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Abstract: In this study, seven, global, blended, sea surface temperature (SST) analyses, including 
Operational SST and Sea Ice Analysis (OSTIA), Canadian Meteorological Centre (CMC) analysis, 
Optimum Interpolation SST (OISST), Remote Sensing System (REMSS) analysis, Multi-scale Ultra-
high Resolution SST (MURSST), Merged Satellite and In situ Data Global Daily SST (MGDSST), and 
Geo-Polar Blended SST (Blended SST) were conducted. In-situ temperature measurements were 
used for the years 2014–2018, from 35 narrowly-spaced buoys distributed along the Korean 
Peninsula coast, to investigate how well the SST analyses represent the temperatures at the coastal 
regions. Contrary to the overall accuracy of the SSTs in the global ocean and offshore regions, the 
root-mean-square errors for the analyses were relatively large over 1.27 K. Specifically, all SST 
analyses resulted in warm biases over 0.31 K, which became quite distinctive in the western and the 
southwestern coastal regions. Investigation of the errors identified relationships with the coastal 
zones of vigorous tidal mixing, shallow bathymetry, and absence of microwave measurements. 
Overall, temporal wavelet coherency between in-situ measurements and SST products revealed 
high coherency of greater than 0.8 in periods longer than 180 days, however, low coherency (<0.5) 
in the period shorter than 10 days was observed. Inter-comparisons between the SST analyses 
illustrated clear spatial differences in the correlations at both the coastal regions, along the 
southwestern coast of the Korean Peninsula and in the frontal regions, and in the marginal seas of 
the Northwest Pacific. Overall, the results emphasized on the importance of using real-time in-situ 
measurements as much as possible, to overcome the increasing SST errors in coastal regions. 

Keywords: sea surface temperature (SST); satellite SST analysis; accuracy assessment; inter-
comparison; coastal region 

 

1. Introduction 

Sea surface temperature (SST) is a major oceanic variable that plays an important role as an 
indicator of climate change and as input data for the numerical models used for weather forecasting 
and oceanic circulation prediction [1–4]. SST data have been extensively used in understanding the 
fundamental variability and long-term trends of a warming world [5–8]. Further diverse applications 
have included investigating changes in oceanic, biological and chemical environments, as well as in 
fisheries [9–15]. 

For nearly half the century, SST was extensively and periodically observed globally, using 
various satellites [16]. Satellite SST data (Level 2; L2) are retrieved from brightness temperature data 
(Level 1B; L1B) observed from infrared (IR) and microwave (MW) sensors. In the case of the L2 SST, 
the accuracy assessments were conducted not only in the global oceans [17–22], but also in the coastal 
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region [23–27]. However, in the coastal region, there are insufficient in-situ measurements to 
represent the sea area. Since the oceanographic features at the coastal regions have relatively small 
spatial scales and high variability, as compared to those in the open ocean, validation studies using 
extensive in-situ temperatures should be performed. Recently, studies have been proposed to 
develop an instrument that can compensate for the limitations of coastal observations and evaluate 
the accuracy of satellite SST [25,27]. In addition, studies have been conducted to compare the accuracy 
of satellite SST in coastal regions and open oceans. Satellite SST data in the coastal region have higher 
errors than the open ocean [23]. Furthermore, the most prominent issue is that MW SST data cannot 
be used in a region within 50 km of the coast, due to land contamination [28,29]. The grid data 
produced using one or more L2 SST data from a single sensor are referred to as Level 3 (L3) data, and 
might have gaps due to interference from clouds, heavy rainfall, or land. To remove these gaps, multi-
satellite SST datasets have been combined with in-situ observations, using optimal interpolation 
methods, which are referred to as Level 4 (L4) products [16,30]. Among them, the L4 SST analysis 
with constant spatial and temporal resolution have been widely used for atmospheric and oceanic 
prediction [4,31], SST variability analysis [32,33], or as background SST fields for SST retrievals from 
satellite data [34]. 

SST analysis has been produced by institutions worldwide for various purposes [4,31,35–39] and 
quality assessments of each product have been performed, both by comparison with in-situ 
measurements and by inter-comparison between SST analyses across global oceans [40–45]. In 
contrast, validation and comparison of SST products in regional areas has been reported as 
insufficient [46], and there has been even less attention given to the coastal regions, despite its 
essential importance. 

As shown in Figure 1a, the seas around the Korean Peninsula, which constitute the marginal 
seas of the Northwest Pacific Ocean, exhibit varied bathymetric characteristics, with the East/Japan 
Sea (EJS) having an average depth of 1,000 m and the Yellow Sea having an average depth of less 
than 100 m [47,48]. The Tsushima Current is derived from the Kuroshio Current, with the East Korea 
Warm Current as its branch. The North Korean Cold Current along the eastern coast of the Korean 
Peninsula is well-developed along the Korean Peninsula [49]. There are also various regional 
phenomena, such as subpolar fronts and mesoscale eddies, in the EJS [50–52]. The Yellow Sea also 
has a complex current system, including the Yellow Sea Warm Current, the Jeju Warm Current, and 
the West Korean Coastal Current [49]. In the Yellow Sea, because the tidal range is large and the 
associated tidal currents are strong, a distinct tidal front appears in summer [53,54]. The seas around 
the Korean Peninsula are also directly affected by the East Asian monsoon, which is dominated by 
cold dry northwesterly winds in winter and warm humid southeasterly winds during summer 
[55,56]. Such diverse atmospheric and oceanic conditions have brought peculiar characteristics of 
coastal SSTs in the seas around the Korean Peninsula, when compared with those of the open ocean. 
There are many abrupt changes in SST between the coastal areas and the offshore regions, as 
exhibited by the diverse oceanographic features. These include the coastal upwelling with high year-
to-year variability in the eastern coast, occurrence of cold waters due to strong tidal currents in the 
western coast, and wind-induced SST changes. Therefore, it is important to evaluate the accuracy of 
daily SST composites compared to in-situ measurements in the coastal region. 

The objectives of this study were (1) to evaluate the accuracies of the SST products applicable to 
the seas around the Korean Peninsula; (2) to analyze the error characteristics of the SST products 
using in-situ temperature data measured by the coastal wave buoys operated by the Korea 
Meteorological Administration (KMA); (3) to compare SSTs among the databases in the Northwest 
Pacific; (4) to identify the strength and weakness of each SST analysis database; and (5) to provide 
information on the SST databases in the coastal regions. 
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Figure 1. (a) Currents in the study area, where the color blue represents water depth; (b) enlarged 
bathymetry map for the seas around the Korean Peninsula. Blue, green, and yellow dots and black 
text represent the location and symbol of the coastal wave buoys of Korean Meteorological 
Administration. 

2. Data and Methods 

2.1. SST Analysis Products 

Accuracy assessment and validation procedures have been performed for seven daily SST 
databases with real-time operational applications: Operational SST and Sea Ice Analysis (OSTIA) of 
the UK Met Office (Meteorological Office), 0.2 degree SST analysis of the Canadian Meteorological 
Centre data set (CMC analysis), Optimum Interpolation SST (OISST) of the National Centers for 
Environmental Information (NCEI)/National Oceanic and Atmospheric Administration (NOAA), 
SST analysis of the Remote Sensing System (REMSS analysis), the Multi-scale Ultra-high Resolution 
SST (MURSST) of Jet Propulsion Laboratory (JPL)/National Aeronautics and Space Administration 
(NASA), Merged Satellite and In Situ Data Global Daily SST (MGDSST) of Japan Meteorological 
Agency (JMA), and Geo-Polar Blended SST (Blended SST) of National Environmental Satellite Data 
and Services (NESDIS)/NOAA. Detailed information on each SST database, such as period, spatial 
resolution, input data, and data distribution agency, are summarized in Table 1. The data used in this 
study covered the period 2014–2018. 

Table 1. Information on the sea surface temperature (SST) analyses used in this study, where the input 
data were investigated based on the SST analysis information on January 1, 2014, or on information 
from the respective database website. Acronyms: OSTIA = Operational SST and Sea Ice Analysis, 
CMC = Canadian Meteorological Centre, OISST = Optimum Interpolation SST, REMSS = Remote 
Sensing System, MURSST = Multi-scale Ultra-high Resolution SST, MGDSST = Merged Satellite and 
In situ Data Global Daily SST, AVHRR = Advanced Very-High-Resolution Radiometer, IASI = 
Infrared Atmospheric Sounding Interferometer, SEVIRI = Spinning Enhanced Visible and InfraRed 
Imager, GOES = Geostationary Operational Environmental Satellite, MODIS = Moderate Resolution 
Imaging Spectroradiometer, JAMI = Japanese Advanced Meteorological Imager, TMI = Tropical 
Rainfall Measuring Mission (TRMM) Microwave Imager, AMSR2 = Advanced Microwave Scanning 
Radiometer 2, AMSR-E = AMSR-Earth Observing System, GTS = Global Telecommunications System, 
iQUAM = In situ SST Quality Monitor, Met Office = Meteorological Office, NECI = National Centers 
for Environmental Information, NOAA = National Oceanic and Atmospheric Administration, JPL = 
Jet Propulsion Laboratory, NASA = National Aeronautics and Space Administration, JMA = Japan 
Meteorological Agency, and NESDIS = National Environmental Satellite, Data, and Information 
Service. 
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Name Period 
Spatial 

Resolution 
(°) 

Input data 
Agency 

IR MW In-situ 

OSTIA 
Jan 2007 
– present 

0.05 
AVHRR, IASI, SEVIRI,  

GOES13 Imager 
TMI GTS 

Met 
Office 

CMC 
analysis 

Sep 1991 
– present 

0.2 (~2017) 
0.1 (2016~) 

AVHRR Windsat GTS CMC 

OISST 
Sep 1981 
– present 

0.25 AVHRR - GTS 
NCEI/ 
NOAA 

REMSS 
analysis 

Jun 2002 
– present 

0.09 MODIS 
AMSR2, TMI, 

Windsat 
- REMSS 

MURSST 
Jun 2002 
– present 

0.01 AVHRR, MODIS AMSR2 iQUAM 
JPL/ 

NASA 

MGDSST 
Jan 1982 
– present 

0.25 AVHRR 
AMSR-E, 

Windsat, AMSR2 
GTS JMA 

Blended 
SST 

Sep 2002 
– present 

0.05 
AVHRR, JAMI,  
GOES Imager 

- - 
NESDIS/ 
NOAA 

2.1.1. Met Office OSTIA SST Database 

The daily OSTIA SST data of the UK Met Office has a spatial resolution of about 0.05° and the 
database has been used for numerical weather prediction (NWP) and ocean forecasting [4,57]. The 
data has been operationally produced by applying an optimal interpolation (OI) method [2,4,58] to 
L2 SST data from IR sensor data of polar-orbit and geostationary satellite, MW sensor data, and in-
situ measurements from the global telecommunications system (GTS). To produce foundation SST 
data without diurnal variation, observed data were eliminated when the wind speed was less than 6 
m s−1 during daytime [4,59]. Prior to applying the OI method, all satellite data were adjusted to 
remove bias errors, based on the Advanced Along Track Scanning Radiometer (AATSR) SST data 
and in-situ SST data. According to the validation results for OSTIA product accuracy, the mean bias 
and root-mean-squared error (RMSE) were reported to be close to zero, and about 0.57 K, respectively 
[4]. The OSTIA SST database was obtained by accessing the Copernicus Marine Environment 
Monitoring Service (CMEMS) (http://marine.copernicus.eu). 

2.1.2. CMC SST Analysis Database 

The SST analysis database of the CMC was produced using satellite IR and MW SSTs, combined 
with in-situ SST measurements [1,31,60]. The source data inputs to the blended data included both 
in-situ data measured by buoys, ships, and Argo floats, and diverse IR SST data sets, such as from 
the NOAA/Advanced Very High Resolution Radiometer (AVHRR), Meteorological Operational 
(MetOp)/AVHRR, European Remote Sensing (ERS)/ATSR (Along Track Scanning Radiometer), 
Envisat (Environmental Satellite)/AATSR, and so on. Additional data sources included the passive 
MW SST from the Aqua/AMSR-E (Advanced Microwave Scanning Radiometer—Earth Observing 
System), Coriolis/Windsat, and GCOM-W1 (Global Change Observation Mission 1st-Water)/AMSR2. 
The quality-controlled satellite data were divided into bins of 550 km in the north-south direction 
and 1,110 km (2,220 km between 45 °S and 60 °S, 4,440 km south of 60 °S) in the east-west direction 
for removal by comparing with in-situ temperatures. Then, the large-scale biases were removed from 
the satellite-observed SSTs. This SST analysis database had a temporal resolution of 1 day and a 
spatial resolution of 0.2° for the period from September 1991 to March 2017 and 0.1° since January 
2016. The RMSE was reported to be less than 0.4 K, when compared with temperature data from Argo 
floats distributed throughout the global oceans [31]. CMC products were obtained for this study from 
PO.DAAC (https://podaac.jpl.nasa.gov/dataset/CMC0.2deg-CMC-L4-GLOB-v2.0). 
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2.1.3. NCEI/NOAA OISST Database 

OISST provided by NCEI/NOAA, is a global gridded SST analysis, with a 0.25° spatial resolution 
[36,61,62]. It uses the only AVHRR, with in-situ SST data (AVHRR-only analysis). The satellite-
observed SST data and in-situ measurements were combined to generate daily SST fields by applying 
the OI method, after completing a bias adjustment procedure based on in-situ data measured by 
buoys and ships. This dataset is referred to as a bulk SST, at the depths of the in-situ instruments [61]. 
There was another SST analysis (AVHRR+AMSR-E analysis) that included the MW SST data. 
Although the MW sensors had a limitation insofar as the SST could not be retrieved in the coastal 
regions (<50 km), they had an advantage in terms of coverage, as SST data can be retrieved from them 
in most weather conditions, except for heavy rainfall. In spite of this advantage, due to the relatively 
shorter period of AVHRR+AMSR-E data availability (2002–2011), the AVHRR-only analysis 
database, which covered the period from 1981 to the present, was used in this study. SST products 
from the NCEI/NOAA OISST database were accessed through the PO.DAAC 
(https://podaac.jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.0). 

2.1.4. REMSS Analysis Database 

REMSS produces two L4 blended SST analyses, based on microwave SST data that can observe 
SST through clouds [63]. One product consists of microwave SST data with a 25-km spatial resolution, 
while the other is a daily blended product with a 9 km spatial resolution, which uses both microwave 
SST and IR SST data as input data; microwave SST data from the TMI (Tropical Rainfall Measuring 
Mission (TRMM) Microwave Imager), AMSR-E, AMSR2, WindSat, and GMI, and IR SST data from 
MODIS (Moderate Resolution Imaging Spectroradiometer), and VIIRS (Visible Infrared Imager 
Radiometer Suite). When performing the OI procedure, a small weighting was given to SST data with 
a large error, by considering the RMS errors for each satellite sensor observation. In addition, a 
foundation SST was estimated by removing any diurnal warming effect, which was achieved by 
applying a model using solar insolation and wind speed data. Herein, we selected the second 
database, with both MW SST and IR SST data. REMSS products were obtained by accessing the 
PO.DAAC (https://podaac.jpl.nasa.gov/dataset/MW_IR_OI-REMSS-L4-GLOB-v5.0). 

2.1.5. JPL/NASA MURSST Analysis Database 

JPL/NASA have developed a MURSST product with a spatial resolution of about 0.01° and 
temporal resolution of 1 day [39,64]. For SST analysis, IR SST data, such as the MODIS SST of Terra 
and Aqua and the AVHRR SST of NOAA and MetOp, and microwave SST data, such as the AMSR-
E, AMSR2, and WindSat, were used as inputs. In-situ data from the drifting and moored buoys and 
from ships were also used in the SST analysis. This product used nighttime SST data to remove 
diurnal warming effects. Unlike other analyses, the MURSST analysis blends and interpolates SST 
data, using a Multi-Resolution Variational Analysis method. Multiple timescale data windows were 
used to produce reconstructed meso-scale and small-scale features. This analysis showed an average 
RMSE of 0.36 K in the global oceans, except for the polar regions in summer, as compared to the 
Multi-Product Ensemble (GMPE) SST of Group for High Resolution Sea Surface Temperature 
(GHRSST) [39]. This product was also obtained from the PO.DAAC 
(https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1). 

2.1.6. JMA MGDSST Analysis Database 

MGDSST is a daily blended SST analysis from the JMA, with a spatial resolution of 0.25° [35]. This 
database is also a merged SST product created using both IR sensor data, such as NOAA/AVHRR and 
MetOp/AVHRR, and MW sensor data, such as Aqua/AMSR-E, Coriolis/Windsat, and GCOM-
W1/AMSR2, and in-situ SST data from buoys and ships. For the quality control of input data, abnormal 
day–night differences were investigated by comparison with daily climatology. In addition, bias 
correction was also performed on the satellite data by comparing it to the in-situ data. The SST anomaly 
(SSTA) data, which represented the SST deviations from SST climatology data, were decomposed into 



Remote Sens. 2020, 12, 1592 6 of 27 

 

components at several temporal and spatial scales, and then the OI procedure was applied to each 
component. The final product was calculated as the sum of the SSTA and daily climatology data at each 
scale [35]. This MGDSST product is a foundation SST, as mentioned in [42,65]. As the result of validation 
using in-situ data from moored buoys that were not used for SST analysis, the MGDSST data showed an 
RMSE of 0.3 K and a bias of 0.04 K [35]. We accessed and downloaded this MGDSST product through the 
North-East Asian Regional-Global Ocean Observing System (NEAR-GOOS) website of JMA 
(https://www.data.jma.go.jp/gmd/goos/data/pub/JMA-product/mgd_sst_glb_D/). 

2.1.7. NESDIS/NOAA Blended SST Analysis Database 

Geo-Polar Blended SST is a daily global SST analysis with a high spatial resolution of 
approximately 5 km that is generated by NESDIS/NOAA [66]. This analysis combined the data from 
polar-orbit satellite sensors such as AVHRR and VIIRS, and from geostationary satellite instruments 
such as the Geostationary Operational Environmental Satellite (GOES) Imager, the Japanese 
Advanced Meteorological Imager (JAMI) carried onboard the Multifunctional Transport Satellite 
(MTSAT), and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) carried onboard the 
Meteosat Second Generation (MSG). After each input data were re-gridded to the analysis resolution, 
bias correction was performed using real-time global (RTG) SST from the National Centers for 
Environmental Prediction (NCEP) [67]. A multi-scale OI method [68] was used to preserve the small-
scale structures and reduce the noise in the estimated SST analysis [66]. The robust standard deviation 
was less than 0.3 K in the accuracy verification results of Blended SST, against the drifter data for the 
period from May 2012 to August 2015. We accessed and downloaded this product through the 
CoastWatch/OceanWatch website of NOAA (https://coastwatch.noaa.gov/cw/satellite-data-
products/sea-surface-temperature/sea-surface-temperature-near-real-time-geopolar-blended.html). 

2.2. In-situ Temperature 

Herein, we used temperature data from the KMA coastal wave buoys to validate SST analyses 
in the coastal region around the Korean Peninsula (Figure 1b) [69]. To improve marine weather 
monitoring, the KMA has been operating 66 coastal wave buoys, as shown in Figure 1b. Although 
the main purpose of these coastal wave buoys is to record ocean wave information, 30-cm depth 
water temperatures are also measured at several stations in the coastal region off the Korean 
Peninsula. Temperature measurements from these coastal wave buoys are excluded from the GTS 
network and diverse SST composite products in the global ocean. Thus, temperature data from these 
wave buoys can be essential independent data that is applicable for validating the accuracy of each 
SST database. 

During the study period, water temperatures were measured at 35 coastal wave buoys located 
around the Korean Peninsula (Table 2), with 10 of these located in the EJS, 15 buoys in the southern 
region, and 10 buoys in the Yellow Sea, as shown in Figure 1b. The precision and temporal resolution 
of their water temperature measurements were 0.1 K and 1 hour, respectively. The coastal wave 
buoys were located in the shallow regions over depths ranging from 16.5–51.0 m and at distances 
from the coast ranging from 0.14–13.36 km. Their water temperature data for the period of 2014–2018 
were quality-controlled according to the appropriate quality control procedure [70], which led to 
about 5.8% of the data being removed, on the basis that it was probably erroneous. 

Table 2. Information on coastal wave buoys of the Korean Meteorological Administration. 

Region Symbol 
Station 
Name 

Depth 
(m) 

Distance from 
 the Coast (km) 

East/Japan Sea 

E1 Toseong 27 2.97 
E2 Yeongok 29 3.00 
E3 Samcheok 19 1.11 
E4 Jukbyeon 29 0.55 
E5 Hupo 29.5 1.20 
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E6 Guryongpo 31 1.10 
E7 Hyeolam 21 0.43 
E8 Guam 34 1.05 
E9 Ulleungup 26 0.30 
E10 Dokdo 30 1.59 

Southern region 

S1 Chujado 32 0.22 
S2 Nohwado 18.6 3.61 
S3 Cheongsando 40 1.77 
S4 Goheung 19 1.50 
S5 Geumodo 30 1.12 
S6 Dumido 30 2.14 
S7 Hansando 50 3.08 
S8 Haegeumgang 45 0.18 
S9 Namhang 20 2.25 

S10 Bukhang 40 0.75 
S11 Jangan 28 2.20 
S12 Gapado 19 0.28 
S13 Jungmun 29 1.49 
S14 Jejuhang 37 1.35 
S15 Udo 30 0.51 

Yellow Sea 

Y1 Jawoldo 30 4.68 

Y2 Ijakdo 31 3.66 

Y3 Pungdo 51 0.14 

Y4 Sinjindo 16.5 4.48 

Y5 Sangsido 19 1.39 

Y6 Seochun 21 9.65 

Y7 Gunsan 34 3.06 

Y8 Yeonggwang 16.5 13.36 

Y9 Okdo 19 1.89 

Y10 Jindo 26 1.20 

2.3. Error Analysis Methodology 

To compare the SST analysis databases with in-situ temperatures, matchup databases between 
the SST and in-situ temperatures were produced by considering the nearest positions. In comparison 
with in-situ measurements, a series of matchup processes was performed while maintaining the 
resolution of each SST analysis. Due to a change of grid sizes of the CMC product, as described in 
Section 2.1.2, the nearest grid point of 0.1° grid into 0.2° grid was selected before the matchup 
procedure. First, the matchup data between buoy temperatures and satellite SSTs were produced and 
then an average over different time periods (daytime, nighttime, 24-hour averages) were taken, by 
considering the SST types such as a foundation SST or bulk SST.  

Since the buoy temperatures were taken hourly, in-situ measurements were converted to daily-
averaged temperatures to have the same temporal interval of temperatures with that of the SST 
analysis database. To investigate the effect of diurnal variation of in-situ temperature, daily-averaged 
temperatures using daytime only, nighttime only, and all data were calculated.  

To quantify the accuracy of the SST analyses, statistical parameters, such as bias, RMSE, and 
combined error (Ecom), which was suggested as a concept of error radius, considering the importance 
of RMSE and bias to be identical [71], were used with these being, respectively, defined as follows: 
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=  1 ( − ), (1)

=  1 ( − ) , (2)

= + , (3)

where  represents the SST analysis,  stands for the buoy temperature, and ̅  and  represent 
the average values of the SST analysis and buoy temperature, respectively. N represents the number 
of the data [70]. 

For inter-comparison between SST analyses, these datasets with different resolutions need to be 
re-gridded to an identical grid [42,43,45]. Therefore, all SST products were re-gridded into 0.25° grids, 
using the nearest neighborhood method, by keeping the original values, to use comparable grids in 
the SST database inter-comparisons. 

3. Results 

3.1. Spatial Distribution of SST Analyses 

Figure 2 shows the examples of the spatial distribution of SST analysis data in the marginal seas 
of the Northwest Pacific on 15 April 2016. Overall, the SSTs of the seven databases showed a similar 
meandering path of the Kuroshio Current in the Northwest Pacific and spatial distributions of the 
subpolar front along 40°N in the EJS, as indicated in Figure 2a–c and 2g–j [51,72]. On the contrary, 
the enlarged portions of the region around the Kuroshio Current, as shown in Figure 2d–f,k–n, 
revealed relatively small-scale features, depending on the grid resolutions of the SST databases. As 
shown in Figure 2h and 2l, when compared to other SST analyses, the MURSST with its 1-km spatial 
resolution presented not only large-scale structures of the oceanic phenomena but also small-scale 
features. The SST analysis of REMSS, with its 9 km spatial resolution, also detected relatively small-
scale features (Figure 2g,k).  

By contrast, most SST analysis databases such as the CMC analysis, OISST, and MGDSST—with 
their relatively low spatial resolutions of more than 0.2°—failed to show distinctive small-scale 
features (Figure 2e, 2f, and 2m). It was conspicuous in the enlarged plots that the OSTIA (Figure 2d) 
and the Blended SST database (Figure 2n) expressed large-scale features without small-scale noises 
[4]. 

3.2.1. Accuracy Assessments of SST Databases 

To determine the accuracy of SST analysis data in coastal regions, in-situ temperatures from the 
coastal wave buoy of the KMA were compared with each database (Table 3). The SST analyses 
showed positive bias errors of 0.26 K or more and RMSEs from 1.26 to 1.72 K in the daytime (from 6 
am to 6 pm KST), 1.29 to 1.76 K in the nighttime (from 6 pm to 6 am KST), and 1.27 to 1.74 K for daily-
averaged temperatures, using the hourly temperature measurements. All products showed distinct 
positive biases, which were about 0.06 K higher during the night than during the day. This implied 
that in-situ temperatures, which were measured at a depth of approximately 30 cm, were slightly 
affected by diurnal variation. Therefore, in order to produce foundation SSTs using in-situ 
measurements, daily-average SST should be combined using only the nighttime data. Since OSTIA, 
REMSS analysis, MURSST, and MGDSST are foundation SSTs with the diurnal variation removed 
[4,39,63,65], the comparisons were performed for in-situ temperatures averaged over nighttime hours 
from 6 pm to 6 am. Except for these three products, all validation procedures for the CMS, the OISST, 
and the Blended SST were established against daily-averaged in-situ temperatures obtained for a day 
corresponding to the date of the satellite data (Figure 3).  
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Figure 2. Spatial distribution of sea surface temperatures—(a) OSTIA; (b) CMC analysis; (c) OISST; 
(d–f) enlarged SST data for the red box in (a–c); (g) REMSS analysis; (h) MURSST; (i) MGDSST; (j) 
Blended SST; and (k–n) enlarged SST data for the red box in (g–j).  

3.2. Comparison between SST Analysis Data and In-Situ Measurements 

As shown in Figure 3, it is worth noting that all SST analyses exhibited positive biases of 0.31 K 
or more. The Blended SST database presented the lowest bias of 0.31 K, while the REMSS analysis 
showed the highest bias of 0.77 K, revealing considerable differences between the databases (Figure 
3d and 3g). 
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Table 3. Bias errors and root-mean-square errors (RMSEs) in SST analyses for in-situ measurements 
in the daytime, nighttime, and all day. 

SST 
Analysis 

Number of 
Matchups 

Bias Error (K) RMSE (K) 

Day Night Total Day Night Total 

OSTIA 58617 0.2556 0.3165 0.2859 1.2579 1.2900 1.2674 

CMC 58584 0.4157 0.4765 0.4461 1.3476 1.3881 1.3616 

OISST 58379 0.4677 0.5289 0.4985 1.5843 1.6163 1.5950 

REMSS 58617 0.7077 0.7683 0.7381 1.7213 1.7582 1.7352 

MURSST 58617 0.4674 0.5278 0.4977 1.4718 1.5069 1.4838 

MGDSST 58617 0.4360 0.4966 0.4663 1.4049 1.4402 1.4168 

Blended SST 58453 0.2839 0.3449 0.3143 1.2620 1.2959 1.2724 

 

 
Figure 3. Comparison between sea surface temperature (SST) analyses and in-situ temperatures from 
coastal wave buoys—(a) OSTIA; (b) CMC analysis; (c) OISST; (d) REMSS analysis; (e) MURSST; (f) 
MGDSST; and (g) Blended SST. The color represents the percentage of the data to the total number of 
matchup points in a bin of 0.5 × 0.5 K. The number of matchups (N), bias errors, and root-mean-
squared errors (RMSEs) are given in each plot. 

3.2.2. Characteristics of Spatial Distribution of SST Errors  

In order to understand the characteristics of the spatial distribution of errors in the coastal region 
of the Korean Peninsula, the RMSEs and bias errors of SST analysis at each buoy station are shown 
in Figure 4 and Figure 5, respectively. As shown in Figure 4, the bias error also showed lower 
amplitudes in the OSTIA and Blended SST database, compared to other products across the entire 
region, whereas the REMSS analysis showed a distinct positive bias (0.31–2.27 K) in the southern 
region. Comparisons of SST data with in-situ temperatures yielded bias errors from –0.41 (Y1) to 1.30 
K (S2) for the OSTIA data, –0.38 (Y1) to 1.74 K (S10) for the CMC data, –0.33 (Y3) to 2.20 K (S2) for the 
OISST data, –0.14 (Y5) to 2.27 K (S2) for the REMSS data, –0.02 (Y5) to 1.87 K (S2) for the MURSST 
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data, –0.24 (Y5) to 1.78 K (S2) for the MGDSST data, and –0.31 (Y1) to 1.34 K (S2) for the Blended SST 
data, as shown in Figure 4. 

 

Figure 4. Spatial distribution of the bias errors of sea surface temperature (SST) analysis at the location 
of the coastal wave buoys—(a) OSTIA; (b) CMC analysis; (c) OISST; (d) REMSS analysis; (e) MURSST; 
(f) MGDSST; and (g) Blended SST. 

Consistent with the previous results, the OSTIA, CMC analysis, and the Blended analysis had 
relatively low RMSEs (Figure 5a,b,g), which contrasted with the REMSS analysis with its 
comparatively higher RMSEs ranging from 0.80 to 3.08 K than other analyses (Figure 5d). The RMSE 
at each buoy station were relatively small, ranging from 0.69 to 1.71 K in the open ocean of the EJS. 
These small errors were detected in the offshore region, far from the eastern coast of Korea, while the 
higher values were found in the southwestern region. In the EJS, RMSEs less than 2 K were produced 
in both the coastal region and the open ocean. In contrast, the RMSEs of the SST analysis in the 
southern region and the Yellow Sea had large regional deviations amounting to 2.39 K. In the 
southern region, the RMSEs were mainly high in the vicinity of buoys S2 and S3, while in the Yellow 
Sea, the RMSEs were high at buoys Y2 and Y4, and especially at buoy Y10. 

Considering the RMSE of OSTIA for the in-situ temperature at each coastal wave buoy station, 
the minimum RMSE of 0.71 K was shown by buoy E9, whereas the maximum RMSE of 2.46 K was 
shown by Y10 (Figure 5a). For the CMC analysis, the minimum RMSE was 0.74 K at Y3, whereas the 
maximum was 2.54 K at Y10 (Figure 5b). The RMSE of OISST ranged from 0.89 (S13) to 2.87 K (S2) 
(Figure 5c). The minimum and maximum RMSE values of REMSS analysis were 0.80 K (E7) and 3.08 
K (Y10), respectively (Figure 5d). The RMSE of MURSST also showed a minimum of 0.79 K (E7) and 
a maximum of 3.00 K (Y10) (Figure 5e). For MGDSST, the minimum RMSE of 0.82 K was seen at E9, 
whereas the maximum of 2.60 K was seen at Y10 (Figure 5f). The minimum and maximum RMSE 
values of the Blended SST analysis were 0.67 K (E9) and 2.54 K (Y10), respectively (Figure 5g). 

Since the seas around each side of the Korean Peninsula had very different bathymetry and 
shorelines, the relative accuracies of the data for the different seas—the EJS, the Yellow Sea, and the 
southern part of the Korean Peninsula—were evaluated, and the results were displayed in Figure 6, 
following the RMS-bias map style suggested by Jang et al. [71]. In the EJS, all analyses had low bias 
errors and RMSEs less than 0.43 K and 1.34 K, respectively, whereas in the southern region, the bias 
errors and RMSEs were comparatively high ranging from 0.56 to 1.26 K and 1.39 to 2.10 K, 
respectively. In the Yellow Sea, all analyses had bias errors and the RMSEs ranged from 0.09 to 0.44 
K and 1.25 to 1.58 K, respectively. In Figure 6, it could be seen that RMSEs increased as bias errors 
increased in all regions. The spatial distribution of the RMSE-bias plot of the Yellow Sea was similar 
to that of other regions, but an offset occurred in the RMSE direction. In the Yellow Sea, RMSE values 
were higher, although the mean bias values were similar to those in the EJS. This indicated that high 
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RMSE values were due to the high variability of SST errors in the Yellow Sea, which were distinct 
from the EJS and the Southern region. 

 

Figure 5. Spatial distribution of root-mean-squared error (RMSE) of sea surface temperature (SST) 
analyses at the locations of the coastal wave buoys—(a) OSTIA; (b) CMC analysis; (c) OISST; (d) 
REMSS analysis; (e) MURSST; (f) MGDSST; and (g) Blended SST. 

When the combined errors (Ecom) were estimated using the method proposed by Jang et al. [71], 
in the EJS, most of the values were small compared to other regions, whereas in the southern region, 
they were larger than other regions. Regardless of the regions, the SST tended to be most accurately 
estimated in the OSTIA and the Blended SST. In the EJS, the MGDSST showed the relatively high 
accuracy, exhibiting a combined error of about 1.23 K. In the southern region and the Yellow Sea, the 
CMC analysis showed a higher accuracy than other SST analyses except for the OSTIA and the 
Blended SST, with combined error values of 1.61 K and 1.35 K, respectively. The combined errors of 
the REMSS product over the whole regions were quite high—1.37 K for the EJS, 1.63 K for the Yellow 
Sea, and 2.45 K for the southern region. 

Although the validation was performed based on independent data—by excluding the GTS 
buoy data that was used in generating the SST analysis database—similar temperatures might be 
used in this study, as there are many coastal wave buoys in quite close proximity to the GTS buoy 
stations. We therefore assessed the accuracy of the SST database again, by removing the buoys located 
within 30 km of the corresponding GTS buoys. This led to a tendency in the combined errors to 
increase by 0.1–0.3 K, while the accuracy ranking of the SST databases showed little change. 

Overall feature of the SST errors suggested potential influences from both bathymetry and 
coastline complexity, especially where there were many small islands, such as along the southern and 
western coasts of the Korean Peninsula. As the spatial resolution of the various SST analyses varied 
from 1 to 25 km, it was also conceivable that the SST errors varied in relation to the distance between 
each buoy and the center of grid of SST analysis corresponding matchup point. Moreover, in the 
coastal region, the SST analysis errors were likely to be intensified, as the spatial scales of SST 
variability were relatively smaller, and temporal and spatial variabilities of SSTs were much greater 
than those in the open ocean [23,26,73]. Figure 7 indicates the SST analysis errors, plotted with respect 
to region, as a function of the distance between position of coastal buoys and center of grid of SST 
analysis data. Here it can be seen that, although the spatial resolution REMSS was about 9 km, the 
distance from the buoy was more than 10 km because SST was not estimated in the sea near the coast. 
The distances for the CMC, OISST, and MGDSST with resolutions of 20 km or more from the buoy 
stations showed ranges of 10–15 km. Overall, as the distance between the SST analysis and their 
respective buoys increased, the RMSE also tended to increase. This tendency was evident in the 
southern regions and the Yellow Sea, but not in the EJS, as shown with the blue symbols, regardless 
of the source of the SST database. 
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Figure 6. Scatter plot of root-mean-squared error (RMSE) and bias in sea surface temperature (SST) 
analyses in the East/Japan Sea, southern region of the Korean Peninsula, Yellow Sea, and for the 
region as a whole. Dashed contours represent the constant value of the distances from the zero bias 
and zero RMSE. 

3.2.3. Comparison of Wavelet Coherence 

In addition to the spatial distributions of the SST errors, it was also considered important to 
review the temporal characteristics of the SST analysis data errors, to fully understand the properties 
of SST products—and this was done by comparing them with in-situ temperatures (Figure 8). In order 
to compare temporal variability in the differences between the SST analyses and in-situ temperatures, 
the wavelet coherence between them was calculated at three representative marine stations (E4, S2, 
and Y10). These stations were selected as they had relatively large RMSEs and were located on each 
side of the study area (Figure 8). 

Wavelet coherence between OSTIA SST and in-situ temperatures at the E4 station of the EJS was 
seen to have a relatively high coherence of greater than 0.8 at longer periods of over 64 days, during 
the entire study period, as well as over much shorter periods centered at 16 days, especially in 
summer (Figure 8a). This pattern was found to be repeated by other products, except for the OISST 
and MGDSST product, which showed no overall seasonal variation in coherence with only nominal 
values even in summer, at periods of less than 64 days (Figure 8c and 8f). As shown in the averaged 
coherence values with respect to the period in Figure 8h, all SST products kept their coherence high 
(> 0.8) at longer periods of more than 180 days. This high coherence of over 0.8 for long periods (> 
180 days) indicated that both in-situ measurements and SST analyses dominantly reflected the annual 
variations of SST at a range of more than 10 K in the coastal regions around the Korean Peninsula. 
For shorter periods (<64 days), however, the coherences tended to gradually decrease to about 0.3 
without statistical significance. At this high-frequency range from 64 days to 4 days, the REMSS data 
produced relatively high coherence, while the MGDSST resulted in the lowest similarity with in-situ 
SSTs (Figure 8h). 

For the station S2, in the southern coast region, the coherence diagrams of all SST products were 
quite similar (Figure 8i–o). This similarity was confirmed by the low level of scattering of the 
differences between the products with a narrow range of coherence values, as shown in Figure 8p. In 
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contrast to this, relatively high temporal coherence variability was seen for Y10 in the Yellow Sea, 
where the OSTIA and the Blended SST had a relatively high coherence of greater than 0.8, in 
comparison to other SST analyses products by occupying extensive areas in the coherence diagram 
(Figure 8q–w). The detailed variability of coherence was different at the three buoy stations, but 
overall, it was high over the long-term period of >180 days and low over the short-term period of <64 
days. This demonstrated that SST analyses simulated long-term fluctuations, such as annual 
variation, similar to in-situ measurements but did not properly simulate short-term period 
fluctuations. 

 
Figure 7. Scatter plot of root-mean-squared error (RMSE) of sea surface temperature analysis as a 
function of distance between the center of grid cell of SST analyses and the position of coastal wave 
buoys in the East/Japan Sea, southern region of the Korean Peninsula, Yellow Sea, and for the region 
as a whole. 

3.3. Inter-comparison of the SST Products 

3.3.1. Errors of Differences between the SST Products 

For inter-comparison between the SST products, spatial averaged RMS difference and bias 
between each SST analysis were estimated for the entire marginal sea region of the Northwest Pacific 
(25–55°N, 115–145°E), as shown in Figure 9. The bias and RMS errors in each grid in Figure 9 were 
estimated using temperature differences between each SST product listed at the top of the plot and 
the other SST product indicated on the left side (column minus row). For example, the error of –0.08 
K in the 4th column and the 2nd row in Figure 9a indicated the bias error of REMSS SST minus CMC 
SST. In contrast to normal RMSE and bias errors, these errors between the SST products did not 
indicate the degree of each SST product’s accuracy, but rather identified the level of similarity 
between the arbitrary dataset pairings with no involvement of in-situ temperatures.  

The SST differences (OSTIA SST minus other SST analysis), along the first column of Figure 9a, 
had biases ranging from –0.07 to 0.05 K for the other analyses. The CMC analysis differences from 
other products, as indicated in the second column, showed positive biases in the range of –0.01 to 
0.11 K, while the OISST differences showed negative biases from –0.11 to –0.02 K. The REMSS and 
Blended SST also showed negative biases for almost all analyses, with the exception of the OISST. 
The MURSST and MGDSST showed positive biases of more than 0.07 K in the case of the differences 
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from OSTIA, OISST, REMSS analysis, and Blended SST data in the Northwest Pacific Ocean. The 
MURSST, MGDSST, and OISST were consistently biased high or low, relative to the other products. 

 
Figure 8. Wavelet coherence between in-situ temperature and (a) OSTIA, (b) CMC analysis, (c) OISST, 
(d) REMSS analysis, (e) MURSST, (f) MGDSST, and (g) Blended SST. (h) Global coherence at the 
location of the E4 buoy; (i–p) and (q–x) are the same as (a–h), but at the locations of S2 and Y10, 
respectively. 
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Figure 9. (a) Bias errors and (b) root-mean-squared errors of sea surface temperature (SST) analysis 
(column) estimated using other SST analysis (row) as reference. The errors were obtained for SST 
differences by subtracting one SST product on the left side from the other SST product listed at the 
top. 

As can be seen in Figure 9b, the most similar SST variability with the lowest RMS differences of 
about 0.24 K was found between the OSTIA and Blended SST data products, while the lowest 
similarity of SST variability with the highest RMS difference of 0.81 K was detected between the 
OISST and the MGDSST products. When the other analyses were used as reference SSTs, the CMC 
analysis showed the smallest RMS difference value and the OISST showed the largest, overall, as 
shown in the 2nd and 3rd columns, respectively (Figure 9b). For the other SST analyses, the OSTIA 
product showed RMS differences ranging from 0.24 K with the Blended SST analysis to 0.70 K with 
the OISST data. The CMC analysis also showed the smallest RMS difference (0.40 K) with the OSTIA 
SST data and the largest RMS difference (0.65 K) with the OISST data. The RMS difference of the 
OISST presented a minimum value of 0.61 K for the REMSS analysis and a maximum value of 0.81 K 
for the MGDSST data. The REMSS analysis showed the lowest difference for CMC analysis (0.47 K) 
and the most prominent difference for the MGDSST (0.63 K). The maximum and minimum RMS 
differences for the MURSST were 0.57 K (REMSS analysis) and 0.78 K (OISST), respectively, and those 
for the MGDSST data were 0.56 K (CMC analysis) and 0.81 K (OISST), respectively. Blended SST 
presented the smallest RMS difference for OSTIA (0.24 K) and the largest RMS difference for OISST 
(0.71 K). 

3.3.2. Spatial Distribution of Variability between the SST Products 

The spatial distribution of the bias that occurred between the SST analyses are depicted in Figure 
10. CMC, MURSST, and MGDSST SSTs showed positive bias in most regions, when compared to the 
OSTIA SSTs (Figure 10a, 10d, and 10e). The OISST against OSTIA SST comparison, OISST minus 
OSTIA SST, had positive biases in the western coastal region of Korea and in the northern region of 
the Yellow Sea, however, most other regions—the southern regions of EJS, the East China Sea (ECS), 
and the eastern coastal region of Japan, indicated negative biases (Figure 10b). The REMSS analysis 
also showed a weak negative bias of –0.2 to –0.1 K in the Northwest Pacific, and a positive bias in the 
Yellow Sea (<0.6 K), as shown in Figure 10c. The Blended SST against OSTIA showed near-zero biases 
in most regions of the Northwest Pacific (Figure 10f). 

When CMC data were used as a reference (the 2nd row of Figure 10), most SST analyses showed 
distinctively negative biases, with the exception of some coastal regions around the Korean Peninsula 
that showed positive biases (Figure 10g–10k).The biases of the REMSS analysis, MURSST, MGDSST, 
and the Blended SST for the OISST presented similar distributions with positive values in the 
southern region of EJS, the ECS, and the eastern coastal region of Japan, and negative values in the 
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western coastal region of Korea and the northern region of the Yellow Sea (Figure 10l–10o). The 
MURSST, MGDSST, and the Blended SST had weak positive biases in the open ocean of the 
Northwest Pacific, compared to the REMSS analysis (Figure 10p–10r). On the other hand, in the 
Yellow Sea, MURSST showed positive bias, and MGDSST and the Blended SST showed negative 
biases. In the EJS, the MURSST and the Blended SST showed positive and negative biases, 
respectively. As shown in Figure 10s, the bias of MGDSST for the MURSST as a reference was weakly 
negative in the EJS and the Yellow Sea, and weakly positive in the Northwest Pacific. Blended SST 
for both MURSST and MGDSST had negative biases in most regions of the Northwest Pacific (Figure 
10t and 10u). 

The Investigation into the coastal regions found that high amplitude of biases applied along the 
western part of the Korean Peninsula, as illustrated by most of the plots in Figure 10. The prime 
symbols in Figure 10 represent enlargements of the unprimed symbols in each plot from (a) to (k)—
for instance, (a’) is from (a) in Figure 10. The enlargements of these coastal regions revealed a peculiar 
bias (> 0.4 K), as shown in the comparisons of OSTIA and CMC SSTs, with other products of the 
OISST, the REMSS, the MURSST, the MGDSST, and the Blended SST, along the southwest and south 
coasts of the peninsula (Figure 10a’–10k’). These features were more pronounced in comparison with 
CMC analysis.  

Figure 11 shows the spatial distribution of RMS difference between SST analyses for each grid 
in the Northwest Pacific for the period of 2014–2018. When using the OSTIA SSTs as a reference, as 
shown in the first row of Figure 11, the Blended SST analysis showed the small RMS difference with 
the OSTIA SSTs in most of the marginal seas (<0.3 K), especially the smallest RMS difference in the 
Kuroshio region of the Northwest Pacific below 0.2 K (Figure 11f). On the contrary, the OISST showed 
relatively high RMS difference amounting to 1.2 K in the northern region of the EJS (>0.8 K), in the 
Bohai Sea, and along the western coastal region of the Yellow Sea (~1.2 K), as seen in Figure 11b. This 
result was consistent with relatively high RMS difference values of OISST, as exhibited in the 3rd 
column of Figure 9b. The SSTs for REMSS, MURSST, and MGDSST (Figure 11c–11e) presented 
relatively higher RMS difference in comparison with OSTIA SSTs, after the CMC analysis (Figure 
11a), although this RMS difference was lower than OISST, as seen in Figure 11b. It is noted that the 
REMSS with the highest variability at the southwestern coast yielded relatively small variability in 
the offshore regions of the Northwest Pacific, as shown in Figure 11c, h, l, and p–r. Comparison 
between Figure 11b and Figure 11g illustrates that the variability of the OISST was similar to that of 
the OSTIA for the CMC analysis. In addition, the variability for the REMSS analysis, MURSST, and 
MGDSST (Figure 11h–11j), which were calculated using CMC analysis as the reference, were also 
similar to those calculated by reference to OSTIA (Figure 11c–11e). However, the variability of the 
Blended SST with CMC analysis as a reference (Figure 11k) was amplified than that with OSTIA as a 
reference (Figure 11f).  

The RMS difference for the REMSS analysis, MURSST, MGDSST, and the Blended SST, 
estimated using OISST as reference, were greater than 1.0 K in the EJS and the Yellow Sea (Figure 
11l–11o). This implied that the OISST embodied a larger variability from the other SST analyses. RMS 
difference of the MURSST, the MGDSST, and the Blended SST against the REMSS analysis (Figure 
11p–11r), the MGDSST and the Blended SST against the MURSST analysis (Figure 11s and 11t), and 
the Blended SST against the MGDSST (Figure 11u) were relatively moderate in comparison to the 
OISST case. 



Remote Sens. 2020, 12, 1592 18 of 27 

 

 

Figure 10. Spatial distribution of bias of (a) CMC analysis, (b) OISST, (c) REMSS analysis, (d) 
MURSST, (e) MGDSST, and (f) Blended SST for the OSTIA; (g) OISST, (h) REMSS analysis, (i) 
MURSST, (j) MGDSST, and (k) Blended SST for the CMC analysis; (l) REMSS analysis, (m) MURSST, 
(n) MGDSST, and (o) Blended SST for the OISST; (p) MURSST, (q) MGDSST, and (r) Blended SST for 
the REMSS analysis; (s) MGDSST and (t) Blended SST for the MURSST; and (u) Blended SST for the 
MGDSST. (a’–k’) are enlarged from (a–k), respectively. 

Most of the results showed high variability in the coastal regions and low variability off-shore. 
The coastal region enlargements (Figure 11a’–11k’) demonstrated remarkably high RMS difference, 
exceeding 1.2 K, especially in the southwestern coastal region of the Korean Peninsula. This implied 
that most SST products tended to be amplified with the viewpoint of variability, especially at specific 
coastal locations off the western coast of the Korean Peninsula. As illustrated in Figure 11d’ and 11i’, 
higher variability of the SST database (>1.2 K) became quite evident at specific coastal regions, such 
as the southwestern corner, the western corner of the central area, and the North Korean coastal 
region. These regions are also associated with tidal mixing zones from strong tidal currents and 
shallow bathymetry, or with frequent sea fog [74,75]. More details about tidal current-related 
influences on SST differences are dealt with in the final part of Discussion. 
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Figure 11. Spatial distribution of the root-mean-squared (RMS) differences of (a) CMC analysis, (b) 
OISST, (c) REMSS analysis, (d) MURSST, (e) MGDSST, and (f) Blended SST for the OSTIA; (g) OISST, 
(h) REMSS analysis, (i) MURSST, (j) MGDSST, and (k) Blended SST for the CMC analysis; (l) REMSS 
analysis, (m) MURSST, (n) MGDSST, and (o) Blended SST for the OISST; (p) MURSST, (q) MGDSST, 
and (r) Blended SST for the REMSS analysis; (s) MGDSST and (t) Blended SST for the MURSST; (u) 
Blended SST for the MGDSST. (a’–k’) are enlarged from (a–k), respectively. 

4. Discussion 

4.1. Absence of Microwave SST at Coastal Region 

Comparative studies between global SST analysis products and in-situ SST databases in the 
coastal regions are relatively insufficient, even when considering that some studies have shown 
amplification of SST errors at high-latitude sea-ice transition zones and coasts [42]. In global oceans, 
the accuracies of the SST analysis have been reported to be within 1 K, through long-term validation 
of the SST analysis, using comparison with in-situ measurements and inter-comparison [40–45]. It 
has been reported that such differences between daily SST analyses and the daily SSTs from buoys 
can be caused by several factors, including differences in thermometer types, observation depths, or 
the specific schemes for estimation of the daily SST [24,42]. As well as these factors, the verification 
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results obtained also revealed noticeable deviations with high RMSEs, amounting to 2 K, for the 
coastal regions along the Korean Peninsula. 

Except for the OISST data, all SST analyses used herein included microwave SSTs as input data 
[4,31,35,36,39,66]. Microwave SSTs cannot be used within 50 km of the coast due to land 
contamination, and exhibit a bias for up to 150 km seawards from the coast [28,29]. Figure 12a shows 
an example of the results achieved in the absence of AMSR SST observations in the coastal regions 
around the Korean Peninsula on 25 April 2016. Even the probability of AMSR observations at each 
point using all 2016 data, showed zero probability for the coastal areas (Figure 12b), indicating that 
it is important to have either IR SSTs or in-situ temperature measurements to produce SST analyses. 
However, it is difficult to obtain IR-based SSTs in the presence of clouds or sea fog and in coastal 
regions (e.g., [76–78]). In such situations, SST analysis data in the coastal region can be affected by 
microwave SSTs far from the coastline, within a space decorrelation scale in the optimum 
interpolation procedure [4,75]. Under severe cloud conditions, pixels near the shore tend to be 
alternatively replaced by background SST values or by climatology SSTs. 

 

Figure 12. Spatial distribution of (a) sea surface temperature (SST) from the Advanced Microwave 
Scanning Radiometer 2 (AMSR2) on 25 April 2016 and (b) probability for AMSR2 observation for 
2016. 

4.2. Effect of Tidal Mixing and Upwelling 

As shown in Figure 13, monthly variation of RMSEs of SST analyses for the in-situ measurements 
in each coastal buoy presented prominent seasonal characteristics. The most remarkable feature was 
the amplification of RMSEs (>3 K) of all SST analyses in the summer (July–August), at the Y10, S2, 
and S3 buoy stations, which were located in the southwestern coastal region of the Korean peninsula. 
In the western coastal regions of the Korean Peninsula in the Yellow Sea, there are high tides and 
strong tidal currents amounting to 5 m s−1 in the shallow waters [53,79]. SST gradients for the tidal 
front regions in the Yellow Sea and the southwestern region were relatively high at about 0.25 K km−1, 
due to strong tidal currents and mixing, especially in summer [53,54,74,75]. In summer, SSTs 
increased to about 28°C in the offshore region, while in contrast to this, SSTs were greatly reduced to 
about 10°C in the onshore regions that were clearly separated from the offshore SSTs, due to strong 
tidal mixing and fronts with a small tidal front index (log10(H/Umax3), H is the water depth, and Umax is 
the maximum velocity) of less than 2 [74].  

Another monthly variation feature was the increase of the RMSEs of SST analyses in summer at 
the buoys located in the EJS (e.g., E6 buoy), although the amplitudes were smaller than those in the 
Yellow Sea (Figure 13). Cold water upwelling often occurs at particular east coast regions of the 
Korean Peninsula during summer, and this is related to the Ekman transport to the offshore region 
rather than tidal mixing [80,81]. Similarly, cooler upwelled water increased the IR observation rates, 
eventually leading to SST bias toward warming. Even though the SST was observed, it showed a 
negative bias compared to the surrounding region. Therefore, these data were likely to be rejected, 
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as it would be identified as representing either cloud-contaminated pixels or abnormal values, during 
the quality control procedure. Thus, study was needed to develop a quality control procedure for 
such extreme events. 

 
Figure 13. Monthly variation of root-mean-squared errors (RMSE) of (a) OSTIA, (b) CMC analysis, (c) 
OISST, (d) REMSS analysis, (e) MURSST, (f) MGDSST, and (g) Blended SST for the in-situ 
measurements of each coastal wave buoy.  

4.3. Effect of Front 

As shown in Figure 14a, frontal mixing makes surface water cold and produces unclear 
atmospheric condition with fog or clouds, providing poor conditions for SST estimation [75,82,83]. 
Such conditions increase the possibility of the use of higher microwave SSTs instead of IR SSTs in the 
OI procedure for each SST analysis product. This would give rise to positive bias errors in the tidal 
frontal region in summer, as shown earlier. Figure 14b to 14g show the relationships between SST 
gradient, as a measure of SST front magnitude, and the RMS differences of the SST differences 
between OSTIA with relatively smaller RMS and other SST products (CMC analysis, OISST, REMSS 
analysis, MURSST, MGDSST, and Blended SST) in the Northwest Pacific of Figure 14a. All plots 
showed that the larger the SST gradient, the greater the SST product error, as shown in Figure 14b–
14g. This phenomenon might be encouraged by the differences in the spatial grid size of each SST 
product and from spatial resolutions of the SST images in the frontal regions. 
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Figure 14. (a) Spatial distribution of sea surface temperature (SST) gradient using the OSTIA, and 
root-mean-squared errors for the (b) CMC analysis, (c) OISST, (d) REMSS analysis, (e) MURSST, (f) 
MGDSST, and (g) Blended SST for the OSTIA, as functions of the SST gradient. The color represents 
the percentage of the data to the total number in each bin. 

4.4. Small Spatial Scale of Coastal Oceanic Features 

When manifested in the coastal region, ocean-scale phenomena are not only small in spatial scale 
and structure but are also short in temporal persistence. Therefore, it might be hard for satellite-
observed SST data with their spatial resolutions of several kilometers to capture such events [24,84]. 
Several efforts have been made to implement high-resolution SST databases using VIIRS SST data 
with its resolution of 750 m as input data [56,63,85], however, it is still necessary to include more 
high-resolution SST data in both time and space to describe SST phenomena of the coast. To improve 
the spatial resolution of SST analyses, high-resolution satellite data such as the Landsat-8 SST [86,87] 
can be utilized in the coastal regions. 

In addition, efforts are needed to improve the quality and spatio-temporal resolution of satellite 
SST in the coastal region [87–89]. This is very important for understanding the physical dynamics of 
the mesoscale and sub-mesoscale SST features that dominate the coastal regions. Additionally, to 
contribute to improving SST temporal variation of SST analysis, it is necessary to obtain additional 
in-situ temperature data observed from buoys that are proliferated in the coastal region. Considering 
that satellite SST observation is difficult, it is suggested that the capacity to observe SST data using 
more buoy observations needs to be strengthened in coastal regions. 

5. Summary and Conclusions 

It is essential to identify the advantages and disadvantages of each SST analysis to select the SST 
analysis optimized for application to the seas around the Korean Peninsula. In this regard, we 
evaluated the accuracy of, and performed inter-comparison between, seven L4 global, gap-free, 
gridded, and daily SST products available for the seas around the Korean Peninsula, for the period 
of 2014–2018. 

To investigate how well the global SST databases expressed coastal SSTs along the Korean 
Peninsula and how applicable they would be for diverse purposes in coastal regions, the accuracy 
assessment procedure of the SST analyses was performed by comparing their data with in-situ 
temperatures observed by 35 coastal wave buoys. Our results indicated that SST analyses had a 
positive bias errors ranging from 0.31 K to 0.77 K and RMSEs ranging from 1.27 K to 1.76 K, in the 
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coastal region of the Korean Peninsula. In all SST analyses, SST errors for in-situ measurements 
showed similar spatial distributions, except in the dynamic regions with strong tidal currents. Coastal 
environmental characteristics, including tidal currents and bathymetry, resulted in higher SST errors 
being detected for the western coast of Korean Peninsula than for the eastern coast. 

In addition to the contribution of spatial differences to the SST data errors, temporal scales and 
similarity between the in-situ temperatures and satellite-based SST database were examined using 
comparison of the wavelet coherence. This coherence was high (>0.8) for long periods (>180 days) 
and much less for short periods (<30 days). Such low temporal coherence and decorrelation features 
were often apparent over time scales of <1 month, in all SST analyses. Therefore, to apply the global 
SST database to coastal regions, in short-term conditions, the temporal and spatial scales of the coastal 
phenomena at specific regions should be investigated. 

Global SST databases have been produced by using satellite-based SSTs from all available 
satellite SST and in-situ measurements. However, in-situ measurements from the coastal buoys of 
each country are not always included in the OI procedures, partly because of delays associated with 
data distribution, and partly as the measurements are not in real-time. This study revealed the SST 
differences between onshore and offshore regions and addressed the importance of using as many 
coastal buoy measurements as possible in the production of the SST analysis database. This is 
particularly important for the coastal phenomena with small spatial scales, which exist over short 
time-scales in the coastal regions. 
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