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Abstract: Wildfires are a concerning issue in Canada due to their immediate impact on people’s lives,
local economy, climate, and environment. Studies have shown that the number of wildfires and
affected areas in Canada has increased during recent decades and is a result of a warming and drying
climate. Therefore, identifying potential wildfire risk areas is increasingly an important aspect of
wildfire management. The purpose of this study is to investigate if remotely sensed soil moisture
products from the Soil Moisture and Ocean Salinity (SMOS) satellite can be used to identify potential
wildfire risk areas for better wildfire management. We used the National Fire Database (NFDB) fire
points and polygons to group the wildfires according to ecozone classifications, as well as to analyze
the SMOS soil moisture data over the wildfire areas, between 2010–2017, across fourteen ecozones
in Canada. Timeseries of 3-day, 5-day, and 7-day soil moisture anomalies prior to the onset of each
wildfire occurrence were examined over the ecozones individually. Overall, the results suggest,
despite the coarse-resolution, SMOS soil moisture products are potentially useful in identifying soil
moisture anomalies where wildfire hot-spots may occur.
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1. Introduction

Wildfires are considered to be a natural disturbance to terrestrial ecosystems, as well as an integral
part of ecosystems’ natural evolution. However, large wildfires, particularly when due to human
activity, can be considered hazardous to ecosystems as they interrupt an ecosystem’s natural evolution.
Nevertheless, whether it is natural or human induced, large wildfires significantly affect regional
climate, the land surface hydrology, biogeochemical processes, and wildlife habitats, as well as the
livelihoods of people. Recent studies have attributed the increase of large wildfire occurrences to a
warming climate due to increased greenhouse effect [1–4]. The warming trend is expected to continue
in the coming decades, potentially increasing the vulnerability of ecosystems to wildfires and related
climate disturbances [5].

The increase in vulnerability of ecosystems to wildfires in a warming climate is of great concern to
Canada since the country holds some of the largest forest ecozones in the world. For example, the Boreal
Shield, being the largest ecozone in Canada, covers almost 20% of the total landmass, accounting for
the majority of recorded wildfire area burned annually across Canada. On average, approximately two
million hectares of forests are subject to fire annually across Canada [6,7]. The total carbon emission
from these wildfires is estimated at 27 Tg carbon per year [6,8–12]. Within Canada, managed forests,
which are subjected to more intensive fire suppression measures than unmanaged forests, are primarily
located in the southern extent of the country, while the majority of unmanaged forests are located
away from population centers [13]. Given the risks involved in managing large wildfires, identifying
potential wildfire risk areas or “hot-spots” in advance is one of the most important aspect of wildfire
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management [14,15]. Several studies have stressed the need to develop methods to detect potential
hot-spots in advance to minimize wildfire related damages and manage firefighting resources [16].

Remote sensing has emerged as a leading tool for forest surveys, large-scale active wildfire
monitoring, and for surveying the aftermath of wildfires [17–19]. Several studies have shown the
effectiveness of using remote sensing data in operational fire weather forecast and warning systems
around the world, such as the National Fire Danger Rating System (NFDRS) in the United States [20]
and the Canadian Forest Fire Danger Rating System (CFFDRS) in Canada [21–24]. These early warning
systems rely primarily on remotely sensed vegetation information and important meteorological
parameters, such as wind, precipitation, air temperature, and humidity.

Among hydrological variables that play a role in the occurrence of wildfire, soil moisture (SM)
is of particular value. For example, SM when interpreted to also reflect the moisture of duff layers,
represents the wetness state of the available fuel [25]. Another important property of SM is its temporal
autocorrelation or memory [26]. The importance of SM memory land-atmosphere feedback process
and thus on seasonal climate predictability are well documented [25–28]. For example, studies by
Medler et al. [29] indicate increases in severe wildfire resulting from decreased SM may be related
to decreased snowfall in the previous winter. Westerling et al. [30] illustrate a strong link between
snowmelt timing and wildfire activity in the western U.S., suggesting that severe wildfire risks can be
associated with earlier spring snowmelt and additional soil dryness in the summer. In addition, recent
studies show the usefulness of L-band soil moisture and C-band data to estimate Live Fuel Moisture
Content (LFMC), a crucial indicator of vegetation aridity and fire danger [31,32]. Consequently,
the consideration of SM conditions is an important step in identifying the hot-spots for potential
wildfire occurrences [21].

Recently, studies have shown the effectiveness of remotely sensed SM and vegetation optical
depth products derived from the European Space Agency’s (ESA) Soil Moisture and Ocean Salinity
(SMOS) and NASA’s Soil Moisture Active Passive (SMAP) missions [33–37], for drought monitoring,
agriculture soil water monitoring, water stress and wildfire risk studies [38–43]. Launched in 2009,
SMOS monitors L-band emission from the Earth’s surface to derive a global SM product revisiting
each location approximately every 3 days [44,45]. Products from this satellite are widely used in
operational weather forecasting and global climate modelling. For wildfire risk detection, studies
by Forkel et al. [46] and Shvetsov [47] demonstrated that SMOS SM was well correlated with the fire
weather index (FWI) in Siberia. Several recent studies also make use of SMOS products (and products
downscaled to higher resolutions) to detect localized drought and wildfire risks in Europe [21,48,49].

Over Canada the accuracy of SMOS SM products has been assessed over various regions and
land cover types [50–54]. For example, Champagne et al. [55] found relatively high correspondence
between SMOS soil moisture and in-situ measurements at numerous sites for Ontario, where many of
these sites contained a higher fraction of forested areas. Within a boreal forest region, Djamai et al. [54]
found statistically significant correlations between the SMOS derived soil moisture estimate and an
in-situ network. These studies demonstrate that the passive microwave satellite is sensitive to soil
moisture within forested environments (also see Reference [44] for a more global review), however
what has not been established is if these passive microwave derived estimates of soil moisture are
of value for mapping wildfire potential for this region. The purpose of this study was to examine
if there is an association between dry soil moisture anomalies, as observed in SMOS SM products,
with wildfire hot-spots observed over various Canadian ecozones. To evaluate this research objective,
we tested the hypothesis that the distribution of observed soil moisture anomalies prior to wildfire
ignition were skewed towards dry soil moisture conditions examined over an ecozone (a classified
region of similar vegetation, climate, and soils). With warming climates potentially increasing the
vulnerability of ecozones to wildfire, development of tools for identifying potential hot-spots within
Canada’s forests is of great importance for wildfire management.
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2. Data and Methods

In this study, we used fire data from the National Fire Database [56] for an 8-year period, from
2010–2017. The NFDB, maintained by Natural Resources Canada (NRC) via the Canadian Wild-Land
Fire Information system, is composed of annual fire points and polygons derived from various regional
fire management agencies [7,57]. The fire points in the NFDB indicate the geographical locations of
ignition points, and the polygons represent the perimeters of burned areas. The spatial distribution of
all fires between 2010–2017, over the ecozones analyzed in this study, are illustrated in Figure 1. Using
this spatial data set, the fire point data (date and area) were used to extract corresponding SMOS SM
data corresponding to time and location of each fire.
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Figure 1. Spatial distribution of all fires over a 8-year period (2010–2017), over various ecozones in
Canada. The red dots indicate the fire locations. The main ecozones considered are the Boreal Shield,
Boreal Plain, Atlantic Maritime, Pacific Maritime, Taiga Plain, and the Taiga Shield.

Processing of SMOS brightness temperature observations provided a soil water content estimate
for the top 5 cm (here, we used Level 2 Soil Moisture V650, released on 15 November 2017. SMOS
data is freely available at https://smos-diss.eo.esa.int/oads/access/). For the development of the SMOS
product, radiometric observations made from SMOS instrument were processed to Level 1 brightness
temperature (Tb) with ~40-km spatial resolution and reported on a 15-km hexagonal grid called
Discrete Global Grid (DGG; ISEA 4H9 grid). The brightness temperature was then processed to a SM
product and reported on the same grid (15-km ISEA grid). Therefore, the associated grid of L2 SM
product was 15 km; however, the radiometric resolution of the instrument was ~40 km. The accuracy
of SMOS L2 SM products, compared to several in-situ data sets, approached an unbiased root mean
square error of 0.04 m3m−3 [44,45,58]. We also obtained soil moisture estimates from SMAP Soil
Moisture [59,60] retrieval, based on radiometer data scaled to a 9 km EASE-2 grid (here we have used
version R16010. SMAP data is freely available at https://nsidc.org/data/smap/smap-data.html.). Given
the longer time series of SMOS, most of our analyses (as described below) focused on the SMOS time
series. The accuracy of SM from SMOS is reduced over mountainous regions due to the influence
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of complex topography on local incidence angles [61,62]. Therefore, the cordillera ecozones were
excluded from the overall results.

Prior to statistical analysis, the fire points, as well as the SMOS SM data, were grouped according
to the ecozones in Canada. The ecozones of Canada are characterized regions grouped by various
abiotic and biotic factors [63]. To aggregate the wildfires and SMOS SM data, we used the geographic
location information (latitude and longitude) of the wildfires from the NFDB database, matched-up
to that from SMOS SM metadata (based on area of SMOS grid), and then grouped according to their
respective ecozones. The SMOS SM data was quality controlled prior to the analysis. Anomalously
high and low soil moisture values were excluded from the analysis (i.e., SM values below the sensitivity
of the satellite sensor. In general, for silty sand and silty loam soils texture types, moisture values
above 0.6 m3/m3 indicate saturated or near saturated soil. Therefore, we excluded SM values >

0.6 m3/m3.). Temporal gaps in the SM data filled using MATLAB’s ‘pchip’ function, which stands for
Piecewise Cubic Hermite Interpolating Polynomial, a shape-preserving piecewise cubic interpolation
method. The pchip interpolation method is local, which means the interpolation within a subinterval
is determined by only the nearby four data points, the two data points on either side of that interval,
and is not influenced by the data points farther away. Another advantage of using pchip is that it
has no overshoots, less oscillation if the data are not smooth, and is computationally less expensive
(All analysis was performed using MATLAB R2017a ver. 9.2). Over the SMOS time series (2010–2017)
and for each pixel in each of the ecozones, we calculated daily standardized anomalies using the
interannual daily mean (µ) and standard deviation (σ) (i.e., the daily mean and standard deviation
were computed across 8 years for each pixel). For example, we calculated the standardized anomaly
(SA) of the SMOS observed SM for each day (i) as: SAi = (SMi − µ). For our analysis, we examined
the soil moisture anomaly conditions for three time periods prior to the fire initiation: 3, 5, and 7 days
prior to initiation. Although these intervals were chosen arbitrarily, it maximized the SMOS SM
data sample size since the average SMOS satellite repeat cycle is less than 3 days. Over these time
periods, we constructed histograms of soil moisture anomalies observed over the three time periods.
Histograms of soil moisture anomalies for each fire, within the three time periods, grouped over
each ecozone, were prepared for our statistical analysis. Given that we had drawn the SM anomaly
samples from a normally distributed sample (given the standardization shown above), we tested the
hypothesis that a negative shift (i.e., negative anomaly of SM) had occurred when SM observations
were drawn from time periods prior to fire initiation. We evaluated the statistical significance of shifts
to the histogram using a one sample Kolmogorov-Smirnov (KS) normality test.

The total number of all fires, as well as the number of SMOS grid cells within each of the ecozones,
is illustrated in Figure 2a. Based on Figures 1 and 2a, it is clear that the majority of the fires occurred
within the Boreal ecozones (i.e., Boreal plain and Boreal shield) and in the Montane cordillera. In some
ecozones, such as the Boreal plain and Montane cordillera, there are few SMOS grid pixels, which
implies a relatively large number of fires occurred within each SMOS grid pixel in that ecozone
(see Figure 2a). Figure 2b illustrates the ratio of the number of fires exceeding a specific size (200 ha
and 3600 ha) to the total number of fires in each ecozone.
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Figure 2. Frequency of all fires and the number of SMOS (Soil Moisture and Ocean Salinity) grid cells
that are representative of the fires (a); ratio of the number of fires to the total (b).

3. Results

To illustrate the potential sensitivity of SMOS soil moisture products prior to a fire initiation,
in Figure 3, we show some selected soil moisture time series prior to the onset of fire. In Figure 3, we
included a SMAP time series for reference only and to potentially highlight the consistency between
two passive microwave L-band sensors shown to be sensitive to soil moisture. We did not complete the
histogram analysis of the SMAP data set as the time series is relatively short for the SMAP sensor (since
2015). Four randomly selected fires (unique fire identifier is indicated in square brackets on the figure
subtitles) of various burned area sizes in four major ecozones were selected. The first fire located in the
Boreal Plain Ecozone (Figure 3a), identified as SK-2017-002977 (57.31, −109.56), occurred in the late
summer of 2017 and burned approximately 427 ha in area. The Boreal Shield fire (Figure 3b), identified
as SK-2016-002542 (57.67, −108.58), took place in the early summer 2016 and burned approximately
24,204.2 ha of forested land. The third fire presented occurred in the Hudson Plain ecozone (Figure 3c)
was identified as MB-2015-NE061 (56.37, −93.34) and took place in the early summer 2015 burning
approximately 662.6 ha. Finally, the fourth fire identified as BC-2015-C50146 (52.22, −124.13), also
known as the “Puntzi Lake fire”, took place in mid-summer 2015, burned approximately 8089 ha, and
was located in the Montane Cordillera ecozone (Figure 3d; here, we include a Montane Cordillera fire
as the SMOS quality flags associated with topographic impacts on data quality were not present for
the specific pixel containing the fire). It is clear from all four cases (Figure 3a–d), that both SMAP
and SMOS reveal a drying trend, at least one week prior to fire initiation, which indicates the two
satellite systems’ sensitivity to the drying of the surface prior to the onset of a fire. However, it should
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be noted that both sensors vary in terms of magnitude of the dryness. The sudden “jumps” in soil
moisture, particularly in the Hudson Plain (Figure 3c) and in the Montane Cordillera fires (Figure 3d),
are due to small local rainfall events and the uncertainty of the products ([45,59]; an unbiased RMSE
of approximately ± 0.04 m3m−3). Although illustrative of soil moisture time series prior to fire and
potentially for the application of these products for identifying potential wildfire hotspots, Figure 3
is anecdotal. Therefore, we expand our analysis to all 48,754 of the fires recorded in the National
Fire Database.
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Figure 3. SMOS (Soil Moisture and Ocean Salinity) and SMAP (Soil Moisture Active Passive) soil
moisture time series over two weeks period prior to the onset of fire, for four randomly selected fires
in, Boreal Plain (a), Boreal Shield (b), Hudson Plain (c), and Mountane Cordillera (d). The unique fire
identifier is indicated in square brackets on the figure subtitles. r is the correlation between SMOS and
SMAP soil moisture.

Figure 4 illustrates histograms of the soil moisture anomalies 3-days, 5-days, and 7-days
(column-wise, left to right) prior to the occurrence of fire, for Atlantic Maritime, Boreal Plain,
Pacific Maritime, Taiga Plain, Boreal Shield, and Taiga Shield (row-wise, top to bottom) ecozones,
respectively. These seven ecozones are selected based on relatively large numbers of fires (as shown in
Figure 2a). It is clear from Figure 4 that the histogram distributions are quite different in each ecozone,
although the shape of the distributions are somewhat consistent at 3-days, 5-days, and 7-days prior
to the occurrence of fire. The KS normality test of the distribution indicates that, for all ecozones
except the Taiga Shield, at 3-days prior to the fire (Figure 4p), the test statistic (ks) is greater than the
critical value (cv) rejecting the null-hypothesis at 5%. In other words, the KS test suggests, that, for all
ecozones (except that previously mentioned), the soil-moisture anomalies are not normally distributed
(hv = 1). All the KS test statistics are displayed on the top-left of each sub-figure in Figure 4.
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Figure 4. Histograms of the normalized soil moisture anomaly distribution at 3-days, 5-days, and
7-days (column-wise, left to right) prior to the occurrence of fire, for ecozones Atlantic Maritime (a–c),
Boreal Plain (d–f), Pacific Maritime (g–i), Taiga Plain (j–l), Boreal Shield (m–o), and Taiga Shield (p–r),
respectively. The parameters h, p, ks, and cv are MATLAB Kolmogorov-Smirnov (KS) test result
parameters: ‘h’ is a logical value (0 or 1) indicating the hypothesis test result, i.e., h = 1 indicates
rejection of the null hypothesis at the 5% significance level, and h = 0 indicates a failure to reject the
null hypothesis. The parameter ‘p’ is the p-value of the test, ks is the test statistic and cv is the critical
value of the test. If the test statistic (ks) is greater than the critical value (cv), then the KS test rejects the
null-hypothesis. The parameter Sk (top right) indicates the skewness of the distribution. A positive
skewness suggests a left leaning distribution, and vice versa. SM = soil moisture.

For all the ecozones, except the Atlantic Maritime (Figure 4a–c), the histograms indicate a negative
shift suggesting drier soil conditions. The skewness (Sk) of the histogram are computed using MATLAB’s
skewness function. The skewness (Sk) parameter displayed on the top-right of each histogram indicates
that almost all histograms, except the Atlantic Maritime (Figure 4a–c) and Boreal Shield (Figure 4m–o),
show a positive skewness, suggesting a left leaning distribution, i.e., negative soil moisture anomaly.
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In Atlantic Maritime (Figure 4a–c) and Boreal Shield (Figure 4m–o), the histogram indicates a slight
positive shift (negative skewness), suggesting relatively wetter conditions prior to fire initiation.

Previous research demonstrates that, although there is a much larger number of small fires, many
are subjected to fire suppression measures and thus represent much less area burned than observed
in large fires [7,64,65]; therefore, we focused on larger fires (>200 ha) for the subsequent analysis.
The contrast between total number of fires vs the number of large fires is evident in Figure 2 and is
consistent with previously published studies (see also Figure 4 in Reference [7]). For example, Figure 2a
indicates that, although there were approximately 3000 fires that occurred in Atlantic Maritime ecozone
during the study period, only a very small fraction were large fires. Similarly, less than 5% of the
~12,000 fires in the Boreal ecozones (Boreal Plain and Boreal Shield) were considered large fires.
To examine the importance of SM anomaly on large fires, we recomputed the histogram (Figure 5) after
excluding all the fires with burned area < 200 ha. The histogram (Figure 5) shows the normalized SM
anomaly at 3-days, 5-days, and 7-days (column-wise, left to right) prior to the occurrence of fire, for the
Hudson Plain, Taiga Plain, Boreal Shield, and Taiga Shield ecozones (row-wise, top to bottom). Some
ecozones were excluded as the number of large fires (>200 ha) were very small over the time period
resulting in insufficient data to form a histogram. Figure 5 demonstrates that for all ecozones except
the Taiga shield (Figure 5j–l), the soil moisture anomalies show a shift towards a negative anomaly
(dry soil moisture anomaly as also indicated a positive skewness values) observable for 3-days, 5-days,
and 7-days (columns left-to-right) prior to the fire initiation. The SMOS observed SM anomaly does
not show similar sensitivity over Taiga shield, which may be related to numerous open water surfaces
over the area, which will have an influence on the SMOS retrieval accuracy [44].
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Figure 5. Distributions of fires with burned area greater than 200 ha. Soil moisture anomaly
distributions at 3-days, 5-days, and 7-days (column-wise, left to right) prior to the occurrence of fire for
ecozones Hudson Plain (a–c), Taiga Plain (d–f), Boreal Shield (g–i), and Taiga Shield (j–l), respectively.
The parameters h, p, ks, and cv are MATLAB Kolmogorov-Smirnov (KS) test result parameters, as in
Figure 4. The parameter Sk (top right) indicates the skewness of the distribution.
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Distributions of fires with burned area greater than 3600 ha are illustrated in Figure 6. Histograms
could only be created for three ecozones: the Taiga Plain, the Boreal Shield, and the Taiga Shield.
Overall, the figure suggests that SMOS SM anomaly observable 3, 5, and 7 days prior to the fire
particularly over the Boreal Shield captures the drying surface conditions prior to the occurrence of fire,
as indicated by the shift in the distribution towards negative anomalies. Capturing the SM anomaly
over the Boreal Shield ecozone is particularly important since this ecozone is one of the largest and
most diverse in-terms of species and has a wide range of climatic and ecosystem conditions [7,13].
The anomaly distributions illustrated in Figures 6d–f and 5g–i suggest the SMOS SM product was
sensitive to dry surface conditions in advance of fire in this ecozone.
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Figure 6. Distributions of fires with burned area greater than 3600 ha, for Taiga Plain (a–c), Boreal
Shield (d–f), and Taiga Shield (g–i) ecozones. The parameters h, p, ks, and cv are MATLAB
Kolmogorov-Smirnov (KS) test result parameters, as in Figure 4. The parameter Sk (top right)
indicates the “skewness” of the distribution.

4. Discussion

The results of this study demonstrated that there is skewness in the SMOS observed soil moisture
distributions towards negative anomalies prior to the fire ignition for the majority of ecoregions.
By comparing the histograms of respective ecozones in Figures 4 and 5, we can see that Figure 5 shows
a relatively greater positive skewness than Figure 4, which implies SMOS SM anomalies are sensitive
to the drier surface conditions prior to larger wildfires. Within the regions analyzed, the SMOS product
includes quality flags on the retrieval. The quality flags denote potential issues associated with the
product. These flags may be related to regions of high topographic variation, denser forest canopies, or
rainfall during the retrieval; when these flags are present, it is recommended that the data be interpreted
with caution. While the present study does not explicitly separate the influence of various science flags
on SMOS SM distributions over the boreal forest, the majority of the regions analyzed included science
flags that suggest that the retrieval is impacted by vegetation. Although there are some studies that
demonstrate that SMOS has some correlation with ground observations of soil moisture in the boreal
forest in Canada, these studies are limited to only one or two pixels (e.g., 50,54). Therefore, it was
somewhat of an open question regarding the value of product in this environment for the purposes of
identifying surface drying prior to wildfire initiation.
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We recognize that there are several limitations to this study overall. As illustrated in our results
(Figures 4–6), there are a significant number of fires that also initiated under wetter soil moisture
anomalies. Soil moisture is among a multitude of factors necessary for wildfire; therefore, further
analysis of vegetation conditions, fine fuel abundance, and connectivity would be necessary to further
outline the role of satellite observed soil moisture anomalies on individual fires. Furthermore, it is very
likely a soil moisture threshold may exist in several regions; below this critical moisture threshold,
the likelihood of fire ignition is possible [66]; in many cases, this threshold may not be associated with
a negative soil moisture anomaly. This study focused on retrieved SMOS SM products (e.g., SMOS
SM Level-2 used in this study), in regions of high vegetation where the product may be impacted by
significant vegetation water content. Therefore, using a forward model better adapted to each ecozone
in conjunction with a land surface model, which assimilates the satellite brightness temperature
(along with site specific parameters and uncertainties), may provide better soil moisture estimates.
Finally, the spatial and temporal resolution of data could be improved by using advanced downscaling
techniques, which may result in better accuracy pin-pointing the hot-spots when also combined with
vegetation density.

5. Conclusions

It is well known that dry land surface conditions precede wildfire and that methods to identify
potential wildfire hot-spots in advance are useful for predicting wildfire occurrence. However, it is
not known the degree to which satellites sensitive to SM are useful for this purpose, particularly
over the various boreal ecozones within Canada. In this study, surface SM conditions preceding
wildfire occurrences across various Canadian ecozones were analyzed for the period 2010–2017, using
SMOS satellite-derived SM data. Results show that, over the majority of the ecozones, histograms
created from SM anomalies at 3, 5, and 7 days prior to the fire show a negative shift suggested that the
satellite-based SM products were sensitive to surface drying prior to the occurrence of the wildfire.
We would recommend further evaluation of these products over Canada, particularly if they are
integrated into operational models.
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