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Abstract: Dense time-series with coarse spatial resolution (DTCS) and sparse time-series with fine
spatial resolution (STFS) data often provide complementary information. To make full use of this
complementarity, this paper presents a novel spatiotemporal fusion model, the spatial time-series
geostatistical deconvolution/fusion model (STGDFM), to generate synthesized dense time-series
with fine spatial resolution (DTFS) data. Attributes from the DTCS and STFS data are decomposed
into trend and residual components, and the spatiotemporal distributions of these components
are predicted through novel schemes. The novelty of STGDFM lies in its ability to (1) consider
temporal trend information using land-cover-specific temporal profiles from an entire DTCS dataset,
(2) reflect local details of the STFS data using resolution matrix representation, and (3) use residual
correction to account for temporary variations or abrupt changes that cannot be modeled from the
trend components. The potential of STGDFM is evaluated by conducting extensive experiments
that focus on different environments; spatially degraded datasets and real Moderate Resolution
Imaging Spectroradiometer (MODIS) and Landsat images are employed. The prediction performance
of STGDFM is compared with those of a spatial and temporal adaptive reflectance fusion model
(STARFM) and an enhanced STARFM (ESTARFM). Experimental results indicate that STGDFM
delivers the best prediction performance with respect to prediction errors and preservation of spatial
structures as it captures temporal change information on the prediction date. The superiority of
STGDFM is significant when the difference between pair dates and prediction dates increases. These
results indicate that STGDFM can be effectively applied to predict DTFS data that are essential for
various environmental monitoring tasks.

Keywords: spatiotemporal data fusion; resolution; temporal information; deconvolution

1. Introduction

Satellite remote sensing data have been widely used in various environmental applications,
depending on their spatial and temporal resolutions [1,2]. For example, geostationary satellite data
with high temporal resolutions provide rich temporal information to monitor environmental changes
on global and regional scales [3–7], but their spatial resolutions are too coarse to be applied in local
analyses (such data are hereafter referred to as dense time-series with coarse spatial resolution (DTCS)
data). In contrast, high spatial resolution data can be used in local analyses, such as urban area
monitoring [8–12], but their poor temporal resolutions are unsuitable for use in the detection of
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short-term changes (such data are hereafter referred to as sparse time-series with fine spatial resolution
(STFS) data).

As DTCS and STFS data have complementary spatial and temporal resolutions, there has been an
increasing interest in data generation with both high temporal and spatial resolutions (hereafter referred
to as dense time-series with fine spatial resolution (DTFS) data). This has led to the development of
spatiotemporal fusion models. Various spatiotemporal fusion models have been proposed over the past
decade [1], and such models require at least one DTCS and STFS data pair obtained at the same time.
Of the earliest pioneering weight function-based models, the spatial and temporal adaptive reflectance
fusion model (STARFM) was proposed to blend Moderate Resolution Imaging Spectroradiometer
(MODIS) and Landsat images [13]. This model predicts an attribute at a fine spatial resolution via a
weighted combination of the attributes from neighboring coarse resolution pixels. In this aspect, the
higher weight is assigned to the pixel that includes only one land-cover (LC) type; therefore, this scheme
is suitable only for homogeneous landscapes, leading to a poor prediction performance in regions with
heterogeneous land-cover types. To overcome the limitations of STARFM, Zhu et al. [14] developed an
enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM) that employs spectral
unmixing within STARFM to improve the prediction performance in heterogeneous landscapes. As an
improvement of ESTARFM, Ibnelhobyb et al. [15] also presented a wavelet based enhanced spatial
and temporal adaptive reflectance fusion model (WESTARFM) to combine discrete wavelet transform
with ESTARFM. However, ESTARFM-based models assume that there are linear changes in LC types
during the considered period that may not be valid when a longer period is considered [16].

Other unmixing-based models [17,18] that use a fine-resolution LC map have also been developed.
To predict the attribute at a fine spatial resolution, the proportion of each LC type within a coarse
resolution pixel is first calculated from the LC map, and this is then used to account for local variations
in LC types within a coarse pixel. The unmixing-based models assume that there are no changes in LC
types between the pair observation dates (the dates on which DTCS and STFS data are simultaneously
collected) and the prediction date; however, this can cause problems when a longer period is considered,
as with ESTARFM.

In addition, various learning-based models for spatiotemporal fusion have been developed,
including sparse representation, extreme learning machine, and deep convolutional networks [19–22].
The sparse representation model that is widely used for super-resolution mapping of natural images [23]
quantifies the relationship between DTCS and STFS data acquired simultaneously [19]. This relationship
is then applied to the DTCS data at the prediction date to generate DTFS data. Song and Huang [20]
further modified this model by quantifying the relationship from one pair of DTCS and STFS data.
However, although only one pair of DTCS and STFS data is used, the computational cost of the
sparse representation-based model is considerably higher than those of other fusion models, including
STARFM and ESTARFM [20,21]. To reduce computational costs, an extreme learning machine model
was subsequently proposed; this model skips the iterative learning process and randomly assigns
learning-based model parameters [21].

The previous models developed for spatiotemporal fusion have focused mainly on how well
the models capture homogeneous or heterogeneous spatial patterns in the study area, whereas few
studies have considered temporal changes that may occur during the considered period. As previously
mentioned, it may be unsuitable to assume that there are no changes in the LC types [13,17,18] or that
spatiotemporal variations on the prediction date are similar to those of the DTCS and STFS common
acquisition date [19–21] when there is a large difference between the pair dates and the prediction date
or when abrupt changes occur. Therefore, various studies have recently been conducted to improve
the prediction accuracy by considering temporal changes. For example, as an additional step in
spatiotemporal fusion, Zhao et al. [24] modeled the temporal changes in DTCS data acquired on the pair
dates and the prediction date via regression analysis. Xue et al. [25] proposed a spatiotemporal Bayesian
data fusion (STBDF) model to account for the temporal changes. The STBDF first constructs a first-order
observational temporal model and then models temporal evolution information using multivariate



Remote Sens. 2020, 12, 1553 3 of 21

joint Gaussian distributions. The STBDF has been further modified by incorporating spectral unmixing
analysis [26]. As another spatiotemporal fusion model, a prediction smooth reflectance fusion model
(PSRFM) [27] and its expanded model [28] were proposed that are based on linear spectral unmixing
with a smoothing filter.

The above-mentioned models consider information relating to the temporal evolution of the DTCS
dataset. However, they only use DTCS datasets on the pair dates and prediction date, and they do not
employ the entire DTCS dataset. Consequently, information from the entire DTCS dataset relating
to temporal evolution is not fully accounted for during spatiotemporal fusion, and this results in a
poor prediction performance, particularly when the pair dates and the prediction date are significantly
different. Because two datasets with different spatial resolutions are used as inputs for spatiotemporal
fusion, the difference in spatial resolutions (i.e., the change of support problem (COSP)) should be
properly accounted for during modeling procedures. For example, although the temporal correlation
information can be efficiently estimated from the entire DTCS dataset at a coarse spatial resolution,
temporal correlation information should be estimated at a fine spatial resolution.

To solve the limitations of the previous models, this work proposes a spatial time-series
geostatistical deconvolution/fusion model (STGDFM) to fully employ information across different
spatial and temporal scales. Theoretically, STGDFM is based on a spatial time-series framework
where an attribute of interest is decomposed into a deterministic trend component and a stochastic
residual component. The practical issues mentioned earlier, including the quantification of temporal
correlation information from the entire DTFS dataset and the COSP, are explicitly considered within
the spatial time-series framework. The trend component is first estimated by modeling both temporal
correlation information of DTCS data and local variations in STFS data. The residual component,
which is the remaining variability of the target attribute after trend modeling, is then estimated
to preserve the characteristics of the original target attribute in the fusion result. The STGDFM
consists of three analytical steps: (1) quantification of temporal correlation information from entire
DTCS datasets using LC-specific temporal trend modeling, (2) estimation of the trend component
at a fine spatial resolution by considering local variations in STFS data acquired on the pair dates
via resolution matrix representation, and (3) estimation of the residual component at a fine spatial
resolution using geostatistical kriging. The spatiotemporal fusion result is finally obtained by summing
the fine resolution trend and residual components estimated on the prediction date. In this study,
the applicability of the STGDFM is evaluated via experiments conducted on four different cases
using spatially degraded datasets and MODIS and Landsat images. The prediction performance of
the STGDFM is then compared with those of conventional spatiotemporal fusion models, including
STARFM and ESTARFM.

2. Methodology

2.1. Generic Formulation

Suppose
{
zC(vi, td), i = 1, · · · , N

}
and

{
zF

(
u j, ts

)
, j = 1, · · · , M

}
are target random variables of the

DTCS and STFS datasets, respectively, where vi and u j denote the ith and jth coarse resolution and
fine resolution pixels, respectively. They are modeled as a joint realization of a collection of spatially
correlated time-series within a spatial time-series framework [29]. Note that the acquisition dates of
DTCS and STFS data (i.e., td and ts, respectively) are usually different, and there is a at least one pair
date (ts ⊆ td).

STGDFM aims to generate synthetized DTFS data (zF
(
u j, td

)
) on the prediction date by fully

utilizing the information from the DTCS and STFS datasets. Theoretically, the target random variables
at certain spatial and temporal resolutions are decomposed into a deterministic trend component and
a stochastic residual component,

zC(vi, td) = mC(vi, td) + rC(vi, td), (1)
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zF
(
u j, ts

)
= mF

(
u j, ts

)
+ rF

(
u j, ts

)
, (2)

where m is the trend component, and r is the residual component.
Based on the above decomposition, each component is estimated using information from the

DTCS and STFS datasets. Furthermore, specific estimation methods are developed to tackle the
practical issues of spatiotemporal fusion (described in the Introduction). Because the entire time-series
dataset is available only at a coarse spatial resolution, the temporal trend component at a coarse
spatial resolution (mC(vi, td) in Equation (1)) is first quantified using the LC map of the study area.
The temporal trend component at a fine spatial resolution (mF

(
u j, ts

)
in Equation (2)) is then estimated

using the coarse resolution temporal trend component and a resolution matrix constructed from the
DTCS and STFS datasets acquired on the pair dates. Furthermore, the residual component (rF

(
u j, ts

)
in

Equation (2)) is estimated via area-to-point kriging (ATPK), which is appropriate for COSP. The DTFS
data (zF

(
u j, ts

)
) are finally obtained by summing the trend and residual components. Figure 1 presents

a flowchart for the implementation of the STGDFM, and the detailed descriptions are given in the
following subsections.
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Figure 1. Flowchart of the proposed spatiotemporal fusion model (STGDFM). The data acquired on
the prediction date and pair dates are denoted using squares with solid and dashed lines, respectively.
DTCS = dense time-series with coarse spatial resolution; STFS = sparse time-series with fine spatial
resolution; LC = land-cover; DTFS = dense time-series with fine spatial resolution.

2.2. Quantification of Temporal Trends at Coarse Spatial Resolution

In this step, a temporal trend component at a coarse spatial resolution, which characterizes
long-term temporal variation patterns, is estimated from the entire DTCS dataset by extending
the spatial time-series framework [29] to LC-specific time-series modeling. The spatial time-series
framework is employed in this study owing to the simplicity and flexibility of its application to cases
with or without periodicity and seasonality. It is important to note that if different trend estimation
models are applied, then the residual component in Equation (1) will also be different.

Within the spatial time-series framework, elementary temporal profiles in the study area are
first established, and the similarity between the temporal profiles and the time-series at each pixel is
then quantified [29]. The spatially averaged time-series values over the study area can be used as the
elementary temporal profile. However, as spectral responses for a certain time depend heavily on LC
types, using an average time-series for the entire study area fails to properly capture LC-dependent
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changes. To overcome this limitation, the LC-specific spatially averaged time-series are used as
elementary temporal profiles in this study. The temporal trend component at a coarse spatial resolution
is modeled by quantifying the similarity between the observed time-series value and the LC-specific
elementary temporal profile at each coarse spatial resolution.

When there are S LC types in the study area, the spatially averaged time-series value (zC
s (td)) of

the s-th LC type is first computed by averaging the coarse resolution pixel values corresponding to the
same LC type at each DTCS data (td) acquisition time,

zC
s (td) =

1
Ns

Ns∑
i=1

zC(vi, td), s = 1, · · · , S, (3)

where Ns is the number of coarse resolution pixels assigned to the s-th LC type.
The relationship between the LC-specific elementary temporal profile in Equation (3) and the

time-series value at each coarse resolution pixel is then quantified via a regression model,

ẑC
s (vi, td) = f

(
zC

s (td)
)
, (4)

where zC
s (vi, td) is the attribute of DTCS data corresponding to the s-th LC type at a particular acquisition

time of td, and f () denotes a regression function.
A simple linear model may be applied as a regression function in Equation (4) owing to its

simplicity. However, it is often difficult to ensure that the temporal variations are linear [25,30], and
they are more likely to exhibit non-linear patterns when DTCS data are acquired more frequently.
Therefore, in this study, a random forest model [31] is employed as a regression model to account for
the non-linear characteristics of the temporal variations.

2.3. Estimation of Temporal Trends at a Fine Spatial Resolution

Once the temporal trends at a coarse spatial resolution have been quantified, the next step is to
estimate the trend component at a fine spatial resolution. To tackle this COSP, the difference in the
spatial resolution is accounted for using a resolution matrix [32], whereby the local variations in the
STFS data acquired at the pair dates can be considered. The use of the resolution matrix equates to
relating the desired fine resolution temporal trends to the estimated coarse resolution temporal trends
by representing a relationship between DTCS and STFS data acquired on the pair dates.

In this study, two resolution matrices of convolution and deconvolution are used to estimate the
fine resolution trend component. The convolution matrix (C) refers to a resolution matrix for predicting
the attribute of DTCS data from that of STFS data, and the deconvolution matrix (D) is an inverse
matrix of the convolution matrix. When the attribute values of DTCS and STFS data obtained at a
specific pair date (k) are presented by ZC

k and ZF
k , respectively, in a matrix form, the convolution and

deconvolution matrices are given as,

ZC
k = CZF

k + eC
k , k = 1, · · · , K, (5)

ZF
k = DZC

k + eF
k , k = 1, · · · , K, (6)

where eC
k and eF

k denote noise vectors with sizes of N and M, respectively, and the dimensions of C and
D are N ×M and M×N, respectively.

After defining the convolution and deconvolution matrices, the next step is to predict the trend
component at a fine spatial resolution from the trend component at a coarse spatial resolution, which
was quantified in the previous section. Thus, the main focus of this step is to estimate the deconvolution
matrix. The convolution matrix is first constructed, and the deconvolution matrix is then estimated
as the inverse convolution matrix of the convolution matrix. In this study, the convolution matrix
is constructed as a sparse matrix, assuming that a Gaussian kernel-based point spread function
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(PSF), which is commonly used as the sensor PSF in remote sensing, can be applied for the COSP.
The convolution matrix is a non-square matrix; therefore, its inverse matrix cannot be obtained, and a
transposed convolution matrix is used instead as the initial deconvolution matrix (D̂0) [33]. The optimal
deconvolution matrix is then selected as one that minimizes the noise term in Equation (6).

If the DTCS and STFS data are obtained simultaneously on the prediction date (p), the deconvolution
matrix (D̂p) can be calculated from the initial deconvolution matrix by setting the error term (∆dp)
to zero,

D̂k = D̂0 + ∆dk, (7)

where the error term (∆dk) is estimated to minimize the noise of Equation (6).
However, as there are no true STFS data at the prediction date, it is not feasible to directly estimate

the error term and deconvolution matrix. Instead, the iterative optimization procedure for minimizing
the error term in Equation (7) is adopted to estimate the deconvolution matrix. The error at the pair
dates (K) is defined as the difference between deconvoluted DTCS and true STFS on the pair dates as
in Equation (8),

∆dk = D̂0ZC
i,k −ZF

j,k, k = 1, · · · , K. (8)

The error term at the prediction date is then estimated by calculating a weight (wk) that considers
the difference between the prediction date (p) and the pair date (k) via Equations (9)–(11),

wk =
1/∆tk∑K

k=1 1/∆tk
, (9)

∆tk =
∣∣∣tk − tp

∣∣∣, (10)

∆dk = w1∆d1 + w2∆d2 + · · ·+ wk∆dk. (11)

More specifically, an initial deconvolution matrix for each pair date is first set up using the DTCD
and STFS datasets on the corresponding date. The error term in Equation (8) is then calculated for each
pair date. Under the assumption that the error at the prediction date is similar to that at the pair date
that is close to the prediction date, the temporal distance is computed using Equation (10) and then
used as a weighting value in Equation (9). That is, if the specific pair date is close to the prediction
date, a higher weighting is assigned to the error term at the specific pair date. Finally, the errors at the
prediction date are estimated by a weighted combination of the errors from all the pair dates.

After the errors at the prediction date have been estimated, the optimized deconvolution matrix
can be obtained using Equation (7). This optimization of the deconvolution matrix is repeated until
the mean squared errors on the prediction date are less than a predefined threshold value. After
the iterative process is completed, the deconvolution matrix is applied to temporal information of
DTCS data estimated in the first step and the fine resolution trend component on the prediction date
(mF

(
u j, tp

)
) is finally obtained.

2.4. Estimation of Residuals at a Fine Spatial Resolution

The next analytical step is to estimate the residual component at a fine spatial resolution to fully
account for variations in the target attribute at a fine spatial resolution. The consideration of the
residual component for spatiotemporal fusion can account for the change information that is not
contained in the trend component. As the trend component at a coarse spatial resolution has already
been estimated in the first step, the residual component at a coarse spatial resolution is readily available
from the DTFS data for the prediction date in Equation (1). Spatial downscaling can then be applied to
predict the residual component at a fine spatial resolution. However, the final prediction result, which
is the sum of the fine resolution trend and residual components, may not satisfy the consistency or
mass-preserving property [34,35]; therefore, the upscaled prediction result may be different from the
DTFS data on the prediction date.
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Unlike previous studies [28,36], this study employs two specific approaches to satisfy the
consistency property. The trend component at a fine spatial resolution is first aggregated to the
spatial resolution of the DTFS data by applying the Gaussian PSF. The residual component at a coarse
spatial resolution is then computed by subtracting the upscaled trend component from the DTCS
data. The residual component at a fine spatial resolution on the prediction date is finally estimated
using ATPK, which is a novel kriging algorithm used for spatial downscaling [34]. The ATPK predicts
the fine resolution residual component using a linear combination of neighboring coarse resolution
residual values,

rF
(
u j, tp

)
=

∑L

l=1
λl

(
u j

)
rC

(
vl, tp

)
, (12)

where λl
(
u j

)
is an ordinary kriging weight assigned to neighboring coarse resolution residuals

(rC
(
vl, tp

)
), and L is the number of neighboring coarse resolution residuals within a predefined search

window.
Finally, the prediction result on the prediction date can be obtained by adding the fine resolution

residual component (rF
(
ui, tp

)
) to the fine resolution trend component (mF

(
ui, tp

)
). As the ATPK

perfectly satisfies the consistency property, the final prediction result also preserves the consistency
property on the prediction date. Therefore, the upscaling of the fine spatial resolution prediction result
to the coarse spatial resolution enables a perfect reproduction of DTFS data values.

3. Experimental Design

3.1. Study Area and Dataset

The prediction performance of the STGDFM was evaluated via experiments conducted using
both spatially degraded datasets and real satellite images. To evaluate how well the STGDFM captures
temporal information in DTCS data, the reflectance from an Near InfraRed (NIR) channel (in which
temporal variations are more pronounced than in other optical sensor channels) was selected as the
target attribute, as in previous studies [18,25,36]. Four study areas within South Korea with different
spatial and temporal characteristics were selected for the evaluation study. To conduct the quantitative
and objective evaluation and comparison in this study, experiments used both spatially degraded
datasets and real satellite images.

3.1.1. Experiments Using Spatially Degraded Datasets

For the experiments using spatially degraded reflectance datasets, we selected two study areas
with different temporal variation patterns: a vegetation area (Case 1) and an urban area (Case 2),
as illustrated in Figure 2. There were relatively significant temporal variations in the vegetation
area, whereas these were comparatively small in the urban area. The LC map from the Ministry of
Environment [37] was also used to quantify LC-specific temporal trends.

Daily MODIS data with a high temporal resolution were selected as the main data source.
We collected 250 m NIR reflectance data from the MOD09GQ product acquired from February to
October in 2018. After excluding cloud-contaminated data, 36 and 40 NIR reflectance datasets were
considered as STFS datasets for Cases 1 and 2, respectively (Tables 1 and 2). The original 250 m
NIR reflectance datasets were upscaled to 1 km using the Gaussian PSF, and the 1 km datasets were
then considered as the DTCS datasets. As the true STFS datasets are readily available, it is possible
to quantitatively assess and compare the predictive performance of STGDFM with those of other
spatiotemporal fusion models.
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Table 1. Acquisition dates of dense time-series with coarse spatial resolution (DTCS) data for Case 1;
filled circles and open circles denote the pair dates of DTCS and sparse time-series with fine spatial
resolution (STFS) data and the prediction dates, respectively.

01
February

04
February

05
February

06
February

07
February

08
February

13
February

15
February

17
February

• # # •

03
March
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Table 2. Acquisition dates of DTCS data for Case 2; Filled circles and open circles denote the pair dates
of DTCS and STFS data and the prediction dates, respectively.
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To mimic a real case with spatially rich but temporally poor datasets, only three dates were
selected as the pair dates of the DTCS and STFS datasets for both cases; thus, we assumed that the STFS
data were only available on three dates during the considered period. To investigate the impacts of the
difference between the pair dates and the prediction date on the predictive performance, 15 dates with
different variation patterns over time were selected as the prediction dates (Tables 1 and 2). The three
pairs of datasets and the DTCS data on two prediction dates are presented in Figures 3 and 4.
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3.1.2. Experiments Using Real Satellite Images

To further evaluate the STGDFM, experiments were conducted using multiple satellite datasets
with different spatial and temporal resolutions. Two areas with different heterogeneous landscape
types were selected as the study areas (Cases 3 and 4). As with the experiments conducted on spatially
degraded data, the LC map was also used to quantify LC-specific temporal trends (Figure 5).
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MODIS and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) images, which have been widely
used in previous spatiotemporal fusion studies [13–20,25,26], were employed as the DTCS and STFS
data, respectively. Twenty-eight and 32 cloud-free NIR reflectance datasets from February to November
2018 were collected for the areas in Cases 3 and 4, respectively (Tables 3 and 4). Landsat images were
downloaded from the U.S. Geological Survey Earth Resources Observation and Science Center [38].
By considering the spatial resolution of Landsat data (30 m), the original 250 m MODIS data were
resampled to 240 m using a nearest neighbor method.

Table 3. Acquisition dates of DTCS data for Case 3; Filled circles and open circles denote the pair dates
of DTCS and STFS data and the prediction dates, respectively.

01 February 07 February 15 February 03 March 12 March 14 March 25 March

27 March 28 March 08 April 10 April 19 April 10 May 24 May
•

26 May 01 June 02 June 06 June 16 June 22 June 03 October
•

12 October 13 October 17 October 19 October 21 October 24 October 30 October
#

Table 4. Acquisition dates of DTCS data for Case 4; Filled circles and open circles denote the pair dates
of DTCS and STFS data and the prediction dates, respectively.

01
February

05
February

07
February

17
February

12
March

23
March

25
March

28
March

#

10
April

19
April

21
April

28
April

29
April

21
May

24
May

26
May
•

02
June

06
June

16
June

22
June

22
July

02
August

08
September

03
October

12
October

21
October

24
October

31
October

02
November

04
November

20
November

30
November

•

Unlike in the experiments conducted on spatially degraded datasets, the prediction performance
of spatiotemporal fusion models can only be quantitatively assessed when Landsat data are acquired.
There were only three pairs of datasets for both Cases 3 and 4. For Case 3, the prediction date was
selected as 17 October, when the spatial patterns of different LC types were significantly different from
those of the other two dates, as presented in Figure 6.

The prediction date of Case 4 was selected as 23 March; the difference between the pair dates and
the prediction date was thus large, and the spatial pattern also differed significantly from the closest
pair date (Figure 7).
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3.2. Evaluation Method

The performance of STGDFM was evaluated through comparisons with those of STARFM and
ESTAFM, which have been widely applied in comparative studies. With visual inspections of true
STFS data and prediction results, we computed two quantitative indices for quantitative comparisons:
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(1) root mean squared error (RMSE) and (2) structure similarity (SSIM). The RMSE was computed to
compare the magnitude of prediction errors and the SSIM was used to compare the spatial similarity
between true STFS data and the prediction results. SSIM is a quantitative index to measure the spatial
similarity between two images [39], and it ranges from 0 to 1—the closer it is to 1, the greater is the
spatial similarity between the two images.

4. Results

4.1. Results for Experiments Conducted on Spatially Degraded Datasets

Figure 8 presents the RMSEs and SSIMs for the prediction results from the three spatiotemporal
fusion models for Case 1, where it is evident that there were no significant differences in the prediction
performances between the three spatiotemporal fusion models when the pair dates and the prediction
date were close. However, with a larger difference between the pair dates and the prediction date, the
prediction performance of STGDFM was superior to those of STARFM and ESTARFM, particularly
in October. For example, on 12 October, STGDFM and STARFM provided the best and worst
model performance, respectively, and STGDFM yielded significant RMSE and SSIM improvements
in comparison with STARFM (RMSE and SSIM improvements of 34.3% and 13.93%, respectively).
The inferior prediction performance of STARFM and ESTARFM are a result of the smoothing out of
local details, as illustrated in Figure 9. Low values and large values were over- and under-estimated in
the results from STARFM and ESTARFM, respectively, particularly in the upper left corner of the study
area. However, local spatial variation details of the attribute were well reproduced in STGDFM, and a
lower RMSE and higher SSIM were achieved.
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between three different models for all prediction dates of Case 1: (a) RMSE; and (b) SSIM (arrows
indicate pair dates).

As in Case 1, there were significant differences in the prediction performances between three
models in Case 2 when the difference between the pair dates and the prediction date increased
(Figure 10). The prediction performance of STARFM was the worst and that of STGDFM was
slightly better than that of ESTARFM. The RMSE values of ESTARFM were slightly smaller than
those of STGDFM for some prediction dates, but STGDFM provided the largest SSIM on those dates.
For example, STGDFM provided a slightly larger RMSE than ESTARFM on 19 May (0.035 vs. 0.032,
respectively). A visual assessment of the prediction results using true STFS data (Figure 11) indicated
that the spatial patterns of ESTARFM were significantly different from those of the true STFS data, and
most of the large values in the forests seen in Figure 11a were smoothed out and underestimated in
ESTARFM (Figure 11d).
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In contrast, STGDFM reproduced most of the spatial features with large and small values,
as presented in Figure 11b; furthermore, the SSIM value of STGDFM was larger than that of ESTARFM
(0.981 vs. 0.950, respectively). However, some of the over-estimated spatial patterns in the STGDFM
result caused a slightly larger RMSE value compared to that of ESTARFM, but the difference was not
very significant.

The results of Cases 1 and 2 indicate that STARFM and ESTARFM tend to smooth out local details
of spatial features, whereas STGDFM can alleviate the smoothing effects and reproduce spatial patterns
that have large and small values. This advantage of STGDFM over STARFM and ESTARFM is more
prominent when the difference between the pair dates and the prediction date increases.

4.2. Results for the Experiment on Real Satellite Images

For Case 3, where spatial patterns on the prediction date differ much from those of the pair
datasets, we first visually compared true STFS data acquired on 17 October with the prediction results
of the three models (Figure 12). Overall, STGDFM yielded spatial patterns similar to those of true STFS
data, whereas STARFM and ESTARFM presented locally smoothed and clustered variations, and there
were particular under-estimations in the southern part of the study area. As STARFM and ESTARFM
use information only from the pair datasets and the DTCS data acquired on the prediction date,
the‘dominant impacts of DTCS data on the prediction date resulted in the under-estimated predictions
by STARFM and ESTARFM (see Figures 6 and 12). Particularly, the spectral discrepancy between the
pair dates and the prediction date was greatest for areas of forest. The smaller DTCS data values for the
prediction date were highly reflected into the prediction results by STARFM and ESTARFM. In contrast,
the STGDFM reduced the strong impact of DTCS data on the prediction date by fully accounting for
the continuous temporal evolution information obtained from the entire DTCS dataset.
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The quantitative assessment results of the three models presented in Table 5 indicate that STARFM
provided the worst performance in Case 3, and STGDFM delivered the best prediction accuracy with
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RMSE improvements of 11.74% and 7.76% over STARFM and ESTARFM, respectively. However,
ESTARFM provided the largest SSIM, indicating that it well represented the spatial structure of the
true STFS data. The SSIM value of STGDFM was lower than that of ESTARFM, even though it
provided the best RMSE value, and this result contradicts the visual assessment results. A detailed
analysis of this contradictory result was then conducted to compare the SSIM values of STGDFM
and ESTARFM within two major LC types (cropland and forest) in the study area. The SSIM values
within the cropland and forest between STGDFM and ESTARFM were 0.952 vs. 0.900, and 0.828 vs.
0.938, respectively. The SSIM of STGDFM was greater than that of ESTARFM within the cropland,
whereas ESTARM delivered a greater SSIM than STGDFM within the forest, yielding the largest
SSIM of ESTARFM throughout the study area. The lower SSIM value of STGDFM was particularly
attributed to under-estimation of larger values in the northeastern part of the study area (see Figure 12).
The forest class in the study area consists of various forest types, including deciduous, coniferous,
and mixed forests. ESTARFM considered the different LC types via unmixing. However, STGDFM
considered only one forest class when estimating the temporal trend component, and the different
temporal spectral variations of the three different forest types could not be properly estimated, which
yielded a lower SSIM value for STGDFM. Nevertheless, this lower SSIM can be improved using LC
maps containing various LC types. This issue will be further described in the Discussion section.

Table 5. Quantitative evaluation statistics of three spatiotemporal fusion models.

STGDFM STARFM ESTARFM

Case 3
RMSE 0.0511 0.0579 0.0554
SSIM 0.935 0.924 0.943

Case 4
RMSE 0.0264 0.0492 0.0315
SSIM 0.961 0.845 0.856

Figure 13 presents the prediction results for Case 4, where the spatial patterns on the prediction
date were similar to those of the pair datasets. As in Case 3, the prediction results of STGDFM
represented its ability to reproduce the spatial pattern of the true STFS data, whereas those of STARFM
and ESTARFM yielded prediction results in which the spatial patterns of STFS data on 2 November
were more prominent (compare Figures 7 and 13). As STARFM and ESTARFM are theoretically
based on the weighted combination of pair datasets, high weights are assigned to data that have
relatively similar spectral characteristics. Therefore, the spatial patterns of STFS data acquired on
2 November were strongly reflected in the prediction results. In contrast, STGDFM alleviated this
dominant effect of data on 2 November through residual correction. The residual component that
could not be explained by temporal evolution information included temporary information relating
to changes on the prediction date, which yielded prediction results that were similar to those of true
STFS data. As with the visual assessment results, STGDFM delivered the best prediction performance
and provided both relatively lower RMSE and higher SSIM values, in comparison with STARFM and
ESTARFM (see Table 5).

From the results of Cases 3 and 4 with real datasets, the prediction results of STARFM and
ESTARFM were found to be strongly affected by the pair datasets and the DTCS data on the prediction
date. When there is a large difference between the spatial patterns of the pair datasets and the DTCS
data on the prediction date (Case 3), the spatial patterns in the DTCS data on the prediction date
significantly affect the prediction result. When spatial patterns in the pair datasets and the DTCS data
on the prediction are similar, as in Case 4, the spatial pattern in the pair datasets has a considerable
impact on the prediction results. Consequently, it may be difficult to capture spatial variations that are
not observed in the pair datasets but have to be predicted. In contrast, STGDFM can account for both
the residual component and temporal evolution information from the entire DTCS dataset; thus, it can
deliver the best prediction performance.
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5. Discussion

5.1. Novelty of STGDFM

The prediction performance of STGDFM was thoroughly evaluated by conducting extensive
experiments using distinctive cases as follows: (1) cases in which the spectral variations between the
pair dates and the prediction date are large (Cases 1 and 3); (2) cases in which the spectral variations
between the pair dates and the prediction date are not large (Cases 2 and 4). As a result, the best
prediction performance was delivered by STGDFM. The superiority of STGDFM can be attributed
to two distinctive procedures included within it. First, STGDFM properly considers the LC-specific
temporal information conveyed by the entire DTCS datasets when estimating the trend component.
STARFM and ESTARFM quantify the temporal information by using only the pair datasets [13,14],
whereas STGDFM models quantitative information relating to continuous temporal variations using
the entire DTCS datasets. Specifically, the temporal profiles of reflectance are quantified with respect to
different LC types and considered as temporal evolution information. The temporal trend components
at a fine spatial resolution are then estimated using temporal evolution information from the DTCS
datasets and the STFS data on pair dates. These procedures enable temporal spectral variations at fine
resolution pixels to be employed, which then provide a superior prediction performance. In particular,
when the spectral variations between the pair dates and the prediction date are large, the temporal
trend component contributes to improving the prediction performance (Figures 9 and 12). In contrast,
the experiments using spatially degraded datasets revealed that pair datasets have to be collected at
times close to the prediction date for STARFM and ESTARFM (Figures 8 and 10). From a practical
perspective, however, it is not always possible to collect optical images at specified times of interest
due to atmospheric conditions. Therefore, STGDFM, with its distinctive properties, such as the ability
to consider the temporal trend components quantified from entire DTCS datasets, provides major
advantages over conventional spatiotemporal fusion models.

In some cases, temporary variations that cannot be captured by the temporal trend components
may be observed in the datasets [36]. In particular, when there are not considerable differences between
the spectral patterns on pair dates and prediction dates (Cases 2 and 4), there may not be significant
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differences in the temporal trend components, as these are already quantified as spatially averaged
temporal profiles. Consequently, the impact of temporary variations may be greater on the prediction
result; this implies that the temporary variations should be properly considered to generate reliable
prediction results. The local variability of temporal change is considered as the residual component in
STGDFM. It is thus necessary to consider the residual components or residual correction, together with
the temporal trend component estimation. The necessity of residual correction can be further illustrated
using the results from Case 4. In Case 4, the spectral patterns on the pair dates and the prediction dates
are similar, and the fine resolution trend component estimated by STGDFM on 23 March for Case 4
(Figure 14) shows low reflectance in forest areas due to the impact of the STFS data on 2 November
(Figure 7b). However, STGDFM generates the prediction result by adding the fine resolution residual
component to the fine resolution temporal trend component, which is similar to the true DTFS data
(Figure 13a,b). Because STARFM and ESTARFM assign higher weights to the pair dataset for Case
4 [13,14,36], the spatial patterns in the prediction results are similar to those in the pair data, but these
are much different from those of the true DTFS data (see Figure 13).
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In summary, the spectral changes occurring between pair dates and prediction dates can be
divided into temporal spectral patterns and temporary variations. In STGDFM, the temporal spectral
patterns are quantified by the LC-specific temporal trend component, and the temporary variations or
abrupt changes that cannot be reflected in the trend component are accounted for by residual correction.
These novel schemes enable its improved prediction performance in comparison with STARFM and
ESTARFM in the experiments conducted here.

5.2. Further Improvement of STGDFM

Despite the superior prediction performance of STGDFM, certain aspects require further
modification and improvement. For example, the effect of only one coarse resolution pixel including
several fine resolution pixels within it is assumed to exist when estimating the fine resolution
trend component, which could generate blocky artifacts in the fine resolution trend component
estimation result. Consequently, the final DTFS result may include blocky artifacts, depending on
the contribution from residual correction. In addition to the one coarse resolution pixel, neighboring
coarse resolution pixels may affect the estimation of fine resolution attributes from coarse resolution
pixels [40]. To alleviate the impacts of blocky artifacts from the coarse resolution pixels, a weighted
combination of neighboring coarse resolution pixels should be considered.

Two critical issues in spatiotemporal fusion are how to effectively model (1) landscape heterogeneity
and (2) abrupt LC changes [41]. Regarding the issue on landscape heterogeneity, STGDFM generated
locally different prediction results primarily observed in areas with different forest types, as described
in the result for Case 3. Some LC types consist of several sub-classes, for example, agricultural land
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with paddy rice fields and dry fields, but only typical LC types (forest and agricultural land) were
considered in STGDFM. However, the temporal trend components of several LC types can be easily
estimated within the STGDFM framework without modifying the modeling procedures, provided that
LC maps with detailed sub-classes are available and that there are sufficient numbers of pixels for the
sub-classes within the study area. To evaluate the impact of using LC maps with detailed sub-classes
on prediction performance of STGDFM, fine resolution level-2 LC maps with several sub-classes in
forest and agricultural land (Figure 15) [37] were used for Case 3. STGDFM with the detailed LC map
showed superior predictions relative to that with the LC map in Figure 5a (RMSE: 0.0501 vs. 0.0511 and
SSIM: 0.945 vs. 0.935). Moreover, the SSIM value of STGDFM with the detailed LC map was slightly
better than or compatible to that of ESTARFM (0.943). Therefore, when temporal trends of sub-LC
types are different like Case 3, using the detailed LC map could improve the prediction performance
of STGDFM.
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Even when various LC types are considered in STGDFM, temporal trends are estimated from
DTCS data in STGDFM. Hence, mixed pixel problems, which are frequently encountered in coarse
resolution remote sensing images and prominent in heterogeneous regions, may affect the temporal
trends estimated at a coarse spatial resolution. Conventional spatiotemporal fusion models, such as
ESTARFM, explicitly address the mixed pixel effect via spectral unmixing [14]. Because STDGFM does
not explicitly account for the mixed pixel effect, specific analytical procedures should be incorporated
into STDGFM to address heterogeneous pixel problems. Class fraction or composition of a coarse
resolution pixel can be first computed using spectral unmixing or existing land-cover maps [42,43].
This sub-pixel fraction information can then be used as a constraint to estimate the optimized
deconvolution matrix.

The second critical issue in spatiotemporal fusion is how well any fusion model captures abrupt
LC changes, such as floods and wildfires [27,36]. STGDFM could capture well gradual spectral changes,
such as vegetation phenology, because temporal evolution information is modeled from the entire
DTCS datasets. If abrupt LC changes occurred in the study area, they are likely to alter LC-specific
elementary temporal profile in STGDFM. However, the temporal trend component at a coarse spatial
resolution estimated by regression with respect to the LC-specific elementary temporal profile may
not contain the LC change information fully. STGDFM assumes that such the change information
that cannot be captured in the trend component is contained in the residual component, similar to
previous studies [27,28,36]. Although residual correction helps capture abrupt LC changes to a certain
extent, further improvement of STGDFM is required to fully account for LC change information.
Recently, Zhou and Zhong [41] proposed a Kalman filter reflectance fusion model (KFRFM) that can
fully account for both abrupt LC changes and landscape heterogeneity. KFRFM could properly capture
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abrupt LC changes by progressively generating a DTFS dataset using reflectance change rates between
consecutive DTCS data. Similar to KFRFM, STGDFM can generate such a continuous DTFS dataset
on the DTCS data acquisition dates. Abrupt LC changes can thus be captured in STGDFM by both
the continuous DTFS dataset and residual correction. The improvement of STGDFM by considering
both landscape heterogeneity and abrupt LC changes and comparisons with the recent state-of-the-art
spatiotemporal fusion models, including KFRFM, will be included in future work.

In this study, STGDFM was applied to the NIR band to quantify how well it can account for
the temporal evolution of spectral variations mainly in forest and agricultural areas, like previous
spatiotemporal fusion studies [44,45]. STGDFM can be applied to other spectral bands, such as red
and green bands, and satellite-derived products containing significant temporal changes (vegetation
index, land surface temperature, and soil moisture) without modifying the modeling procedures of
STGDFM. The application to such different data is worth evaluating through extensive experiments to
increase the applicability and validity of STGDFM.

6. Conclusions

Spatiotemporal fusion in remote sensing aims to generate synthesized data at high temporal and
spatial resolutions by capturing both dense temporal features from the DTCS data and local details
from the STFS data. This study presented a spatial time-series geostatistical fusion model with three
analytical procedures, named STGDFM. The LC-specific temporal profiles of reflectance are considered
to model temporal evolution information of spectral variations from the entire DTCS dataset. During
this temporal trend estimation procedure, local variations in the STFS data are properly considered
using the resolution matrix. Furthermore, residual correction via ATPK is considered to both reflect
fine scale spectral variability on the prediction date and to preserve the consistency property.

Comparative experiments were conducted using conventional spatiotemporal fusion models,
STARFM and ESTARFM, and STGDFM was found to deliver prediction result that were similar to
those of the true data. It thus provided the best consistent predictive performance, irrespective of the
similarity between spatial patterns of pair datasets and DTCS data on the prediction date. In addition,
the superiority of STGDFM compared to STARFM and ESTARFM was found to be particularly
prominent when there was an increased difference between the pair dates and the prediction dates,
and this confirmed the potential of STGDFM for consistent environmental monitoring. To strengthen
the applicability of STGDFM, future work will consider (1) the application to satellite-derived products
and other spectral bands and (2) the refinement of modeling procedures to explicitly address both
landscape heterogeneity and abrupt LC changes.
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