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Abstract: A comparative study of water indices and image classification algorithms for mapping
inland water bodies using Landsat imagery was carried out through obtaining 24 high-resolution (≤5
m) and cloud-free images archived in Google Earth with the same (or ±1 day) acquisition dates as the
Landsat-8 OLI images over 24 selected lakes across the globe, and developing a method to generate
the alternate ground truth data from the Google Earth images for properly evaluating the Landsat
image classification results. In addition to the commonly used green band-based water indices,
Landsat-8 OLI’s ultra-blue, blue, and red band-based water indices were also tested in this research.
Two unsupervised (the zero-water index threshold H0 method and Otsu’s automatic threshold
selection method) and one supervised (the k-nearest neighbor (KNN) method) image classification
algorithms were employed for conducting the image classification. Through comparing a total of
2880 Landsat image classification results with the alternate ground truth data, this study showed
that (1) it is not necessary to use some supervised image classification methods for extracting water
bodies from Landsat imagery given the high computational cost associated with the supervised image
classification algorithms; (2) the unsupervised classification algorithms such as the H0 and Otsu
methods could achieve comparable accuracy as the KNN method, although the H0 method produced
more large error outliers than the Otsu method, thus the Otsu method is better than the H0 method;
and (3) the ultra-blue band-based AWEInsuB is the best water index for the H0 method, and the
ultra-blue band-based MNDWI2uB is the best water index for both the Otsu and KNN methods.

Keywords: Landsat; Google Earth; water index; unsupervised image classification; supervised image
classification; relative error; overall error

1. Introduction

The Earth’s inland surface water body consists of rivers, freshwater or saltwater lakes, and marshes
with a total surface area of about 5.6 million km2 (about 1.1% of Earth’s surface area), i.e., 0.8 million km2

for rivers [1], 2.1 million km2 for lakes, and 2.7 million km2 for marshes [2]. Although these inland
surface water bodies only hold about 0.013% of Earth’s total water, i.e., about 178,000 km3 [2–4],
they are important compartments in the global terrestrial water cycle, and mapping inundation areas
of inland surface water bodies is of great significance for flood prediction and prevention [5–8]; flood
risk and damage assessments [9–17]; estimation of water storage in rivers, lakes, and reservoirs [18–20];
calculation of evaporation from wetlands and lakes/reservoirs [21]; retrieval of lake water level and
river stage [22–25]; reservoir operation and management [26]; and assessment of ecological functions
and health in wetlands and marshes [27,28]. In addition to the above-mentioned practical applications,

Remote Sens. 2020, 12, 1611; doi:10.3390/rs12101611 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-4373-7566
https://orcid.org/0000-0001-6979-170X
http://dx.doi.org/10.3390/rs12101611
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/10/1611?type=check_update&version=2


Remote Sens. 2020, 12, 1611 2 of 18

surveying inland surface water bodies can provide critical measurements/observations for improving
our understanding of the water cycle and inundation dynamics at multiple spatial and temporal
scales [29–31]. Given the tremendous surface area associated with the Earth’s inland surface water
bodies, mapping their inundation areas from space using remote sensing technique is indeed one of
the most efficient approaches.

Both optical (passive) and microwave (active) remote sensing methods have been widely utilized
for surveying Earth’s inland surface water bodies, but both have some advantages and limitations.
Microwave remote sensing is not limited by clouds, weather conditions, and sunlight, but it usually
has coarse spatial resolutions, and revisit frequency is also low. Optical remote sensing of inundation
areas only works under clear sky and daylight conditions, while the spatial resolutions of spaceborne
optical sensors, especially those mounted on commercial satellites (e.g., Ikonos, QuickBird, WorldView,
and GeoEye) could achieve the centimeter-level resolutions. Since commercial satellite imagery is
not free to the public and can be acquired only through purchase, the most commonly used optical
remote sensing images employed for mapping inland surface water bodies at medium resolution
(e.g., 30 m) have been and will continually be collected by the Landsat series satellites (e.g., Landsat
4-5 TM, Landsat 7 ETM+, and Landsat 8 OLI) and other polar orbit satellites (e.g., Sentinel).

Most research related to mapping inland surface water bodies using Landsat imagery consists of
three steps: (1) using the spectral reflectance captured by Landsat to compute one type of water index
at each pixel; (2) using one type of image classification algorithm (unsupervised or supervised) to
identify water and non-water pixels; and (3) using ground truth data to assess accuracy of the extracted
water bodies. However, all these three steps have some unsolved issues, and inconsistent conclusions
can be found across the literature [32–40]. Therefore, this study is dedicated to address these problems
so that our knowledge and techniques in optical remote sensing of inland surface water bodies using
Landsat imagery can be advanced.

A number of field experiments measuring various land surface features’ spectral reflectance [41–43]
show that turbid or algae-laden water usually has a distinct higher reflectance in the green light than in
any other visible lights, and beyond the near-infrared (>0.9 µm), their spectral reflectance approaches
zero, unlike soil and vegetation which exhibit high reflectance in infrared bands. The characteristics
of water spectral reflectance have promoted three commonly used water indices developed in the
literature: (1) normalized difference water index (NDWI) [44], (2) modified normalized difference
water index (MNDWI) [45], and (3) automated water extraction index (AWEI) [46]. All these water
indices were derived based on spectral reflectance in the green light and near-infrared, or shortwave
infrared. The NDWI [44] is defined as follows:

NDWI = (GREEN −NIR)/(GREEN + NIR) (1)

where GREEN and NIR are spectral reflectance in the green light band and the near-infrared band,
respectively. Xu (2006) showed that the NDWI had trouble with eliminating the build-up land
noise from the extracted water bodies. Considering that the build-up land exhibits relatively higher
reflectance in the shortwave infrared (1.5–3.0 µm) band than in the near-infrared (0.7–1.3 µm) band,
Xu (2006) replaced the near-infrared band with the shortwave infrared (SWIR) band in the NDWI and
referred to it as the modified normalized difference water index (MNDWI). Although Landsat-5 TM
has two SWIR bands, i.e., band 5 (1.55–1.75 µm) and band 7 (2.09–2.35 µm), Xu (2006) found that band
5 of Landsat-5 was better than band 7, thus band 5 was used in the MNDWI. Landsat-8 OLI also has
two SWIR bands, i.e., band 6 (1.57–1.65 µm) and band 7 (2.11–2.29 µm). In this study, we referred to
the first SWIR band (i.e., band 5 in Landsat-5 and band 6 in Landsat-8) as SWIR1, and the second SWIR
band (i.e., band 7 in both Landsat-5 and Landsat-8) as SWIR2. To differentiate from MNDWI, we call
the SWIR2-based water index MNDWI2. Both MNDWI and MNDWI2 are defined as follows:

MNDWI =
GREEN − SWIR1

GREEN + SWIR1
, MNDWI2 =

GREEN − SWIR2

GREEN + SWIR2
(2)
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In water body classification, shadows produced by mountains, trees, buildings, and river banks
can contaminate satellite imagery classification of water bodies. To remove the impact of shadows,
Feyisa et al. (2014) proposed the AWEI using five bands, given as follows:

AWEIns = 4(GREEN − SWIR1) − (0.25NIR + 2.75SWIR2) (3)

AWEIs = BLUE + 2.5GREEN − 1.5(NIR + SWIR1) − 0.25SWIR2 (4)

where BLUE, GREEN, NIR, SWIR1, and SWIR2 are spectral reflectance in the blue light, green light,
near infrared, shortwave infrared 1, and shortwave infrared 2 bands, respectively. To use the AWEI,
Feyisa et al. (2014) suggested the following criteria: (1) for the areas without high albedo surfaces
such as snow cover, and where shadows are the main factor causing errors in the extracted water
bodies, AWEIs alone is sufficient to identify water; (2) if there is no shadow, AWEIns alone is sufficient;
(3) if both high albedo surfaces and shadow/dark surfaces are present, Equations (3) and (4) are used
sequentially; and (4) without any shadow/dark surfaces and high albedo surfaces, either one alone can
be used.

According to Equations (1)–(4), unsurprisingly, we can find that the spectral reflectance in the
green band is the key variable in these three commonly used water indices, given the relatively high
reflectance in green light associated with turbid or algae-laden water measured in the fields [41,42].
Thus, in this paper, we referred to these commonly used water indices as the green band-based water
indices. However, if we pay attention to the measured spectral reflectance of clear water in Meaden and
Kapetsky (1991), we can find that the reflectance in blue light is actually the highest among all visible
lights. On the other hand, if water contains a certain amount of sediments, the spectral reflectance in
red light should be the highest [41]. It seems that these kinds of questions have not been paid much
attention in the literature; therefore, one goal of this study is to evaluate performances of all water
indices including the green (commonly used), ultra-blue (only Landsat 8 has this ultra-blue band),
blue, and red band-based water indices.

One key purpose of utilizing water indices in the extraction of water bodies from satellite imagery
is to simplify the image classification by defining the zero-water index value as the threshold to
differentiate water and non-water pixels. However, this single zero-water index threshold method
may not work well, and studies showed that a dynamic or automatic selected threshold method such
as the Otsu method [47] was better than the zero-water index threshold method [32]. No matter
the single threshold method or the automatic selected threshold method, they all belong to the
unsupervised image classification. Compared to the unsupervised image classification, the supervised
image classification should perform better because human intervention and input of training data
could assist computers with identifying water and non-water pixels, although computational efficiency
of the supervised methods is usually lower than that of the unsurprised methods. Obviously, there is a
tradeoff between computational efficiency and accuracy of image classification, thus the following
questions should be answered: (1) Which image classification algorithm is proper for a particular
research study? (2) How should one choose an image classification method? Therefore, the second goal
of this study is to address these questions and provide recommendations regarding selection of image
classification methods through comparing performances of different image classification methods.

Accuracy assessment is the critical final step in image classification that also has some critical
issues to be addressed, such as (1) how to collect ground truth data to validate the image classification
results and (2) how to properly compare the computed accuracy (e.g., the Kappa coefficient, relative
error, overall error, omission error, and commission error) among tested sites. Collecting ground truth
data for validating extracted water bodies from Landsat imagery is time-consuming and labor-intensive,
especially to draw a general conclusion. Multiple Landsat images across the globe are necessary for
the accuracy assessment, which make it even more difficult to facilitate a ground campaign to collect
all ground truth data for validating all the selected Landsat images across the globe. Considering
the difficulty in collecting ground truth data, this study took advantage of high-resolution satellite
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imagery (spatial resolution ≤ 5 m) archived in Google Earth and utilized the Google Earth imagery as
the “alternate” ground truth data for evaluating Landsat imagery classification results.

In this study, we targeted the three critical issues discussed above and conducted a systematic
study to shed new light on the problems and provided our recommendations for the remote sensing
community with regard to the best water index(es) and image classification method(s) in terms of the
accuracy of extracted water bodies from Landsat imagery. The remainder of this paper is organized into
four sections: Section 2 describes the study area and data sources. Section 3 introduces the methods
employed in this study. Results and discussion are presented in Section 4. Conclusions are given in
Section 5.

2. Study Areas and Data

The number of high-resolution satellite images archived in Google Earth generally is much less
than the number of Landsat images over a specified area because high-resolution satellite (e.g., Ikonos,
QuickBird, WorldView, and GeoEye) operators do not provide free daily images to Google Earth.
To match the image acquisition date between Landsat imagery and high-resolution satellite imagery
over a particular water body (such as lakes and rivers), manually searching high-resolution satellite
images archived in Google Earth and Landsat imagery is needed. The strategy taken in this study is to
first find high-resolution satellite imagery (click “Show historical imagery” button on Google Earth)
over a selected lake, then go to the United States Geological Survey (USGS) EarthExplorer website
(earthexplorer.usgs.gov) to search around the same date (±1 day) for a Landsat image without cloud
cover over the selected lake.

The method for building the ground truth data based on Google Earth images is described in
Section 3. Through searching for high-resolution satellite images archived in Google Earth and Landsat
images at the USGS EarthExplorer website, this study selected 24 lakes across the globe as shown
in Figure 1. The acquisition date, pixel cell size, water surface elevation (WSE), latitudinal range,
and longitudinal range of each Google Earth image are listed in Table 1, along with the acquisition
date, and path and row indices of the corresponding Landsat-8 OLI scene. For each Landsat-8 OLI
scene, both Precision and Terrain corrected (L1TP) Level-1 (scaled and calibrated digital number) and
Level-2 (computed surface reflectance) data were downloaded from the USGS EarthExplorer website.
Landsat image processing is also described in Section 3.

Figure 1. Geographic locations of 24 selected lakes across the globe.

earthexplorer.usgs.gov
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Table 1. Characteristics of 24 selected Google Earth and Landsat-8 OLI images.

Site
Google Earth Landsat-8 OLI

Date Cell WSE * Latitudinal
Range

Longitudinal
Range Date Path Row

Atitlan 2013/12/04 3.5 m 1558 m 14.7274–14.7590◦N 91.1405–91.1855◦W 2013/12/04 20 50
Baikal 2013/07/22 4.0 m 450 m 53.0140–53.0593◦N 107.0193–107.1232◦E 2013/07/21 133 23
Balkhash 2014/10/10 4.0 m 338 m 46.3157–46.3551◦N 74.8289–74.9075◦E 2014/10/10 151 28
Bansagar 2014/02/20 3.5 m 324 m 24.0759–24.1072◦N 80.9680–81.0148◦E 2014/02/20 143 43
Beaver 2014/03/19 2.0 m 336 m 36.3524–36.3667◦N 93.9478–93.9707◦W 2014/03/20 26 35
Brantley 2016/03/12 3.0 m 983 m 32.5583–32.5811◦N 104.3742–104.4090◦W 2016/03/12 31 37
Brown 2016/04/19 2.0 m 56 m 27.4832–27.4978◦S 153.4223–153.4450◦E 2016/04/19 89 79
Buchanan 2014/01/13 4.0 m 304 m 30.7729–30.8028◦N 98.4219–98.4667◦W 2014/01/13 28 39
Burton 2014/10/22 3.0 m 569 m 34.8247–34.8504◦N 83.5408–83.5842◦W 2014/10/22 18 36
Caspian 2016/08/03 3.5 m −29 m 42.5993–42.6273◦N 47.7777–47.8241◦E 2016/08/03 168 30
Chao 2017/07/27 3.0 m 5 m 31.5708–31.5945◦N 117.5209–117.5598◦E 2017/07/28 121 38
Chelan 2014/07/14 3.0 m 336 m 48.0300–48.0541◦N 120.3585–120.4081◦W 2014/07/14 46 26
Chuzenji 2017/07/10 4.0 m 1271 m 36.7150–36.7544◦N 139.4568–139.5245◦E 2017/07/10 107 35
Issykkul 2013/08/31 4.0 m 1603 m 42.5661–42.6077◦N 78.1267–78.2045◦E 2013/08/31 148 30
Mohave 2015/01/13 3.0 m 198 m 35.4921–35.5166◦N 114.6591–114.6962◦W 2015/01/13 39 35
Murray 2016/01/28 3.0 m 228 m 34.0811–34.1062◦N 97.0776–97.1164◦W 2016/01/28 27 36
Ohrid 2015/07/14 3.0 m 690 m 41.0126–41.0444◦N 20.6104–20.6684◦E 2015/07/14 186 31
Okeechobee 2017/02/11 5.0 m 2 m 26.9826–27.0357◦N 80.9090–80.9756◦W 2017/02/11 15 41
Sakakawea 2016/08/01 3.0 m 560 m 47.5413–47.5680◦N 101.7566–101.8110◦W 2016/08/01 33 27
Salton 2016/10/13 3.5 m −70 m 33.4696–33.5003◦N 115.9332–115.8825◦W 2016/10/14 39 37
Sélingué 2014/01/26 3.0 m 345 m 11.5978–11.625◦N 8.1443–8.1826◦W 2014/01/27 199 52
Tanganyika 2017/06/30 3.0 m 768 m 4.8932–4.9134◦S 29.5851–29.6130◦E 2017/07/01 172 63
Titicaca 2013/08/31 4.0 m 3819 m 15.5053–15.5372◦S 69.8433–69.8889◦W 2013/09/01 2 71
Trichonida 2013/09/28 4.0 m 11 m 38.5043–38.5481◦N 21.6065–21.6836◦E 2013/09/28 184 33

* WSE: water surface elevation.

3. Methods

3.1. Data Processing

Figure 2 is a flowchart illustrating steps for building the alternate ground truth data from
Google Earth (GE) images, extracting and processing Landsat image data, classifying GE and Landsat
images, and comparing GE and Landsat image classification results. Each saved GE image was first
georeferenced through selecting the World WGS84 as the Geographic Coordinate System and entering
coordinates of four corners using the georeferencing function in ArcGIS. Then, each georeferenced
GE image was projected from the Geographic projection to the Universal Transverse Mercator (UTM)
projection to match the projection of the corresponding Landsat image. The corresponding Landsat-8
OLI image was subsequently clipped to the same spatial extent of the GE image and then resampled
into the same grid cell size as the GE image using the bilinear resampling method embedded in ArcGIS.

Among the downloaded Landsat-8 OLI Level-1 images in eight bands, the band 8 image was
only used for correcting the possible errors in the georeferenced Google Earth image. Two steps were
taken in this study to reduce such errors: (1) first, visually inspecting the images to identify a couple of
benchmark pixels in both Google Earth image and the resampled (i.e., with the same pixel cell size as
the corresponding Google Earth image) Landsat-8 OLI band 8 image, and then determining the average
shift in the pixel distance and applying the average pixel shift distance to correct the Google Earth
image; and (2) computing the spatial correlation between the Google Earth image and the resampled
Landsat-8 OLI band 8 image over a range of shifts in x and y directions to determine the optimal shifts
in x and y directions that are associated with the maximum spatial correlation coefficient. Then, use
the optimal shifts to correct the Google Earth image.
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Figure 2. Flowchart of steps for collecting and processing Google Earth and Landsat image data for
evaluating different water indices and image classification methods.

3.2. Water Index

As discussed in Section 1, the commonly used water indices are referred as the green band-based
water indices. In this study, in addition to these green band-based water indices, we also compared
the performances of the other three sets of water indices, i.e., ultra-blue band, blue band, and red
band-based water indices. To keep the commonly used notations of various water indices, this study
added a subscript to each water index term for representing the visible band used in the water index
as follows:

NDWIX =
X −NIR
X + NIR

, MNDWIX =
X − SWIR1

X + SWIR1
, MNDWI2X =

X − SWIR2

X + SWIR2
(5a)

AWEInsX = 4(X − SWIR1) − (0.25NIR + 2.75SWIR2) (5b)

AWEIsX = BLUE + 2.5X − 1.5(NIR + SWIR1) − 0.25SWIR2 (5c)

where X (uB, B, G, R) stands for the ultra-blue, blue, green, or red band used in computing water index.
This study utilized two types of Landsat data for computing water indices: surface reflectance

given in the Level-2 products (hereafter SR water index) and top-of-atmosphere (TOA) spectral



Remote Sens. 2020, 12, 1611 7 of 18

reflectance Rλ computed from the digital number (DN) of each Landsat-8 imagery pixel using the
following equation (hereafter TR water index):

Rλ = (DNλ ×M + A)/cosθ (6)

where M = 2× 10−5 and A = −0.1 are rescaling factors for converting the digital number to reflectance
in band λ, and θ is the solar zenith angle in degrees which is given in the metadata file of each
Landsat scene.

3.3. Image Classification Methods

3.3.1. Unsupervised Image Classification

The simplest unsupervised image classification method is to select a single threshold to differentiate
water and non-water pixels. Without computing any water index, a simple density slice method can
be used to determine a threshold from the histogram of an image, i.e., choosing the digital number
associated with the valley of the histogram of the image as the threshold. Although this approach is
simple to carry out, it is subject to uncertainty and errors if a histogram does not show a distinct valley.
Using the computed water indices for image classification, instead of selecting a threshold based on
the histogram, a zero-water index threshold method is usually chosen for extracting water bodies.
This method can improve the efficiency of image classification, but it is also subject to uncertainty
and errors, because a threshold value of the zero-water index might not achieve the most accurate
extraction of the water body. Therefore, this study evaluated the accuracy of the extracted water bodies
based on the zero-water index threshold method (hereafter the H0 method).

In addition to the H0 method, a nonparametric and unsupervised automatic threshold selection
method proposed by Otsu (1979) was evaluated in this study. The principle of Otsu’s method is to
maximize the following objective function f :

f = PWPNW(µW − µNW)2 (7)

where PW and PNW are probabilities of water pixels and non-water pixels, respectively, and µW and µNW

are mean water index values of classified water pixels and non-water pixels, respectively. The optimal
water index threshold is determined through searching the water index threshold (WIT) between −1
and 1 with an interval of 0.01 for maximizing the objective function shown in Equation (7). All terms
on the right hand of Equation (7) are computed as follows:

PW =
nW

n
, PNW =

nNW

n
, µW =

∑nW
i=1 WIi

nW
, µNW =

∑nNW
i=1 WIi

nNW
(8)

where WIi is the water index of pixel i; and n, nW, and nNW are numbers of total pixels, pixels with
WI > WIT, and pixels with WI ≤WIT, respectively.

3.3.2. Supervised Image Classification

Given the relative simplicity of identifying water and water-land boundaries with human
visual inspection, supervised classification might be a good choice for fulfilling the task of water
pixel classification by inputting a training dataset for classification. There are several supervised
classification methods, such as maximum likelihood, Gaussian mixture, minimum distance, nearest
neighbor, k-nearest neighbor, etc. This study chose the k-nearest neighbor classifier (hereafter the KNN
method) to be evaluated because of its simplicity and effectiveness [48].
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Applying the KNN method to determine if an unknown pixel x belongs to water class or non-water
class, we first need to compute the spectral distance between the pixel x and each training pixel in
m-dimensional spectral space as follows:

di =

 m∑
j=1

(Rx, j −Ri, j)
2


1/2

(9)

where i is the index of training pixels, n is the number of training pixels, j is the band index, m is the
number of bands to be used in image classification, Rx,j is the spectral reflectance of the pixel x to be
classified in band j, and Ri,j is the spectral reflectance of the training pixel i in band j. All the computed
spectral distances between the unknown pixel x and all the training pixels will be ranked from the
lowest to the highest. Based on k ranked spectral distances, the final step is to determine which class
the pixel x belongs to, and k is the number of the nearest training pixels to be considered in image
classification. There are two questions that must be answered before we can accomplish the final step:
(1) What is the suitable k value? (2) What is the proper method for classifying unknown pixels? In this
study, since we are interested in identifying water-body class, there are actually only two classes to be
determined, water and non-water, thus the training pixels either belong to water class or non-water
class. Therefore, we set k to be the number of training water pixels (nw).

With regard to the second question, two possible approaches can be used to solve this problem.
(1) Count the numbers of the nearest neighbors that belong to the water class (kw) and the non-water
class (knw) among the k ranked nearest training pixels (k = kw + knw). If kw is greater than knw, then the
unknown pixel belongs to the water class, otherwise it belongs to the non-water class. (2) Compute the
average spectral distance (dw) to the kw nearest water pixels and the average distance (dnw) to the knw

nearest non-water pixels. If dw is less than dnw, the unknown pixel belongs to the water class, otherwise
it belongs to the non-water class. However, these two methods are subject to uncertainty associated
with the selected k value, because a small variation in the selected k value could result in a different
image classification result. To eliminate such uncertainty, in this study, we proposed to compute the
sum of the inverse distances of each class among the identified k ranked nearest training pixels. For the
water-body identification problem, there are only two classes, water or non-water, thus we only need to
compute two sums of the inverse distances. To avoid the division by zero (i.e., as the spectral distance
is zero), we first identify the minimum non-zero spectral distance (dmin) among the distances from pixel
x to all training pixels. If the computed spectral distance is zero, we set the inverse spectral distance to
be 2/dmin, otherwise the inverse spectral distance is 1/di, where di is the spectral distance from pixel x to
training pixel i. If the sum of the spectral distances to kw nearest water training pixels is greater than
that to knw nearest non-water training pixels, pixel x is a water pixel, otherwise it is a non-water pixel.

3.4. Assessment of Image Classification Results

To evaluate the Landsat image classification results, first, a polygon covering a portion of the
lake water body and a portion of land on each GE image were defined (Figure 3, as an example),
and the KNN method was then used for classifying the water body and land inside the predefined
polygon. The reason for choosing the KNN method is that each GE image is an RGB image and the
digital numbers (DN) in the three channels (RGB) do not necessarily correspond to the same bands as
the Landsat, thus each digital number (DN) could not be converted into the spectral reflectance, and
furthermore, each GE image does not contain any near-infrared or shortwave infrared band images
which are required for computing water index. Therefore, the H0 method is not applicable for GE
images. On the other hand, as a supervised image classification method, the KNN method with input of
training data would achieve a higher accuracy than other unsupervised image classification algorithms.
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Figure 3. The left panel shows a Google Earth (GE) image of Lake Atitlan overlaid by the defined
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The right panel shows the Landsat-8 OLI band 5 image over the same area overlaid by the polygon
(white) and the buffer zone boundary (red).

Digital numbers (DN) in three RGB channels of GE images were directly used to compute the
digital number distances for identifying water or non-water pixels using the KNN method as described
in Section 3.3.2. The classification results were checked and corrected if man-made structures, boats,
or clouds appeared in the identified water body areas through human visual inspection. Both the high
spatial resolution associated with GE images and visual inspection and correction ensured a relatively
high accuracy of the GE image classification results.

After the extraction of the water body inside the predefined polygon, the water-land boundary was
identified for defining a buffer zone with a width of 300 m (each side has a perpendicular distance of
150 m to the water-land boundary). The buffer zones were the domains where the image classification
results were evaluated. The predefined polygon over each lake was the domain where the optimal
water index threshold was determined by the Otsu method, and water and non-water training pixels
were selected from for the KNN method. For example, the GE image overlaid by the predefined
polygon (in white) and the identified water-land boundary (in green) and the buffer zone (in red) are
shown in the left panel of Figure 3, and the corresponding Landsat-8 OLI band 5 image overlaid by the
predefined polygon (in white) and the buffer zone (in red) are shown in the right column of Figure 3.
The GE and Landsat-8 OLI band 5 images overlaid by the defined polygons and buffer zones for all
24 lakes are shown in the Supplementary Material section.

Using the GE image classification results as the alternate ground truth data, two measures were
employed in this study for assessing the Landsat image classification results: (1) relative error (RE) of
the extracted water body area, and (2) overall error (OE) of the Landsat image classification:

RE =
(nLw − nGw)

nGw
× 100%, OE = 100%−

(nLw|Gw + nLn|Gn)

n
× 100% (10)

where nLw is number of water pixels classified by the Landsat, nGw is number of water pixels classified
by the GE image, nLw|Gw is number of water pixels classified by the Landsat given that they are
classified as water pixels by the GE image, nLn|Gn is number of non-water pixels classified by the
Landsat given that they are classified as non-water pixels by the GE image, and n is number of
total pixels inside the buffer zone. These two errors are computed inside the defined buffer zone for
each study area. The computed relative errors can reveal if the Landsat-extracted water body areas
are overestimated (i.e., positive REs) or underestimated (i.e., negative REs). The overall errors are
computed as 100% minus the overall accuracy of Landsat image classification results, as shown in
Equation (10), and the overall image classification accuracies are evaluated based on error or confusion
matrices [48], thus the computed overall errors can reveal the omission or commission errors in the
Landsat image classifications of water and non-water pixels.
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4. Results and Discussion

This study tested four sets (i.e., ultra-blue, blue, green, and red band-based) of five different water
indices (Equations (5a–c)) with three different image classification algorithms (i.e., the H0 method,
the Otsu method, and the KNN method). In addition to the Level-1 Landsat data, the Level-2 Landsat
surface reflectance data for each scene were also used in computing water indices for image classification
and ultimately for evaluating the Landsat image classification results over 24 selected lakes across the
globe (Figure 1). Therefore, in total, 4 × 5 × 3 × 2 × 24 = 2880 Landsat image classification results were
evaluated in this study. The relative errors of the Landsat-extracted water body areas and overall image
classification errors of these 2880 cases are listed in the Supplementary Materials section. Given the
large number of cases, the boxplot was employed in this study for illustrating the results. All boxplots
in this paper show the 5th percentile, 25th percentile, 50th percentile (i.e., medium), 75th percentile,
and 95th percentile values, and dots represent data points outside the range of the 5th–95th percentile.

4.1. Impact of Different Landsat Products on Water Classification Results

To assess the impact of different Landsat products on the Landsat-extracted water bodies, three
boxplots of water indices versus relative errors of the Landsat-extracted water body areas compared
against the water body areas identified from the GE images corresponding to three different image
classification methods (H0, Otsu, and KNN) using the water indices computed from the TOA reflectance
(i.e., TR water index) and the surface reflectance (i.e., SR water index) are shown in Figures 4 and 5,
respectively. Comparisons of these two figures indicate that, as the surface reflectance was used
for computing water index, the Landsat-extracted water body areas were generally underestimated,
especially as the H0 method was used for image classification; all medians of the relative errors are
negative, as shown in Figure 5.

Figure 4. Boxplots of relative errors of the Landsat-extracted water body areas versus water indices
computed from the top-of-atmosphere (TOA) reflectance corresponding to three different image
classification methods (H0, Otsu, and k-nearest neighbor (KNN)).
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Figure 5. Boxplots of relative errors of the Landsat-extracted water body areas versus water indices
computed from the surface reflectance corresponding to three different image classification methods
(H0, Otsu, and KNN).

To demonstrate the cause for such underestimations associated with the SR water indices, Figure 6
shows the computed NDWIs over Chuzenji Lake using the TOA reflectance and the surface reflectance.
The TR water indices for the water body inside the buffer zone (white polygon) are greater than zero,
while the SR water indices for the water body inside the buffer zone (red polygon) are less than zero,
thus the H0 method underestimated the water body area inside the buffer zone if the surface reflectance
was used for computing water index.
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Figure 6. Normalized difference water indices (NDWI) over Chuzenji Lake computed using the TOA
reflectance (left) and the surface reflectance (right). The white polygon in the left panel and the red
polygon in the right panel represent the same buffer zone.
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Theoretically speaking, using the surface reflectance to compute water index should yield a higher
accuracy in image classification than the TR water index. However, comparisons of relative errors in
the Landsat-extracted water body areas and overall image classification errors between the TR water
index and SR water index for the three different image classification methods listed in Table 2 all show
that the SR water index led to about 75% cases (out of 480 cases) with a worse accuracy than the TR
water index, no matter which of three image classification methods (i.e., H0, Otsu, and KNN) was used.
The results suggest that the water indices computed based on the Landsat current version Level-2
surface reflectance products might be subject to higher errors and uncertainties than the TR water
indices in some regions; therefore, in the remainder of this paper, without specifying, all water indices
were computed from the TOA reflectance (i.e., TR water indices).

Table 2. Comparisons of relative errors and overall errors between the TOA reflectance (TR) water
index and the surface reflectance (SR) water index for three different image classification methods.

Error
TR WI vs. SR WI for H0 TR WI vs. SR WI for Otsu TR WI vs. SR WI for KNN

Better Worse Same Better Worse Same Better Worse Same

RE 353
(74%)

127
(26%)

0
(0%)

375
(78%)

104
(22%)

1
(0%)

360
(75%)

115
(24%)

5
(1%)

OE 348
(73%)

132
(27%)

0
(0%)

377
(78%)

94
(20%)

9
(2%)

360
(75%)

117
(24%)

3
(1%)

4.2. Comparisons of Three Image Classification Algorithms

In addition to the boxplots of the relative errors of the Landsat-extracted water body areas versus
the TR water index for three different image classification algorithms illustrated in Figure 4, the boxplots
of the overall Landsat image classification errors versus the TR water index are plotted in Figure 7.

Figure 7. Boxplots of overall image classification errors versus the TR water index corresponding to
three different image classification methods (H0, Otsu, and KNN).
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Both Figures 4 and 7 suggest that the H0 method did not perform well compared to the Otsu
and KNN methods because of the larger error outliers produced by the H0 method, especially as
the MNDWI2 type water index was utilized in the H0 method for image classification. According to
Figures 4 and 7, the water index MNDWI2 employed in the H0 method for image classification produced
larger relative errors and overall image classification errors than any other water indices, no matter
which visible light band (i.e., ultra-blue, blue, green, or red) was used in the water index MNDWI2.
Unlike the H0 method, as the Otsu and KNN methods were employed for image classification, the water
index MNDWI2 yielded comparable relative errors in the Landsat-extracted water body areas and
overall image classification errors as the other water indices. These results indicate that if the H0
method is used for classifying water and non-water pixels, the water index MNDWI2 should be avoided,
i.e., SWIR2 should not be used in the MNDWI. Actually, as Xu (2006) first proposed the MNDWI,
SWIR1 rather than SWIR2 was chosen for computing the MNDWI. The reason for the overestimated
water body areas is that, in some cases, reflectance in SWIR2 band for non-water pixels was less than
the visible band reflectance of these non-water pixels, thereby producing positive MNDWI2 for these
non-water pixels, thus the H0 method based on the water index WI3x overestimated water body areas,
such as in Brown Lake and Lake Okeechobee (results listed in Tables ST1 and ST4 in the Supplementary
Materials section).

According to Figures 4 and 7, differences in the relative errors of the Landsat-extracted water
body areas and overall Landsat image classification errors between the Otsu method and the KNN
method are insignificant. Table 3 presents comparisons of relative errors in the Landsat-extracted
water body and overall Landsat image classification errors among three image classification algorithms
(i.e., H0, Otsu, and KNN). Surprisingly, the numbers of smaller REs or OEs produced by the H0
method are slightly greater than those produced by the Otsu and KNN methods. According to Table 3,
as a supervised image classification method, the KNN method is unsurprisingly better (in terms of
the numbers of smaller REs and OEs) than the Otsu method, which is an unsupervised method, but
surprisingly, it is not better than the H0 method. However, larger error outliers produced by the H0
as shown in Figures 4 and 7 indicate that the H0 method is more sensitive to the water index than
the other two methods (Otsu and KNN). These results suggest that: (1) it is not necessary to use
some supervised image classification methods for identifying water bodies from Landsat imagery
given the high computational cost associated with the supervised image classification methods; (2) the
unsupervised image classification algorithms such as the Otsu and H0 methods could yield comparable
accuracy in the Landsat-extracted water body areas and image classification of water and non-water
classes as the KNN method; and (3) although the zero-water index threshold (i.e., the H0 method)
worked better in slightly more than 50% of cases compared to the automatic threshold determined by
the Otsu method, the Otsu method produced less large error outliers than the H0 method as shown in
Figures 4 and 7. Therefore, if there is no preference when selecting water index for classifying water
and non-water classes, the Otsu method is preferable to the H0 method.

Table 3. Comparisons of relative errors and overall errors among three image classification methods

Error
H0 vs. Otsu H0 vs. KNN Otsu vs. KNN

Better Worse Same Better Worse Same Better Worse Same

RE 255 224 1 252 227 1 210 266 4
OE 255 224 1 258 220 2 220 252 8

4.3. Comparisons of Twenty Water Indices

The results presented in Section 4.2 demonstrate that the accuracies of Landsat-extracted water
body areas and Landsat classifications of water and non-water pixels depend on the water index used
for classifying water and non-water classes, no matter which image classification method is used,
especially for the H0 method, which is very sensitive to water index. That is probably one reason for
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some debate on the performances of various water indices in the literature. In this paper we reviewed
eight relevant studies [32–39] and found that 43.75% (3.5/8) studies claimed that MNDWI was the
best, 37.5% (3/8) studies claimed that NDWI was the best, and 18.75% (1.5/8) studies claimed that
AWEI was the best, in terms of accuracy of Landsat image classifications. None of the water indices
exhibited outstanding superiority (i.e., more than 50%) to others, which is also the case in this study.
According to the relative errors of the Landsat-extracted water body areas listed in ST1 (for the H0
method) and ST2 (for the Otsu method) for five commonly used green band-based water indices,
i.e., NDWI, MNDWI, MNDWI2, AWEIns, and AWEIs, the corresponding percentages of rank-one
in terms of accuracy among 24 lakes are 12.5%, 25%, 12.5%, 25%, 25%, and 25% for the H0 method,
and 8.33%,12.5%, 25%, 25%, and 29.17% for the Otsu method, respectively.

To compare the performances of twenty water indices tested in this study, means of absolute
relative errors (MARE) of Landsat-extracted water body areas and overall errors (MOE) of Landsat
image classifications over 24 tested lakes for three different image classification methods (i.e., H0,
Otsu, and KNN) were computed and listed in Table 4. If we only focus on the commonly used green
band-based water indices, according to Table 4, we can find that AWEIsG produced both the lowest
MARE and MOE for the H0 method, AWEInsG produced both the lowest MARE and MOE for the Otsu
method, and MNDWI2G produced both the lowest MARE and MOE for the KNN method. However,
if we consider all twenty water indices, Table 4 shows that the ultra-blue band-based AWEInsuB is
the best water index for the H0 method, and the ultra-blue band-based MNDWI2uB is the best water
index for both the Otsu and KNN methods, because they produced the smallest MAREs and MOEs
compared to all other water indices for the same image classification algorithm. None of the red
band-based water indices showed any improvement in extracting water features compared to the
green band-based water indices, which is probably due to the fact that none of the 24 selected lakes in
this study had high sediments loads leading to high reflectance in red light.

Table 4. Means of absolute relative errors (MARE) and overall errors (MOE).

Water Index
H0 Otsu KNN

MARE (%) MOE (%) MARE (%) MOE (%) MARE (%) MOE (%)

Ultra-blue
band
based

NDWIuB 7.41 4.53 7.67 4.42 6.82 4.10
MNDWIuB 16.81 8.26 7.24 4.18 6.39 3.98
MNDWI2uB 51.61 24.94 6.64 3.98 5.49 3.89
AWEInsuB 4.86 3.59 6.80 4.34 7.65 4.81
AWEIsuB 9.30 5.71 7.12 4.51 7.12 4.59

Blue band
based

NDWIB 5.97 3.89 8.56 4.76 7.70 4.44
MNDWIB 8.33 5.10 8.04 4.49 7.60 4.32
MNDWI2B 42.24 20.40 7.29 4.19 6.30 4.05
AWEInsB 6.35 3.90 6.99 4.40 7.54 4.80
AWEIsB 7.40 4.64 7.27 4.60 7.22 4.65

Green
band
based

NDWIG 7.18 4.36 9.83 5.27 9.13 4.98
MNDWIG 6.90 4.37 9.65 5.12 8.98 4.86
MNDWI2G 34.25 16.67 8.53 4.66 7.56 4.33
AWEInsG 9.09 4.92 7.21 4.49 7.79 4.93
AWEIsG 6.41 4.09 7.97 4.93 7.92 4.99

Red band
based

NDWIR 12.02 6.42 12.01 6.57 11.01 6.27
MNDWIR 8.63 4.89 12.30 6.30 11.79 6.08
MNDWI2R 23.73 12.20 11.46 5.96 10.92 5.75
AWEInsR 13.27 6.77 7.78 4.79 8.18 5.13
AWEIsR 6.99 4.25 9.41 5.65 8.95 5.49

5. Conclusions

This paper addressed three important issues related to extraction of water bodies from Landsat
imagery: How to collect ground truth data across the globe for validating Landsat image classification
results? Which water indices (among NDWI, MNDWI, AWEI) and which image classification
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(unsupervised or supervised) methods are the best for extracting water bodies from Landsat images?
First, this study took advantage of high-resolution satellite images archived in Google Earth to obtain
24 high-resolution (≤5 m) and cloud-free images and each image covers a portion of 24 selected lakes
across the globe, and then a method was developed to generate the alternate ground truth data from
the Google Earth images for properly evaluating the Landsat image classification results.

With regard to the computed water indices for identifying water pixels from Landsat imagery,
in addition to the commonly used green band-based water indices (i.e., NDWI, MNDWI, and AWEI),
Landsat-8 OLI’s ultra-blue, blue, and red band-based water indices were also tested in this research,
thus a total of 20 types of water indices were evaluated. Both Level-1 Landsat images (used for
computing the top-of-atmosphere reflectance) and Level-2 Landsat surface reflectance data were
utilized for computing water indices that are referred to as TR and SR water indices, respectively.
With regard to the image classification, two unsupervised methods i.e., the single zero-water index
threshold method (i.e., the H0 method), and Otsu’s automatic threshold selection method, and the
supervised KNN method were employed for conducting the image classification. Through comparing a
total of 24 × 20 × 3 × 2 = 2880 image classification results with the alternate ground truth data derived
from the Google Earth images, the following conclusions are drawn:

(1) The top-of-atmosphere reflectance computed from the Level-1 Landsat image data are better than
the current Level-2 Landsat surface reflectance products for computing water indices, because the
water indices computed based on the Landsat current version Level-2 surface reflectance products
might be subject to higher errors and uncertainties than the TR water indices in some regions.

(2) It is not necessary to use some supervised image classification methods for identifying water
bodies from Landsat imagery given the high computational cost associated with the supervised
image classification methods. The unsupervised image algorithms such as the Otsu and H0
methods could yield comparable accuracy in the Landsat-extracted water body areas and image
classification of water and non-water classes as the KNN method.

(3) Although the zero-water index threshold (i.e., the H0 method) worked better in slightly more
than 50% cases compared to the automatic threshold determined by the Otsu method, the Otsu
method produced less large error outliers than the H0 method. Therefore, if there is no preference
when selecting water index for classifying water and non-water classes, the Otsu method is
preferable to the H0 method.

(4) Among five commonly used green band-based water indices, AWEIs produced both the lowest
mean absolute relative errors (MARE) in the Landsat-extracted water body areas and mean
overall errors in the Landsat image classifications (MOE) for the H0 method, AWEIns produced
both the lowest MARE and MOE for the Otsu method, and MNDWI2 produced both the lowest
MARE and MOE for the KNN method.

(5) Comparisons among twenty water indices over 24 lakes across the globe showed that the ultra-blue
band-based AWEInsuB is the best water index for the H0 method, and the ultra-blue band-based
MNDWI2uB is the best water index for both the Otsu and KNN methods.

In this study, none of the red band-based water indices showed any improvement in extracting
water features compared to the green band-based water indices, which is probably due to the fact
that none of the 24 selected lakes had high sediments loads leading to high reflectance in red light.
Due to limited numbers of high-resolution satellite images archived in Google Earth that can be used
for assessing the Landsat water body mapping results, the evaluations of different visible band-based
water indices (including both TR and SR water indices) and three image classification algorithms were
only carried out on 24 individual lakes with low turbidity, less vegetation cover, and single image
acquisition dates. The performances of various water indices and image classification algorithms might
differ from the results presented in this study if multiple Landsat images with different acquisition
dates over a single lake are used for mapping flooded areas, because as water level declines, a number
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of issues such as mixed water-vegetation-sediment pixel, vegetation cover, and turbidity will arise,
which deserve further research.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/10/1611/s1.
Figure SF1: (left panel): 24 Google Earth images overlaid by the predefined polygon (in white) and the identified
water-land boundary (in green) and the buffer zone (in red); (right panel): 24 Landsat-8 OLI band 5 images
overlaid by the predefined polygon and the identified buffer zone. Table ST1: Relative errors (%) of Landsat-8 OLI
water classification results using the zero-water index threshold (H0) method. Table ST2: Relative errors (%) of
Landsat-8 OLI water classification results using the Otsu method. Table ST3: Relative errors (%) of Landsat-8 OLI
water classification results using the KNN method. Table ST4: Overall errors (%) of Landsat-8 OLI water/land
classification results using the zero-water index threshold (H0) method. Table ST5: Overall errors (%) of Landsat-8
OLI water/land classification results using the Otsu method. Table ST6: Overall errors (%) of Landsat-8 OLI
water/land classification results using the KNN method. Table ST7: Relative errors (%) of Landsat-8 OLI SR
water classification results using the zero-water index threshold (H0) method. Table ST8: Relative errors (%) of
Landsat-8 OLI SR water classification results using the Otsu method. Table ST9: Relative errors (%) of Landsat-8
OLI SR water classification results using the KNN method. Table ST10: Overall errors (%) of Landsat-8 OLI SR
water/land classification results using the zero-water index threshold (H0) method. Table ST11: Overall errors
(%) of Landsat-8 OLI SR water/land classification results using the Otsu method. Table ST12: Overall errors (%)
of Landsat-8 OLI SR water/land classification results using the KNN method.
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