the
minimum absolute crown area difference was 0.43 m2 (7.29% difference) for the low vigour mango
tree (Figure 4d). The largest and smallest percentage differences between the ALS- and TLS-derived
crown area was 22.00% for the high vigour mango tree and 2.67% for the macadamia tree, respectively.
On average, the ALS crown area was 1.90 m2 smaller than the TLS crown area for all the trees in this
study. Estornell et al. [18] showed that due to the lower point density, ALS data may not be able
to detect the border and lower part of the crown when mapping the individual tree crown area for
horticultural tree crops. Similar findings can be seen from our study for all the three tree crop types
and the significant difference in point density between ALS and TLS data is illustrated in Figure 4.
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Furthermore, compared to the overhead vertical data acquisition method of the ALS data, the side
view data acquisition of TLS data was better suited for capturing the border and lower parts of the tree
crowns, especially for vertically overlapping crown layers. For example, ALS data could not be used
to detect the southern edges of the crown for the high vigour mango tree, which was occluded by the
crown from the adjacent tree (Figure 4d). Therefore, the lower point density and vertical view angle
contributed to the limited ability of ALS data to detect the edges along the crown parameters, causing
the ALS data to underestimate the crown area for all the horticultural tree crops. On the contrary, ALS
data could be used to accurately identify the crown area of the macadamia tree (percentage difference
of 2.67% between ALS- and TLS-derived results), because of its dense crown structure (Figure 4c).Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 24 
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3.2. Evaluation of ALS Fractional Cover Against TLS Data

Fractional cover measured from the ALS data was evaluated against the TLS data collected. At the
tree crown level, there was no consistent underestimation or overestimation of fractional cover when
relating the results between the ALS and TLS data (Figure 3b). Fractional cover along the crown
boundaries had lower agreement between the results from the ALS and TLS data than those in the
crown centre (Figure 5). This may be due to the lower point density of the ALS data, which may not
hit the sparser crown perimeters, whereas the much denser point cloud of the TLS data increases
the ability to map the exact crown perimeter. It seems that with the ALS data, it is more likely that
the perimeter of sparse and small canopies is omitted, i.e., mango and small avocado trees, when
compared with dense and tall canopies, i.e., mature avocado and macadamia trees (Figure 5). However,
for all trees, differences of ≥0.84 in fractional cover were identified along the tree crown perimeters
(Table 2). The perimeters of the tree crowns are also more likely to be influenced by wind, which
may have caused the large maximum differences in fractional cover. In contrast, the crown centers
displayed differences <0.10 between the ALS- and TLS-derived measurements. The average fractional
cover of the pixels composing the individual tree crowns produced similar results for the ALS and
TLS data, with the largest average difference between 0.04 for avocado tree 2 (Table 2). Besides the
characteristics of the tree crown perimeters and size, ALS data still have a similar ability to the TLS
data to estimate fractional cover at the tree crown level (Figure 3b), despite the larger RMSE between
ALS- and TLS-derived measurements when assessing within-tree crown pixel values (Table 2).
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Table 2. Comparison of airborne- (ALS) and terrestrial laser scanning- (TLS) derived tree fractional
(frac) cover at the individual pixel level for each of the avocado, macadamia and mango trees, showing
the number of pixels per tree crown (n), maximum (max) and minimum (min) fractional cover difference
between the ALS and TLS data, the average ALS and TLS fractional cover, and the root mean square
error (RMSE) between the individual ALS and TLS pixel values per tree crown.

n
Max Frac

Cover
Difference

Min Frac
Cover

Difference

Average
ALS Frac

Cover

Average
ALS Frac

Cover
RMSE

Avocado tree 1 198 0.84 0 0.92 0.93 0.12
Avocado tree 2 230 0.84 0 0.93 0.89 0.22

Mango high vigour 71 0.92 0 0.78 0.78 0.33
Mango low vigour 34 0.88 0 0.73 0.72 0.30

Macadamia tree 163 1 0 0.88 0.87 0.32
Small avocado tree 1 40 1 0 0.69 0.71 0.34
Small avocado tree 2 39 1 0 0.66 0.67 0.30
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3.3. Evaluation of ALS Maximum Crown Height Against TLS Data

The maximum crown height of the avocado, macadamia and mango trees was calculated by
extracting the value of the highest point within each tree crown for both the ALS and TLS data and
subtracting the ground elevation from this height measurement (Figure 3c). The absolute height
difference between these two datasets was 0.07 m–0.58 m. Some studies have found that ALS may
underestimate crown height due to the lower point density and the larger foot print size in relation to
crown structure [35]. To derive the maximum crown height from ALS data, a laser beam has to hit
the tree apex and the return of this laser beam has to be recorded by the scanner [32]. Yu et al. [41]
found that data acquisition parameters such as flying altitude and pulse density can affect the ability
of height estimation from ALS data, and that canopy height underestimation increases with flying
height. Our ALS- and TLS-derived height measurements of the avocado, macadamia and mango trees
produced a near 1:1 relationship for maximum tree height (Figure 3c), which was attributed to the
relatively flat semi-spherical crown top of the mango, mature avocado and macadamia trees. In some
cases, TLS data can underestimate tall trees (e.g., 15 m [42]) due to possible occlusions of the upper
crown [43]. However, when assessing the maximum values of individual pixels within each tree crown,
there was a tendency of the TLS data producing larger height values than the ALS data, which was
the main contributor to the RMSE reported in Table 3. In fact, all maximum differences (Table 3) in
height values between the ALS- and TLS-derived measurements were due to height underestimation
using the ALS data. Edge pixels showed the largest variation of height values with both over- and
underestimation of ALS-derived measurements (Figure 6), which could possibly be attributed wind
effects. For the pixels encompassing each tree crown, the TLS data produced larger height values in
86.96–97.50% of cases for six (not the low vigour mango tree) out of the seven assessed trees (Figure 6,
Table 3). Because of these findings, and the fact that the horticultural trees were less than 12 m in height
with sufficient space between tree rows for apex identification, TLS was found to be an appropriate
technology for evaluation of ALS-derived crown height in this study. The larger TLS height values
resulted in average heights per tree crown being between 0.39–0.94 m greater than those from the
ALS-derived measurements, excluding the lower vigour mango tree (Table 3). These results highlight
that while the maximum height value per tree crown produced a near 1:1 relationship between the ALS-
and TLS-derived measurements; the within-crown ALS measurements were generally underestimated
in relation to the TLS measurements.

Table 3. Comparison of airborne- (ALS) and terrestrial laser scanning- (TLS) derived tree height at the
individual pixel level for each of the avocado, macadamia and mango trees, showing the number of
pixels per tree crown (n), maximum (max) and minimum (min) height difference between the ALS
and TLS data, the average ALS and TLS height, and the root mean square error (RMSE) between the
individual ALS and TLS pixel values per tree crown.

n
Max Height
Difference

(m)

Min Height
Difference

(m)

Average
ALS Height

(m)

Average
TLS Height

(m)
RMSE (m)

Avocado tree 1 198 6.21 0.004 6.88 7.33 1.12
Avocado tree 2 230 7.07 0.001 7.24 7.63 0.78

Mango high vigour 71 3.27 0.012 2.54 3.20 0.80
Mango low vigour 34 1.31 0.022 1.87 1.25 0.84

Macadamia tree 163 7.28 0.032 8.02 8.96 1.54
Small avocado tree 1 40 1.64 0.040 2.47 2.93 0.59
Small avocado tree 2 39 1.51 0.062 2.21 2.71 0.64
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(ALS) and terrestrial laser scanning (TLS) data.

3.4. Evaluation of ALS Crown Volume Against TLS Data

The crown volume was calculated by counting the filled voxels (25 cm side length) for both the
ALS and TLS data. This voxel size was considered appropriate in relation to the size of the assessed
tree crops. The selection of an optimal voxel size to calculate crown volume of each type of tree crops is
beyond the scope of this research, and therefore should be further investigated in subsequent studies.
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The crown volume of the avocado, macadamia and mango trees derived from the ALS data was
significantly smaller than that derived from the TLS measurements (Figure 3d). The underestimation
increased for trees with overlapping canopies, high crown depth and density, e.g., within hedgerows
such as the macadamia tree, where the crown volume calculated from the ALS data was only 3.86% of
that measured from the TLS data. In contrast, the crown volume of the two mango trees derived from
the ALS data was around 17% of that measured from the TLS data. For the two mango trees, we can
see a general semi-spherical crown top from the ALS data, but the lower crown and individual leaves
and branches cannot be identified (Figure 7). A similar semi-spherical crown top can also be seen
for the mature avocado and macadamia trees, with only a limited number of ALS returns registered
from within and the lower sections of the crown. The horizontal view angle, the multiple views,
the small laser footprint and high point density of the TLS data produced a more evenly distributed
point cloud across all parts of the crowns. Hence, crown volume based on the calculation of voxels
could more appropriately be derived from the TLS than the ALS data. However, other methods for
estimating crown volume may reduce the underestimation of the ALS-derived volumetric results.
The crown sizes of the sampled orchards were either below 30 m3 for the mango trees and the two
2-year-old avocado trees (Figure 7a,b) or between 150 m3 and 250 m3 for the mature avocado and
macadamia trees (Figure 7a′,b′). The associated pruning practices may have attributed to these distinct
volumetric intervals.Remote Sens. 2019, 11, x FOR PEER REVIEW 14 of 24 
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Figure 7. Crown volume (calculated at 25 cm voxel side length) and laser point clouds from airborne
laser scanning data (a,a′) and terrestrial laser scanning data (b,b′) of two mango trees, two 2-year-old
small avocado trees from a research station, two mature avocado trees from a commercial orchard, and
one macadamia tree.

3.5. Additional ALS Orchard and TLS Canopy Parameters

The much larger spatial coverage of the ALS data enables orchard scale information to be derived.
Figure 8 provides an example of how ALS data can be applied to obtain information on tree height
variations as well as row widths and lengths within an orchard. Variations in tree height of individual
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tree crowns can be seen along and between different rows, which might indicate differences in growth
patterns and condition. The width of the rectangular bounding box, within which each tree row
occurs, was determined by the widest tree crown in a row and can provide a quick overview of growth
patterns and relative crown area variation between trees within a row. Tree length and width are
useful parameters for informed pruning practices and orchard management. Based solely on the
length of the rectangles forming each tree row and the known spacing between individual trees, a total
of 495 mango trees, 4815 avocado trees and 3947 macadamia trees were estimated. All mango trees
were correctly estimated based on manual counting of the mango trees within the CHM. While some
smaller avocado trees were omitted along the perimeter of the orchard due to their limited height
and size, a total of 4786 trees were estimated when deducting 29 trees based on observed gaps, i.e.,
missing trees, along the rectangles. Based on 561 field-counted avocado trees along 10 rows (rows
66–75, Figure 8b), a total of 559 were estimated from the delineated rows. Rounding the numbers
of the rectangle length divided by the tree spacing, i.e., 5 m, was found to be the cause of the two
unaccounted trees in this case. The estimated number of macadamia trees was 3899 when subtracting
hedgerow gaps representing 48 missing trees within the orchard (Figure 8c). Based on 740 field counted
macadamia trees along 5 rows (rows 18–23, Figure 8c), a total of 742 were estimated from the delineated
rows. The overestimation of two trees based on the ALS data was due to two gaps, each representing
two missing trees instead of one.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 24 
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Figure 8. Canopy height and row width and length from airborne laser scanning of a mango orchard
(a), an avocado orchard (b) and a macadamia orchard (c). Note that young trees in the mango and
avocado orchards were excluded in this calculation.

Based on the methods and results by Wu et al. [6], some examples of additional information
on tree structure that can be produced from TLS data is provided in Figure 9. The leaf area density
was calculated for all parts of the tree crowns, displaying variations in leaf area in three dimensions.
Relating leaf area calculations at the voxel level to tree height enables a vertical profile of leaf area to be
produced, in this case showing that the densest parts of the crown with the highest leaf area occurred
approximately 1 m above ground level for both of the 2-year-old avocado trees (Figure 9). However,
this level of detail can only be obtained for selected trees, as covering an orchard with hundreds or
thousands of trees would be prohibitively cost- and time-consuming, and the amount of data would be
excessive. Hence, the ALS and TLS technologies provide different but complementary capabilities for
mapping tree crop structural metrics to support orchard management at both individual tree crown
scales and orchard scales.
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Figure 9. Pictures of two 2-year-old avocado trees (a,a′) from a research station, their corresponding
3D intensity images (b,b′) and classified discrete point clouds (c,c′), leaf area density at a voxel level
(25 cm in side length) (d,d′), and vertical leaf area profiles within each 25 cm vertical layer (e,e′).

4. Discussion

4.1. Evaluating ALS-Derived Tree Crop Structure Against TLS Data

This study showed that accurate crown area measurements for horticultural tree crops can be
derived from ALS data. These results concur with those previously reported for olive trees [18].
Crown area can be used as an indicator of tree growth during the growing season for horticultural
tree crops, and hence provides information, if assessed on a multi-temporal basis, on tree response to
orchard management practices, such as irrigation and fertilization [44]. Due to the irregular shape
of horticultural trees, tree crown shape cannot simply be assumed to be circular or spherical [11].
Therefore, it is time intensive to manually conduct field measurements of crown area [45]. ALS data
offer growers an accurate and efficient alternative. As the crown area calculation from the LiDAR data
was mainly based on the upper crown returns, ALS, in this case with a point density of > 13 points/m2,
and TLS data demonstrated similar capacities to generate highly accurate crown estimates. However,
TLS data collection is significantly more time-consuming and will often require a tree to be scanned
from multiple angles to minimize occlusion issues [46]. Hence, mapping tree crown area from an aerial
perspective seems more appropriate.
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An alternative to our TLS data collection includes LiDAR-based mobile surveying technology
consisting of a laser scanning system, generally with integrated positioning and imaging capabilities,
and installed on a moving platform [47]. These types of systems have the capacity to collect point cloud
data from multiple view angles to prevent occlusion and to significantly reduce the data collection time
in orchards. While holding great potential for future point cloud data collection, the limited spacing
between hedgerows restricts the type of vehicle or robotic system to be used for mobile mapping
systems. For instance, Underwood et al. [48] used a TLS system mounted on a mobile robotic ground
vehicle for almond orchards to calculate crown volume from a 3D voxelised point cloud from which
yield was estimated. However, ground obstacles might hinder vehicle access or limit the quality of
collected data [49]. While the objective of this research was to assess ALS data evaluated against
TLS data for deriving structural parameters relevant for horticulture tree crops, it is important to
highlight that crown area can be estimated from other types of image data, including airborne and
UAV-based optical datasets [8,50–52] and potentially high spatial resolution satellite imagery [53].
However, Johansen et al. [54] found that high spatial resolution WorldView-3 pan-sharpened imagery
with 30-cm pixels was not sufficient for delineating individual macadamia trees grown as a hedgerow.

The ALS dataset was found to provide highly accurate crown fractional cover estimates for
horticultural trees when assessed against the TLS data (Figure 5, Table 2). LiDAR data have been
widely applied in crown fractional cover mapping of forested and riparian environments due to
its ability to extract spatially continuous vertical crown structure information even without field
data [37,55–58]. Fractional cover is traditionally assessed from an aerial view, i.e., identifying the
fraction of vegetation versus no vegetation from nadir-viewing, and hence ALS data are particularly
suited for the derivation of this measurement. While TLS data were obtained with a much higher point
density (>10,000 points/m2) than the ALS data (13.63 points/m2), multiple scans at different viewing
angles are required to avoid occlusion and hence reduce the ability to calculate fractional cover on the
side of the tree opposite to the scan location. Fractional cover is a good indicator of light interception,
which is also a crucial determinant of crop growth and important for flowering, fruit maturation and
quality as well as reducing disease and pest incursions for horticultural tree crops [59,60]. Remote
sensing technologies used for fractional cover estimates of horticultural tree crops still mainly rely
on passive optical sensors [59,61,62]. Challenges of optical imagery collected from different dates,
including shadow effects, sensor viewing geometry, illumination angle differences and leaf phenology
effects, do not exist for LiDAR data [37,58,63]. While optical imagery generally needs calibration and
validation either from field data or ALS data for measuring fractional cover, ALS data can provide
consistent results with similar accuracies to those derived from field measurements, e.g., using the
LI-COR LAI-2000 Plant Canopy Analyzer or hemispherical photographs [37,56].

For maximum crown height measurements, similar results were produced using both the ALS and
TLS data. Accurate crown height estimates have also been achieved from both ALS and TLS data for
olive, walnut, mango and avocado trees, although some ALS-derived measurements can underestimate
the maximum crown height [11,21,23,35]. Our results presented in Table 3 also showed that the
within-crown ALS height measurements were underestimated in relation to the TLS measurements by
up to 0.94 m on average per crown. Misclassified ground points (tall grass classified as ground), low
point density and failure to identify the crown apex may be a cause for crown height underestimation
of ALS data for horticultural tree crops [19,35]. Wang et al. [42] demonstrated that ALS data can
provide accurate crown top height estimates regardless of tree height, crown shape and species. This
corresponds with our findings that ALS data are suitable for estimating maximum crown height for
horticultural trees of different age, canopy management regime, height, and tree types, in our case
mango, avocado and macadamia trees. Maximum crown height and width are controlled based on row
space in commercial orchards to achieve the best light interception, machine access and convenience for
harvesting [64–66]. Therefore, in mango orchards most trees are limited to a maximum height of 4 m,
whereas avocado and macadamia trees might grow to around 10 m. While the footprint size of ALS
returns, the pulse repetition rate, flying height and the threshold beyond which a return is registered
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will affect the ability of ALS data to identify the highest point of tree crops, these parameters will rarely
impact TLS data [67]. However, depending on the tree height and view angle of the scanner, the line of
sight of TLS data might in some cases be restricted from identifying the apex of tall tree crops [38].
Alternative options for measuring tree height from remote sensing include the use of multi-view digital
photography, in particularly structure-from-motion algorithms based on optical UAV imagery, where
photogrammetry permits height measurements of tree crops to be calculated [45,50,68,69].

Laser scanning data are perfectly designed for obtaining point clouds for provision of 3D tree
structure information such as crown volume. However, our results showed that the ability to measure
crown volume is significantly affected by the point density and the ability of points to penetrate
the crown. Although an ALS pulse has the capacity to reach the ground through open or sparse
canopies, the bottom and inner crown parts were in most cases not detected by the ALS data, as the
laser pulses were mainly returned by the upper parts of the crown [67]. Due to the occlusion issue
and the insufficient point density, the ALS data used in this research could not detect the lower crown
parts and hence underestimated crown volume using the voxel-based approach (Figure 7). Similar
findings have also been identified in ALS and TLS comparison studies for calculating canopy volume
in forestry [70]. By demonstrating the different viewing and data capture geometry from ALS and
TLS data, Kükenbrink et al. [70] concluded that occlusion effects were the main reason for canopy
volume underestimation from ALS data. Goodwin et al. [67] indicated that higher canopy density
and canopy cover reduce beam penetration through the canopy and thus reduce the point density
from the bottom canopy. Therefore, the macadamia tree, which had the highest crown density and the
highest crown depth of the trees assessed in this study, showed the largest relative difference in crown
volume between the ALS and TLS data (Figure 7). As crown volume is directly related to tree health
and vigour [71], our crown volume results of the high and low vigour mango trees reflect this point as
well, where the high vigour mango tree was 3.7 times larger than the low vigour mango tree (Figure 7).
In addition, voxel size is a critical parameter for voxel-based crown structure measurements [6,16,20].
Future work should include further experiments on the optimal voxel size selection based on crown
size, branch structure, occlusion effect and scanning resolution. Colaço et al. [72] tested different canopy
volume calculation methods (convex-hull and the alpha-shape surface reconstruction algorithms) for
orange trees and found substantial volume differences based on different methods. Therefore, more
canopy volume modelling methods need to be further evaluated in the future to determine which ones
are most accurate and how they are affected by different crown structure and size.

Differences in wind direction and speed between the days that the ALS and TLS data were
collected could have caused differences amongst the mapped tree crown perimeters due to movement
of branches and leaves [73]. The wind speed measured from a nearby climate station (Bundaberg
Aero weather station; 24.9069◦S, 152.3230◦E) when scanning the two avocado trees in the commercial
orchard, two small avocado trees from the research station, one macadamia tree and two mango trees
were 20.5–38.9 km/h, 24.1–27.7 km/h, 9.4–13 km/h and 29.5–40.7 km/h, respectively. The average wind
speed from the same weather station at the time of the ALS data collection was 11.8 km/h. However,
the hedgerow structure of the orchards acts as a barrier for blocking the wind. Although the wind
speed was higher during the TLS scanning, the two avocado and the macadamia trees (Figure 6) were
well sheltered amongst other tree rows, which likely contributed to the good agreement between the
ALS- and TLS-derived tree crown heights. The two small avocado trees from the research station and
the two mango trees may have been more influenced by wind, as they were more exposed. This might
have contributed to the offsets been crown apex and perimeter observations between the ALS and TLS
data (Tables 2 and 3).

4.2. Capacity of ALS and TLS Data for Imporved Orchard Management

TLS data can bridge the gap between traditional field measurements and ALS data [38],
and the combined application of ALS and TLS data provides an alternative method for accurate 3D
characterization of horticultural tree crops over both local and orchard scales. It is time-consuming,
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inconsistent and impractical to manually measure horticultural crown structure in situ over a large
area [38]. Our results showed that TLS data with high-resolution point clouds can be used for evaluation
of tree crown structure measurements derived from ALS data [39], while ALS data can upscale these
highly accurate measurements from crown to orchard scales (e.g., Figure 8 showing canopy height
of tree rows). Row width and canopy height are essential parameters that can be used to guide
horticultural tree pruning [64–66]. Having measurements of row width and length can provide growers
with an estimate of the total tree crop area and number of trees as shown in our results, which in
other studies have proven useful for yield estimation, yield forecasting and sprayer calibration [46,74].
On the other hand, ALS data cannot provide detailed 3D crown structure information, such as voxel
level LAD and leaf area profile mapping, whereas the much denser point cloud (>10,000 points/m2)
derived from TLS data is ideally suited for these tasks [6,75] (Figure 9). Detailed crown information
is useful for targeted limb removal, precision pruning for improved light interception, irrigation,
fertilization and pesticide applications [4,6]. As such, while TLS data can be used to calibrate and
validate ALS-derived information, our results clearly show that both the ALS and TLS technologies
have potentialities for joint use to improve orchard management at different spatial scales. Further
research should expand on our work to implement our research findings in an operational manner to
evaluate the cost-benefits of the joint use of ALS and TLS data for orchard management and capacity
to assess and improve crop production.

The accuracy of canopy structure mapping from ALS data is often based on the data density for
horticultural trees, shrubs and forestry [10,67,75,76]. Estornell et al. [18] reported that compared to
forest structure mapping, which focuses on plots, higher point density may be required to predict crown
structure information of individual horticultural tree crops and that a point density of 4 points/m2 had
the capacity to estimate crown area and pruning biomass. Hadaś et al. [10] assessed different ALS
point densities (0.5, 3.5 and 9 points/m2) for mapping tree height, crown base height, average crown
diameter, and crown area of olive trees and concluded that ALS data with a higher point density are
better suited for measuring crown structure, especially crown height and base height. With a point
density of 13.63 points/m2, our results showed that top of tree crown parameters such as crown area,
fractional cover and height can be accurately mapped. However, these structural parameters could
not be mapped in an automated manner for individual tree crowns for the avocado and macadamia
trees because of their hedgerow structure with adjoining tree crowns preventing automated crown
delineation. Other studies using UAV-based optical data and structure-from-motion generated point
clouds have also reported similar difficulties with regards to individual tree crown delineation for
macadamia, olive and avocado hedgerows [54,68,77]. While ALS data with higher point cloud densities
and small laser footprints may improve the ability to delineate individual tree crowns within orchards
with hedgerow, orchards planted at different densities, and canopies with different structures and
sizes should be studied separately, as these are factors that affect the ability of ALS data to capture
lower canopy layers [78]. Further experiments on point density requirements of different tree crops in
relation to planting densities should be undertaken in future studies.

While our results demonstrated the capability of ALS to produce orchard scale maps of tree
structure, unmanned aerial vehicles (UAVs) provide another remote sensing platform suited for
integration with miniaturized sensor systems that offer potential opportunities for frequent and more
cost-effective monitoring of orchards [10,11,75]. Optical based structure-from-motion information
acquired from UAVs have also demonstrated the capability for accurate crown structure mapping in
orchards, including parameters such as crown area, tree height and crown volume of horticultural
trees for orchard scale applications [45,50,77]. However, UAV-based optical data and derived point
clouds and digital surface models are more likely to prove beneficial for top of canopy information
extraction. Studies have shown that UAV-based LiDAR data with high point density (3200 points/m2)
can successfully provide crown identification (92% of trees) and highly accurate crown height estimates
(RMSE = 0.09 m, R2 = 0.96) for horticultural tree crops [79]. Therefore, UAV-based data may provide an
alternative to ALS and TLS data for orchard scale (<1 km2) canopy structure mapping of horticultural
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tree crops. Future research should compare UAV-based LiDAR mapping accuracy of tree crop structure
with those derivable from ALS and TLS data as shown in our research. Hadas et al. [80] used a
UAV-based LiDAR system to successfully identify 99% of 655 apple trees, and then selected 50 trees for
mapping crown structure, including crown area, tree height and crown base height, with high accuracies.
They also found that UAV-based LiDAR data tend to underestimate crown area when compared
against field measurements (RMSE = 1 m2, R2 = 0.17), while tree height (R2 = 0.96, RMSE = 0.09 m)
and crown base height measurements achieved better accuracies [80]. As the cost of UAV-based LiDAR
systems drops in the future, it is likely they will become operational for commonplace tree crown
structure assessment. For UAV-based LiDAR mapping of crown structure, TLS technology will likely
provide a suitable means for such applications in the future to ensure high quality calibration and
validation data.

5. Conclusions

This study demonstrated and assessed the ability of ALS data evaluated against TLS data for
mapping crown structure metrics (crown area, fractional cover, crown height, and crown volume) of
individual horticultural tree crops, including avocado, macadamia and mango trees. In the evaluation
of the ALS-derived results against the TLS measurements, we found significant agreement between
estimates of crown area, fractional cover and maximum crown height. However, the use of ALS data
significantly underestimated crown volumes of horticultural tree crops when evaluated against TLS
data, especially for the macadamia tree, which exhibited the highest crown density. The ALS data were
found suitable for measuring horticultural crown structural parameters mainly relying on top crown
information as well as hedgerow width, length and number of trees at the orchard scale. In contrast,
TLS data did not have the capacity to map crown structure over a large area but were found suitable for
assessment of all crown strata, which is required to measure crown volume, LAD and vertical leaf area
profile of individual trees. It is suggested that TLS data may replace traditional field measurements for
calibration and validation of ALS-derived crown structure measurements and applied jointly with ALS
data for individual tree scale assessment of structural parameters. One limitation of this study was that
only seven trees for the crown structure measurements were measured with TLS, which was due to the
time-consuming exercise of collecting high-resolution TLS data from multiple scan angles. However,
the tree types and orchards we chose for this study represented different canopy structure complexity,
planting density and crown size, demonstrating the suitability of TLS data for deriving structural
measurements for tree crops with a large variety of planting regimes and structural complexities.
Future experiments should be based on larger sample sizes and might compare additional crown
structure information such as LA and leaf area index as well as optimization of ALS and TLS acquisition
settings and structural parameter information extraction methods. Finally, further research should
explore UAV-based platforms for acquisition of laser scanning data suited for management of tree
crop orchards.
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