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Abstract: Paddy fields play very important environmental roles in food security, water resource
management, biodiversity conservation, and climate change. Therefore, reliable broad-scale
paddy field maps are essential for understanding these issues related to rice and paddy fields.
Here, we propose a novel paddy field mapping method that uses Sentinel-1 synthetic aperture
radar (SAR) time series that are robust for cloud cover, supplemented by Sentinel-2 optical images
that are more reliable than SAR data for extracting irrigated paddy fields. Paddy fields were
provisionally specified by using the Sentinel-1 SAR data and a conventional decision tree method.
Then, an additional mask using water and vegetation indexes based on Sentinel-2 optical images was
overlaid to remove non-paddy field areas. We used the proposed method to develop a paddy field
map for Japan in 2018 with a 30 m spatial resolution. The producer’s accuracy of this map (92.4%)
for non-paddy reference agricultural fields was much higher than that of a map developed by the
conventional method (57.0%) using only Sentinel-1 data. Our proposed method also reproduced
paddy field areas at the prefecture scale better than existing paddy field maps developed by a remote
sensing approach.
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1. Introduction

Rice is a staple food for billions of people especially in Asia, and paddy fields play important
environmental roles by regulating water and energy budgets and supporting local biodiversity [1–3].
Paddy fields have also cultural and esthetic values, as several traditional ones were awarded as Globally
Important Agricultural Heritage [4]. In addition, paddy fields are remarkable with respect to global
warming because they are a major source of methane (CH4), the second most influential greenhouse gas
for global warming following CO2. According to the fifth assessment report of the Intergovernmental
Panel on Climate Change, global emissions from paddy fields are estimated to be 33 to 40 Tg (CH4)/yr,
or approximately 12% of total anthropogenic methane emissions [5]. In Japan, however, methane
emissions from paddy fields account for more than 45% of total anthropogenic methane emissions [6].
Thus, regional methane budgets strongly depend on the paddy field distribution. High-accuracy
mapping of broad-scale paddy fields is of fundamental importance for understanding these issues
related to rice and paddy fields.

Satellite remote sensing is often the most appropriate approach for a comprehensive understanding
of land cover. For example, the MCD12Q1 is a global land cover map based on Moderate Resolution
Imaging Spectroradiometer (MODIS) data, and the Global Food Security-support Analysis Data Product
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(GFSAD1000) is a global cropland map based on multi-satellite data (e.g., Landsat, MODIS) [7,8].
With the increasing necessity of broad-scale paddy field maps in various research fields, many efforts
to produce such maps have used satellite remote sensing images, including both optical images and
synthetic aperture radar (SAR) images. Before the early 2010s, most research on broad-scale paddy
field mapping used remote sensing images with low to medium spatial resolutions, such as MODIS
(250 to 1000 m spatial resolutions) [9–16]. Processing of multi-source remote sensing images at high
spatial resolutions, such as Landsat (30 m spatial resolution), on a broad scale, is a major challenge
because it requires a high computer operating capacity and large amounts of storage. Until recently
few remote sensing images have been available free of charge or at a low price, broad-scale paddy
field mapping has been very expensive. For this reason, various mapping techniques based on limited
remote sensing resources have been developed to improve the accuracy of paddy field mapping.
For example, the land surface water index (LSWI), normalized difference vegetation index (NDVI),
and enhanced vegetation index (EVI), based on multispectral optical images, have been effectively
used to extract irrigated paddy fields [9–14], and optical images from multiple sources have also been
used to improve classification accuracy [15,16].

In recent years, many remote sensing analyses have utilized cloud-based platforms [17–19].
In particular, Google Earth Engine (GEE) is a popular cloud-based platform for broad-scale geospatial
analyses. With GEE, high-performance computing resources for the processing of very large geospatial
datasets can be accessed without the necessity to provide in-house information technology support [20].
Therefore, GEE solves many difficulties associated with broad-scale remote sensing analyses and
makes it possible to use huge numbers of multisource remote sensing images with high spatial
resolution. For example, Dong et al. [17], using over a thousand scenes of Landsat 8 images on GEE,
have developed a paddy field map for northeastern Asia with a 30 m spatial resolution. The spatial
resolution of this paddy field map is much finer than that of conventional paddy field maps developed
by using low spatial resolution satellite images.

However, only a few broad-scale paddy field maps have been developed to date because some
serious technical issues remain. For example, rice cultivation periods roughly overlap with rainy and
cloudy seasons, and they differ among regions depending on factors such as the rice cultivar and
the water management practice used. To solve these issues, several methods that use SAR images
have been proposed, because SAR images can be obtained even under cloudy conditions. Among the
many kinds of SAR images, Sentinel-1 images are used often because they are open source and have
high spatial and temporal resolution [19,21–30]. However, methods that use only Sentinel-1 images
have low accuracy for paddy field extraction, because the backscatter of Sentinel-1 is less sensitive to
vegetation and irrigated agricultural areas than multi-band optical sensors [21].

In this study, to compensate for this weakness of Sentinel-1 time series images for broad-scale
paddy field mapping, we propose a novel paddy field mapping method that supplements the use of
Sentinel-1 time series images with Sentinel-2 optical images to reduce misclassification of land covers.
The proposed method is more reliable and robust for the extraction of irrigated areas across various
land surface types. We developed two sets of paddy field maps with a 30 m spatial resolution for
Japan in 2018. We developed one set by using a conventional method based on only Sentinel-1 time
series images, and we developed the other set by using our proposed method based on Sentinel-1 time
series images supplemented by Sentinel-2 images. Then, by comparing the results obtained by the
two methods, we showed that our proposed method improved the paddy field mapping accuracy.
Then, we compared the paddy field maps developed by our method with two major existing paddy
field maps to demonstrate the potential of our method for accurate broad-scale paddy field mapping.
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2. Materials and Methods

2.1. Study Area

The whole area of Japan (20–46◦N, 123–154◦E), comprising 47 prefectures, was selected as the
study area (Figure A1 in Appendix A). According to the FAO, in 2018 Japan was the 13th largest rice
producer in the world [31], and according to the Ministry of Agriculture, Forestry, and Fisheries of
Japan (MAFF), the total paddy field area in 2018 planted to rice, including both food rice and feed rice,
was approximately 15,920 km2, and approximately 7.8 million tons of food rice was produced in that
year [32]. In most paddy fields in Japan, single rice cropping with irrigation is practiced. However,
in Okinawa prefecture, the southernmost prefecture of Japan, double rice cropping with irrigation,
which means two rice crops on a field in a single year, is practiced in a very small area (total 1.89 km2).
The area accounted for only 0.012% of the total paddy field area in Japan, and we aimed to develop a
paddy field mapping method applicable to all irrigated paddy fields, so no further categorization of
irrigated paddy fields was done.

Until 2017, MAFF published typical rice cultivation dates for each prefecture, including “Transplant
Start ” (TS), “Transplant End” (TE), and “Harvest End” (HE) dates [33], where TS and TE are the dates
on which 5% and 95%, respectively, of the total paddy field area has been transplanted, and HE is the
date on which 95% of the total paddy field area has been harvested. We used the average day of the
year (DOY) calculated using the TS, TE, and HE dates for the three years from 2015 to 2017 in our
analysis (Figure 1).
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2.2. Satellite Data

2.2.1. Sentinel-1 Time Series

Sentinel-1 Ground Range Detected (GRD) images were used as fundamental data for our paddy
field mapping method because the C-band SAR instrument of Sentinel-1 can obtain data through cloud
cover. Sentinel-1 GRD images are thus particularly appropriate for paddy field mapping in Japan,
where the rainy season overlaps with the rice cultivation period. Characteristics of the satellite data
used in this study are shown in Table 1. The Sentinel-1 satellites were launched by the European Space
Agency (ESA) on 3 April 2014 (Sentinel-1A) and 25 April 2016 (Sentinel-1B) [34]. The SAR sensors
onboard the Sentinel-1 satellites acquire C-band images at 5.4 GHz in four modes with different spatial
resolutions and swath widths. We used the images acquired in Interferometric Wide Swath mode,
which acquires images with a swath width of 250 km and a 10 m spatial resolution. To minimize
the effects of orbit direction and look angle, for all prefectures except Okinawa prefecture, we used
only images that were acquired by the Sentinel-1A satellite during descending orbits in our analysis.
For Okinawa prefecture, we used images acquired by the Sentinel-1B satellite during ascending orbits.
We used only VH (vertical transmit and horizontal receive) polarized images because some studies
have shown that VH-polarized backscatter is more sensitive to rice growth and phenology than other
polarizations [22,23]. Both Sentinel-1 satellites have a 12-day revisit cycle at the equator. Therefore,
most of the study area is observed about 30 times per year. Using GEE, we accessed all Sentinel-1 GRD
images (1073 images) covering the period from 1 January 2018, to 31 December 2018.

Table 1. Characteristics of the satellite data used in this study.

Sensor Provider Band Resolution Wavelength Use

Satellite data

Sentinel-1 SAR ESA C (VH) 10 m Interferometric Wide Mode

Sentinel-2 MSI ESA

B2 10 m 490 nm Blue
B4 10 m 665 nm Red
B8 10 m 842 nm Near-infrared
B11 20 m 1610 nm Short-wave infrared 1

2.2.2. Sentinel-2 Multispectral Imager

Sentinel-2 Multispectral Imager (MSI) images were used in a supplemental role for the extraction
of paddy fields because they are more reliable and robust for extracting irrigated areas. The Sentinel-2
satellites were launched by the ESA on 23 June 2015 (Sentinel-2A) and 7 March 2017 (Sentinel-2B) [34].
Both satellites have a 10-day revisit cycle. Therefore, most of the study area is observed more than
60 times per year. The Sentinel-2 satellites carry the Sentinel-2 MSI, which is an optical sensor with
12 bands for acquiring images with a swath width of 290 km and a spatial resolution of 10–60 m.
We accessed Sentinel-2 MSI Level-1C Top of Atmosphere (TOA) reflectance images (49,694 images)
acquired during the irrigated period (from 19 February 2018, to 25 September 2018) by both Sentinel-2A
and Sentinel-2B satellites from GEE. Here, the irrigated period is defined as the period from TS to the
date calculated by adding 30 days to TE.

2.3. Reference Agricultural Fields

Two classes of reference fields, “Paddy” and “Not paddy”, were prepared for accuracy assessments;
here, “Not paddy” reference fields are agricultural fields other than paddy fields.

For “Paddy” reference fields, 100 paddy fields were selected from each of 14 prefectures by using
Google Maps Street View (Figure 2a), which is being increasingly used for acquiring ground truth
data of various land surface types, including agricultural fields [35–37]. We selected the 14 prefectures
from the 47 prefectures in Japan because Street View data available for the irrigation period in 2018
were limited. However, they effectively covered the whole area of Japan, allowing us to conduct data
validation for the present purpose. Further validation including other prefectures remained for our
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forthcoming study. Irrigation management during the cultivation period of rice is distinctive from that
used for other major crops. Therefore, fields that were irrigated and planted to rice could be selected
by visual interpretation and designated as “Paddy” reference fields (Figure 3).
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For “Not paddy” reference fields, agricultural field polygons derived from high spatial resolution
aerial photographs and provided by MAFF were used. Six municipal districts in Hokkaido prefecture
(Figure 2b) were selected as “Not paddy” reference field regions. In most of Japan, most cultivated
fields are paddy fields, but Hokkaido is atypical because broad areas are used to cultivate grains other
than rice, such as wheat, corn, and soybeans. In the six selected districts, no fields were planted to
rice in 2018, according to national statistics released by MAFF [32]. Therefore, all agricultural field
polygons in the six districts were used as “Not paddy” reference fields.

A total of 1400 field polygons were used as “Paddy” reference fields, and 36,703 field polygons
were used as “Not paddy” reference fields.
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2.4. Existing Paddy Field Maps

Two different paddy field maps that had been developed by a remote sensing approach were used
for accuracy assessment. The first map was produced by Takeuchi and Yasuoka [15,16] from MODIS
and Advanced Spacebourne Thermal Emission and Reflection Radiometer (ASTER) images obtained
in the early 2000s. This map, referred to here as the “TY” map, covers Monsoon Asia (East Asia,
Southeast Asia, and part of South Asia) with a 1 km spatial resolution. The second map is a land-use
map produced by the Japan Aerospace Exploration Agency (JAXA) from Landsat 8 operational land
imager images obtained between 2014 and 2016 [38]. This map, the “JAXA” map, covers the whole
area of Japan with a 30 m spatial resolution, and one of its land-use classes is the “paddy field.”

2.5. Methods

Figure 4 shows a flow chart of the approach used by this study. First, two types of paddy field
maps were developed, one by the “S-1” method and the other by the “S-1 & S-2” method. The S-1
method is a conventional paddy field mapping method that uses a decision tree approach and only
Sentinel-1 time series data [25–27]. The S-1 & S-2 method is our proposed method, which also uses
a decision tree approach and Sentinel-1 time series data, but it also uses an additional mask based
on Sentinel-2 images. Paddy field maps for each of the 47 prefectures created by each method were
merged into a single map for each method covering the whole land area of Japan. All of the processes
used to develop the paddy field maps up to the final merging were performed in the GEE platform
(https://earthengine.google.com/). The merging, accuracy assessment, and comparison processes were
performed in ArcMap 10.5.1.
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2.5.1. Preprocessing

To generate the backscatter coefficient (σ0), the Sentinel-1 GRD images accessed on the GEE
platform were preprocessed by applying five Sentinel-1 Toolbox corrections developed by the ESA

https://earthengine.google.com/
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in the following order: (1) orbit file application, (2) ground range detected border noise removal,
(3) thermal noise removal, (4) radiometric calibration, and (5) terrain correction. To these preprocessed
images, we applied a median filter with a 3 × 3 pixels moving window to reduce inherent speckle
noise [24]. In broad-scale analyses of satellite remote sensing images, overlapping observation areas
are inevitable. In the case of SAR data, overlapping areas with different incidence angles can produce
noise in a time series analysis [19]. Therefore, we applied incidence angle processing to overlapping
observation areas.

To the Sentinel-2 MSI Level-1C TOA reflectance images that we accessed on the GEE platform,
we applied radiometric and geometric corrections, including orthorectification and spatial registration
to a global reference system with sub-pixel accuracy. Optical remote sensing images are greatly
influenced by cloud conditions. Therefore, pixels heavily affected by dense and cirrus clouds were
removed from all Sentinel-2 MSI images by applying the QA60 Quality Assessment band.

2.5.2. Analysis of the Temporal Behavior of Sentinel-1 VH σ0 Values of “Paddy” Reference Fields

The temporal behavior of Sentinel-1 VH σ0 over each “Paddy” reference field region was analyzed
to determine the threshold values for the mask described in 2.5.3. Figure 5 shows the time series of
second quartile (Q2) values and the first (Q1) to third (Q3) interquartile range of VH σ0 calculated
from 2018 data in each of the 14 “Paddy” reference field regions. In all “Paddy” reference field regions,
a local VH σ0 minimum was observed during the irrigated period. Subsequently, VH σ0 increased
and reached a peak within a few months. Thereafter, during the latter part of the rice cultivation
period, VH σ0 maintained a high value or decreased slightly. Previous studies have shown that VH σ0

decreases during the transplanting period, when the fields are flooded with irrigation water, and then
increases during the rice-growing period until around harvest time [23–28]. Therefore, rice phenology
in broad areas of Japan can be observed in VH σ0 time series. The low VH σ0 values from January to
March in Hokkaido, Aomori, Yamagata, Niigata, and Ishikawa prefectures are attributable to snow
cover because these prefectures are located in northern Japan, where heavy snow falls in winter.
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Figure 5. Time series variation of Sentinel-1 VH σ0 in 2018 for each “Paddy” reference field region.
The first (Q1), second (Q2), and third (Q3) quartiles of VH σ0 over “Paddy” reference fields were
calculated for all pixels included within “Paddy” reference fields, with a 10 m spatial resolution.
Blue lines indicate the Q2 values, and blue shading indicates the Q1 to Q3 interval.
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2.5.3. Masks Used for Provisional Extraction of Paddy Fields

“Forest Area (FA)” mask: A mask for forest area was made based on an updated version of the
Hansen Global Forest Change map (v1.6, 2000–2018) [39]. Pixels with a forest area covering more than
30% of the pixel area were specified as forest pixels. On Hansen’s map, forest area is defined by the
canopy closure due to vegetation taller than 5 m. The Forest area masking was performed to minimize
commission errors in paddy field mapping [17].

“Local Maximum & Minimum (LMM)” mask: The local maximumσ0 value and the local minimum
σ0 value of the Sentinel-1 time series within 90-day moving windows were calculated for each Sentinel-1
image from the period between TS and HE. In this study, the thresholds of the local minimum and
local maximum σ0 values were determined by analyzing the temporal behavior of Sentinel-1 VH
σ0 values in the “Paddy” reference fields (Figure 5). Figure 6 shows the local minimum Q3 VH σ0

value during the irrigated period and the local maximum Q1 VH σ0 value between the end of the
irrigated period and HE for each “Paddy” reference field region. In all “Paddy” field reference regions,
the local minimum Q3 VH σ0 value was smaller than −20 dB. The local maximum Q1 VH σ0 value
in Hokkaido was slightly below −17 dB, whereas those in other areas were above −17 dB. Therefore,
pixels with a local minimum VH σ0 larger than −20 dB or a local maximum VH σ0 smaller than −17 dB,
were masked on each Sentinel-1 image. The VH σ0 of paddy fields shows a very distinct minimum
when the paddy fields are irrigated just after transplanting and a maximum during the heading stage
of the rice plants [26].
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“Local Variation (LV)” mask: Local variation values were calculated for each Sentinel-1 image by
using the following equation:

Local variation = Local maximum VH σ0
− Local minimum VH σ0 (1)

local maximum VH σ0 and local minimum VH σ0 are the values calculated for the LMM mask. Pixels
with a local variation of less than 5 dB were masked on each Sentinel-1 image. This threshold value,
which was also determined by analyzing the temporal behavior of Sentinel-1 VH σ0 values in the
“Paddy” reference fields, was selected to differentiate vegetation with clear seasonality from land
covers with a constant low or high backscatter such as waterbodies and urban areas [26].

It should be noted that the FA mask was applied to the entire Sentinel-1 time series, whereas
the LMM and LV masks were applied to each Sentinel-1 image composing the Sentinel-1 time series.
The pixels of Sentinel-1 images during the irrigated period that were not masked by any of these three
masks were extracted as provisional paddy field pixels. In this paper, we refer to the application of this
series of three masks as the “S-1” method. We used the S-1 method to prepare a paddy field map of
Japan for later comparison with a paddy field map developed by our proposed method.
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2.5.4. Mask Based on Sentinel-2 MSI Environmental Indexes

“Sentinel-2 indexes (S2I)” mask: The provisional paddy fields extracted by the S-1 method were
reexamined by using water and vegetation indexes, LSWI, NDVI, and EVI, calculated from Sentinel-2
MSI images acquired during the irrigated period. The LSWI is sensitive to the total amount of liquid
water in vegetation and its soil background [40], and the NDVI and EVI are sensitive to variations in
the vegetation [41,42]. These three indexes were calculated by using Equations (2)–(4), respectively:

LSWI =
NIR− SWIR
NIR + SWIR

(2)

NDVI =
NIR−Red
NIR + Red

(3)

EVI =
2.5× (NIR−Red)

NIR + 6×Red− 7.5× Blue + 1
(4)

where Blue, Red, NIR, and SWIR are the reflectance values at the top of the atmosphere of the B2 band
(central wavelength: 490 nm), B4 band (665 nm), B8 band (842 nm), and B11 band (1610 nm) of the
Sentinel-2 MSI. Previous studies have revealed that relationships among the LSWI, NDVI, and EVI
can be used effectively to extract irrigated areas [9,17,43]. After the three S-1 masks were applied
to each Sentinel-1 image, the local maximum “LSWI−NDVI” and “LSWI−EVI” values within the
10 days after the date that the Sentinel-1 image was acquired were calculated, and pixels in which
the local maximum “LSWI−NDVI” and “LSWI−EVI” values were both smaller than 0 were masked.
These threshold values are based on values proposed by Dong et al. [17]. The pixels of Sentinel-1
images acquired during the irrigated period that were not masked by any of the four masks were
extracted as paddy fields. We call the application of this series of four masks the “S-1 & S-2” method in
this paper.

2.6. Accuracy Assessment

The accuracy of the paddy field maps was assessed by producer’s accuracy with a pixel-scale
resolution of 30 m. The producer’s accuracy indicates the quality of the classification and is calculated
by dividing the number of correctly classified reference pixels in each category by the total number of
reference pixels in that category [44]. All pixels of the paddy field maps spatially included in the two
types of reference field polygons were assessed for accuracy.

3. Results

3.1. Accuracy Assessments in Reference Agricultural Fields

The producer’s accuracy for “Paddy” reference fields was 83.6% by the S-1 method and 79.2% by
the S-1 & S-2 method. For “Not paddy” reference fields, the producer’s accuracy was 57.0% by the S-1
method and 92.4% by the S-1 & S-2 method. Thus, the application of the S2I mask following the three
S-1 masks caused the producer’s accuracy for “Paddy” reference fields to decrease by 4.4 points and
that for “Not paddy” reference fields to increase by 35.4 points.

The producer’s accuracies in each “Paddy” and “Not paddy” reference field region are shown
in Tables 2 and 3, respectively. The producer’s accuracies in “Paddy” reference field regions were
68.6–100.0% by the S-1 method and 68.1–98.3% by the S-1 & S-2 method. The producer’s accuracies in
“Not paddy” reference field regions were 29.6–78.4% by the S-1 method and 88.0–97.6% by the S-1 & S-2
method. Thus, the application of the S2I mask decreased the producer’s accuracy in “Paddy” reference
field regions by 0–16.3 points and increased the producer’s accuracy in “Not paddy” reference field
regions by 14.8–61.1 points.
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Table 2. Producer’s accuracies in each of the 14 “Paddy” reference field regions (30 m pixel-scale
resolution). See Figure 2a for reference field region locations.

Method
(1) (2) (6) (8) (14) (15) (17)

Hokkaido Aomori Yamagata Ibaraki Kanagawa Niigata Ishikawa

S-1 81.7% 84.5% 86.6% 92.9% 98.2% 100.0% 70.9%
S-1& S-2 77.1% 84.5% 79.2% 91.1% 98.2% 98.3% 70.9%

Method
(23) (25) (30) (32) (39) (41) (45)

Aichi Shiga Wakayama Shimane Kochi Saga Miyazaki

S-1 68.6% 77.4% 76.1% 84.9% 82.3% 75.3% 91.1%
S-1& S-2 68.1% 74.8% 70.3% 76.1% 79.5% 70.3% 74.8%

Table 3. Producer’s accuracies in each of the six “Not paddy” reference field regions in Hokkaido
prefecture (30 m pixel-scale resolution). See Figure 2b for reference field region locations.

Method
(a) (b) (c) (d) (e) (f)

Obihiro Shihoro Shibecha Betsukai Kiyosato Koshimizu

S-1 47.5% 78.4% 71.6% 29.6% 64.8% 58.4%
S-1& S-2 97.1% 93.2% 94.9% 90.7% 97.6% 88.0%

3.2. Comparison with Existing Paddy Field Maps

The paddy field maps developed by the S-1 and the S-1 & S-2 methods are compared with the
JAXA and TY paddy field maps in Figures 7 and 8. The maps prepared by the S-1 and the S-1 & S-2
methods and the JAXA map have a spatial resolution of 30 m, and the TY map has a 1 km spatial
resolution. The paddy field maps developed by the S-1 and the S-1 & S-2 methods have some noticeable
characteristics. Compared with the JAXA and TY maps, the map produced by the S-1 method has more
paddy field pixels in Hokkaido prefecture. However, the map produced by the S-1 & S-2 method has
many fewer paddy field pixels in eastern Hokkaido prefecture. In general, the paddy field distribution
in Japan on the maps produced by the S-1 & S-2 method is more similar to the paddy field distributions
on the JAXA and TY maps. In eastern Hokkaido, rice is not grown, but non-rice grains are widely
grown. Therefore, the application of the S-1 & S-2 method reduces the misclassification of non-paddy
fields in that region.

We next compared the paddy field area at the prefecture scale, calculated for each paddy field
map, with paddy field area data published by MAFF [32] (Figure 9). When the total paddy field area in
Japan according to MAFF was set to 100%, the total paddy field area on the map produced by the S-1
and S-1 & S-2 methods was 156.7% and 112.4%, respectively, and on the JAXA and TY maps, it was
168.5% and 84.7%, respectively. The maps produced by the S-1 and the S-1 & S-2 methods greatly
overestimated the paddy field area in Hokkaido prefecture (Figure 9a,b, respectively), but in other
prefectures, paddy field areas did not differ significantly from the MAFF values.

To examine the overall trend of paddy field areas on each map relative to the MAFF data, we fitted
straight lines to the data shown in Figure 9 by the least-squares method with the y-intercept fixed
at 0. Table 4 shows the slopes of the fitted lines together with the coefficients of determination (R2)
and the mean square error (MSE) of the map data relative to the MAFF data. The paddy field areas
calculated from the maps produced by the S-1 and S-1 & S-2 methods and the JAXA map (slopes > 1)
were overestimated compared with the published MAFF areas. In contrast, the paddy field areas on
the TY map (slope = 0.86) were underestimated. When Hokkaido was excluded, the areas obtained by
the S-1 & S-2 method were still overestimated, but the slope was closer to 1. R2 is a measure of how
well the areas calculated from each map replicate the MAFF areas at the prefecture scale, where R2 = 1
indicates a perfect match between them. For all of Japan, R2 values for the S-1 and S-1 & S-2 methods
were lower than those for JAXA and TY, whereas when Hokkaido was excluded, R2 value for the S-1 &
S-2 method was much higher than those for JAXA and TY. MSE is the average of the squared errors
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between the paddy field area in each prefecture calculated from the paddy field maps and the MAFF
areas. When Hokkaido was excluded, MSE values for the S-1 & S-2 method were lower than those of
JAXA and TY.Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 28 
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Table 4. Slopes of straight lines fitted to the relationships shown in Figure 9 with the y-intercept fixed
at 0, together with the coefficients of determination (R2) and the mean square errors (MSE) relative to
the MAFF data.

All of Japan Excluding Hokkaido
S-1 S-1 & S-2 JAXA TY S-1 & S-2

Slope 1.87 1.26 1.50 0.86 1.06
R2 1.87 1.26 1.50 0.86 1.06

MSE (km2 × km2) 682,924 73,513 77,310 23,474 3894
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Figure 8. Comparison of paddy field maps of western Japan developed in this study with the existing
maps. Paddy fields in 2018 on the maps developed by the (a) S-1 and (b) S-1 & S-2 methods (30 m
spatial resolution). (c) Paddy fields in 2014–2016 on the JAXA map (30 m spatial resolution). (d) Paddy
fields in the early 2000s on the TY map (1 km spatial resolution).
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Figure 9. Comparisons of paddy field areas in each prefecture calculated from each paddy field map
with paddy field areas published by MAFF: (a) S-1 method and (b) S-1 & S-2 method versus 2018 MAFF
data for both food rice and feed rice. (c) JAXA versus 2015 MAFF data for both food rice and feed rice.
(d) TY versus 2001 MAFF data for food rice.
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4. Discussion

We proposed a new high-resolution paddy field mapping method that uses Sentinel-1 SAR time
series images supplemented by Sentinel-2 optical images. Although some paddy field mapping
methods combining SAR and optical images have been proposed previously [19,21,22], those methods
used optical images as fundamental data for paddy field extraction; therefore, they could be seriously
affected by gaps and biases in the optical images due to cloud cover. In contrast, in our proposed
method, the Sentinel-2 images are used only as ancillary data to produce masks based on water and
vegetation indexes. As a result, gaps in the Sentinel-2 images did not adversely affect the paddy field
mapping accuracy. In this regard, our method is expected to have an advantage for detecting paddy
fields at a broad scale.

The producer’s accuracy for “Paddy” reference fields identified by the S-1 & S-2 method was
lower than that of fields identified by the S-1 method; this result is reasonable because the additional
mask applied to extract paddy fields in the S-1 & S-2 method makes the identification criteria more
strict. In contrast, the producer’s accuracy for “Not paddy” reference fields identified by the S-1 & S-2
method was higher compared with the S-1 method. Therefore, to grasp the potential of the S-1 & S-2
method for paddy field mapping, a comprehensive evaluation is needed to account for the decrease
of the producer’s accuracy in “Paddy” reference fields and the increase in “Not paddy” reference
fields. The map developed by the S-1 & S-2 method has a spatial resolution of 30 m, which is much
finer than previous maps based on satellite images with low to medium spatial resolutions. However,
this resolution might be still insufficient for validation of the accuracy at the pixel scale for individual
agricultural fields in Japan. In 2009, 38% of paddy fields in Japan were smaller than 0.003 km2, and 92%
of paddy fields were smaller than 0.01 km2, according to MAFF [45]. Therefore, we believe that the
producer’s accuracy for “Paddy” reference fields (79.2%) identified by the S-1 & S-2 method is still
acceptable, and the decrease of 4.4 points in the accuracy for “Paddy” reference fields compared to
the S-1 method does not indicate a serious reduction in paddy field extraction accuracy at a broad
scale. In contrast, the accuracy for “Not paddy” reference fields of the S-1 & S-2 method was greatly
improved, by 35.4 points, compared with that of the S-1 method. This large increase in accuracy
justifies the use of the S-1 & S-2 method despite the decrease in accuracy for “Paddy” reference fields.
Therefore, we consider the S-1 & S-2 method to be an effective paddy field mapping approach because
it reduces the misclassification of non-paddy agricultural fields as paddy fields.

Remarkably, the effectiveness with which the S-1 & S-2 method reduced misclassification differed
among regions (Table 4). In particular, in the Koshimizu district, Hokkaido prefecture, 12% of “Not
paddy” reference fields were misclassified. The inter-regional variation in accuracy is primarily
attributable to gaps in Sentinel-2 images caused by cloud cover. Although unlike previous paddy
field mapping methods that use optical images as fundamental data, the S-1 & S-2 method does not
generally misclassify or produce no-data pixels because of gaps in the Sentinel-2 images, if there are no
cloud-free Sentinel-2 images during the irrigated period, the S2I mask is ineffective. In this situation,
therefore, gaps in the Sentinel-2 images can reduce the degree to which the classification accuracy is
improved by the S-1 & S-2 method. It is difficult to completely resolve this issue because the effects of
cloud cover cannot be controlled, but it should be possible to reduce the uncertainty of the classification
by using a larger number of cloud-free optical image scenes. Fortunately, the ESA has planned the
launches of Sentinel-2C and Sentinel-2D, and these additional satellites will make it possible to use
more Sentinel-2 images in the future. This future increase in the number of Sentinel-2 satellites will
reduce the uncertainty of the S-1 & S-2 method by improving its temporal resolution.

This study developed a paddy field map covering a wide area of Japan, except for Hokkaido
prefecture, that reproduced well data from MAFF on paddy field areas. The maps produced by the S-1
and S-1 & S-2 methods, however, seriously overestimated the paddy field area in Hokkaido prefecture
(Figure 9). This prefecture is in a cooler climate and has more types of agricultural fields covering a
larger area (11,450 km2) than the other prefectures; in 2018, the cultivated paddy field area accounted
for only 9.3% of the total agricultural field area in Hokkaido prefecture [32]. In contrast, in the other
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Japanese prefectures, the cultivated paddy field area accounted for 45.4% of the total agricultural field
area in 2018 [32]. The maps by JAXA and TY used multi-band optical sensors that are more robust for
extracting vegetation type and irrigated agricultural areas in the Hokkaido prefecture than the SAR
sensor. One approach to solving the overestimation in Hokkaido prefecture is, as described above,
to improve the accuracy of the S2I mask for extracting irrigated areas from satellite images by using
a larger number of optical image scenes. Another approach is to refine the threshold values of the
LMM and LV masks to improve the accuracy with which paddy fields are extracted from the Sentinel-1
time series data. In this study, we used the same threshold values for these masks to extract paddy
fields everywhere in Japan, but the temporal behavior of Sentinel-1 VH σ0 differed greatly among
the regions (Figures 5 and 6). Therefore, to further improve the accuracy of paddy field mapping in
different regions, appropriate threshold values should be selected for each region instead of using
uniform country-scale values. For Japan excluding Hokkaido prefecture, however, the S-1 & S-2
method satisfactorily reproduced MAFF paddy field areas at both country scale and prefecture scale.
Therefore, we are convinced that our novel S-1 & S-2 method has a high potential for paddy field
mapping in most of Japan, except for the Hokkaido prefecture.

Our efforts in this study are a first step toward providing more accurate paddy field maps wherever
paddy rice is grown. Because rice cultivation method and cultivation environments vary greatly from
region to region, it is important to confirm whether our method is applicable to mapping paddy fields
in other parts of Asia and the world. We examined the new mapping method only in Japan and found
that the new method worked well in most of the study area but overestimated in Hokkaido prefecture.
This implies that the method can be improved by applying additional masks and thresholds such as a
more detailed classification of cultivated crops and land cover types, and by conducting validations
over broader and more diverse areas. Here, by using Google Maps Street View, it was relatively easy
to select “Paddy” reference fields without on-site visits, but Street View recordings are not always
available in every targeted region and time. Furthermore, many paddy fields are likely distributed in
areas where few Street View recordings have been made. Therefore, in such regions, it will be necessary
to use different approaches for identifying reference fields. Nevertheless, in the future, it would be
desirable to expand the target region to regions outside of Japan and to verify the effectiveness of our
method after overcoming the issues described above.

5. Conclusions

Through developing paddy field maps for Japan, this study demonstrated the potential of our
novel paddy field mapping method using the Sentinel-1 time series supplemented by Sentinel-2 optical
images in comparison with the conventional paddy field method using only Sentinel-1 time series
data. Furthermore, by comparing our maps with existing paddy field maps and MAFF data on paddy
field areas, we evaluated the reproducibility of our paddy field map. Our method, which uses an
additional mask based on Sentinel-2 indexes obtained during the irrigated period, shows great potential
for reducing the misclassification of non-paddy agricultural fields as paddy fields. The producer’s
accuracy for non-paddy reference agricultural fields increased from 57.0% with the conventional
method to 92.4% with our proposed method. The paddy field map developed by our proposed method
also reproduced well paddy field area data at the prefecture scale more reliably than existing paddy
field maps of Japan, except in Hokkaido prefecture where our method systematically overestimated
paddy field area. Our advanced method would be extended by covering other land cover types such
as cropland, forest, and urban areas, and therefore methodological accuracy can be improved by
conducting validations over a wide variety of areas not only in Japan but also in other countries.
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