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Abstract: The free open access data policy instituted for the Landsat archive since 2008 has
revolutionised the use of Landsat data for forest monitoring, especially for estimating forest
aboveground biomass (AGB). This paper provides a comprehensive review of recent approaches
utilising Landsat time-series (LTS) for estimating AGB and its dynamics across space and time.
In particular, we focus on reviewing: (1) how LTS has been utilised to improve the estimation of AGB
(for both single-date and over time) and (2) recent LTS-based approaches used for estimating AGB
and its dynamics across space and time. In contrast to using single-date images, the use of LTS can
benefit forest AGB estimation in two broad areas. First, using LTS allows for the filling of spatial
and temporal data gaps in AGB predictions, improving the quality of AGB products and enabling
the estimation of AGB across large areas and long time-periods. Second, studies have demonstrated
that spectral information extracted from LTS analysis, including forest disturbance and recovery
metrics, can significantly improve the accuracy of AGB models. Throughout the last decade, many
innovative LTS-based approaches for estimating forest AGB dynamics across space and time have
been demonstrated. A general trend is that methods have evolved as demonstrated through recent
studies, becoming more advanced and robust. However, most of these methods have been developed
and tested in areas that are either supported by established forest inventory programs and/or can rely
on Lidar data across large forest areas. Further investigations should focus on tropical forest areas
where inventory data are often not systematically available and/or out-of-date.

Keywords: Landsat time-series; forest aboveground biomass; biomass dynamics; change detection

1. Introduction

Landsat satellites are unique in that they have created the longest continuously acquired, consistent
space-based and moderate-resolution data collection since 1972. To date, nine Landsat missions have
been developed and operated by the United State Geological Survey (USGS). While the Landsat
missions 1-4, launched during 1972-1982, acquired data for several years (5-10 years), Landsat 5
delivered high quality, global data across the Earth’s land surface for nearly 29 years (1984-2013).
Following the failure of Landsat 6 in 1993, Landsat 7 and Landsat 8 were launched in 1999 and 2013,
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respectively, and continue to provide satellite data [1]. The new Landsat 9 is being developed, with a
scheduled launch by December 2020 [2]. The entire historical Landsat archive has been opening for
public access since 2008 [3]. As such, the Landsat archive has become one of the most valuable and
cost-effective remotely sensed data sources supporting worldwide land/forest research and monitoring
activities. Landsat time-series (LTS) data provide two essential elements for ecosystem monitoring:
spatial and temporal dimensions. The spatial dimension is at an adequate scale that allows the
capture of both natural and anthropogenic impacts across large areas. The temporal dimension enables
retrospective analyses and characterisation of changes across more than 4 decades (slightly more or
less in certain areas pending on data availability) captured by successive Landsat sensors [4].

Forest biomass is a key focus of environmental monitoring concerning global biogeochemical
cycles and loss of biodiversity. Field methods are the most accurate approach to estimate forest biomass.
However, they are unsuitable for calculating biomass across large areas and time periods due to their
lack of spatial and temporal coverage, especially for large jurisdictions or remote areas [5,6]. Airborne
lidar surveys (ALS) have also been used to map forest aboveground biomass (AGB) [7,8]. However,
ALS generally tends to represent only a partial sample in space and time [9]. As an alternative,
multispectral satellite-based Earth Observations, such as Landsat imagery, can be used for estimating
forest biomass across large areas due to their wide spatial and temporal coverage. Forest AGB and
Landsat spectral data are highly correlated [10,11]. AGB and its dynamics are often estimated by
combining Landsat images with reference data extracted from field inventory plots. Traditionally,
such studies often only used single-date Landsat images to estimate forest AGB at a single or limited
number of points in time [12]. The free data policy of the Landsat archive has opened a new era for
forest applications, deriving many variables, including AGB [4]. LTS has been increasingly used for
large area estimation of AGB over time. This paper aims to provide the remote sensing and forest
research communities with a critical review of recent approaches utilising LTS for estimating AGB and
its dynamics across space and time. In particular, we address the following questions:

1.  How has LTS been utilised to improve the estimation of AGB?
2. What LTS-based approaches have been demonstrated as useful for estimating AGB and its
dynamics across space and time?

We first provide a brief review of preprocessing and forest change detection methods for LTS and
then focus on answering the above two questions. The first question is addressed by reviewing studies
using LTS for estimating AGB, for both a single-date and multiple-dates. The second question is
answered by reviewing only studies using LTS for estimating and characterising AGB and its dynamics
over time.

2. Advanced Preprocessing and Change Detection Methods for LTS

Recent studies have included comprehensive reviews on preprocessing and change detection
methods for LTS [13-15]. For example, Hansen and Loveland [15] reviewed methods for processing
LTS for large area land cover change monitoring. Zhu [13] reviewed frequencies, preprocessing and
algorithms for change detection using LTS. In this section, we briefly summarise recent methods used
for LTS preprocessing and forest change detection that facilitate estimation of AGB and its dynamics.

2.1. Robust Preprocessing Methods

Throughout the last decade, many advanced methods have been developed for preprocessing
LTS data in order to provide high quality inputs for forest modelling processes. Preprocessing
a LTS often includes the following steps: radiometric, geometric and atmospheric corrections,
clouds/shadows detection and masking, inter-sensor harmonization, and image compositing. Landsat
Level 1 terrain-corrected images have been often used to form a time-series [13]. Radiometric and
geometric corrections have been performed on these products, making them suitable for time-series
analysis [16]. During 2016-2018, the Landsat archive was reorganised into a formal tiered data
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collection structure to effectively support long-term LTS “stacking” and analysis (over 40 years) [17].
The new structure manages all Level 1 products in a consistent archive with known data quality.
All Landsat acquisitions are stratified into three categories based on data quality: Tier 1, Tier 2, and
Real-Time. Tier 1 includes Level 1 Precision and Terrain (L1TP) corrected images that have the highest
geometric and radiometric quality (an image-to-image registration accuracy of <12-m Root Mean
Square Error (RMSE), USGS [17]). Images in this Tier are considered the most suitable for time-series
applications. Unfortunately, a large amount of Landsat 1-5 Multispectral Scanner (MSS) images cannot
achieve the Tier 1 geometry specification due to less accurate orbital information, insufficient ground
control, and other factors including a lack of MSS observations [18]. As a result, LTS relying on Tier 1
products may contain gaps due to the unavailability of high-quality MSS images across some areas
and time periods. To address this issue, some studies improved the initial geo-registration of MSS
images in Tier 2 (i.e., L1TP with RMSE > 12 m, Systematic Terrain (L1GT) and Geometric Systematic
(L1GS) corrections) using some external procedures, which may include some manual steps [19].

Traditionally, atmospheric correction has been conducted using various approaches such as:
relative normalization (adjusting the radiometry of other images based on a reference image) [20], the
Dark-Object Subtraction (DOS) [21], and the Satellite Signal in the Solar Spectrum (6S) [22]. However,
these methods often require many manual and complex steps which hinder the processing of large
amount of LTS [13]. Recently, two algorithms are being implemented for automatic atmospheric
correction: the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) [23] for
Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+), and the Land Surface
Reflectance Code (LaSRC) [24] for Landsat 8 Operational Land Imager (OLI) images. LEDAPS and
LaSRC have been used to generate surface reflectance images from Landsat Level 1 products that are
currently provided on the USGS archive for public access (identified as Landsat Level 2 products).
These surface reflectance products have been increasingly used in recent LTS applications as they
are robustly pre-processed [13]. Another benefit of using surface reflectance images is that they are
provided with high quality cloud/shadow detection products. Cloud/shadow in LEDAPS and LaSRC
products are detected using the CFMask algorithm, originally known as FMask developed by Zhu and
Woodcock [25]. This algorithm is widely confirmed to provide a higher accuracy of cloud/shadow
detection than other methods. While surface reflectance and cloud/shadow masks for TM, ETM+ and
OLI images are consistently created and available on the USGS archive, additional preprocessing steps
are required to derive these data from MSS images. MSS surface reflectance images are often calculated
using the COST method [26], while cloud/shadow can be identified using the MSS clearview-mask
(MSScvm) algorithm [27].

A challenge of LTS analysis is harmonising the different spectral, spatial, and radiometric
resolutions of Landsat sensors. Most LTS studies utilise images acquired by TM and ETM+
sensors (1984—present) for their time-series analyses since they have similar spatial and spectral
characteristics [19]. Utilising the full temporal record of Landsat data (including MSS and OLI data) is
valuable for characterising forest dynamics, but it requires additional processing to normalise and
incorporate multi-sensor images into a consistent time-series [12,28]. Several inter-sensor harmonization
approaches have been recently demonstrated to expand the utility of the Landsat archive for forest
dynamics applications. Vogeler, Braaten [19] presented an automated method, called LandsatLinkr, for
calibrating Landsat MSS and OLI images to the spatial and spectral profiles of TM and ETM+ images.
LandsatLinkr normalises MSS images to the TM images by modelling TM Tasseled Cap (TC) indices
from the four MSS surface reflectance bands using multiple linear regression. Regression models
are developed based on the relationship between coincident MSS and TM images simultaneously
acquired by Landsat 4-5 between 1982 and 1992. They are then applied to normalise all MSS acquired
by Landsat 1-3 (back to 1972). A similar approach is deployed in LandsatLinkr for harmonising OLI
images to ETM+ images.

Given the limited availability of cloud-free Landsat data in many forested areas, image compositing
is an important process for supporting AGB predictions, especially temporal predictions (see Section 3).
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This process leverages the extensive LTS data to create cloud-free and radiometrically consistent
composite images that are spatially contiguous over large areas. Image compositing is also useful
for reducing data volume and minimizing atmospheric influences. Since the opening of the Landsat
archive in 2008, several pixel-based approaches have been developed for generating composite images
from Landsat data. A robust method commonly used in LTS applications is the Best Available Pixels
(BAP) compositing, developed by White, Wulder [29]. This method determines the BAP within a
compositing window/interval (e.g., annual, season or month) using pixel-scoring functions including
pixel-based scoring for sensor, acquisition date, distance to cloud/shadow, and atmospheric opacity [30].
Zhu, Woodcock [31] demonstrated an approach for generating daily clear-sky synthetic images from
all available Landsat data by developing time-series models for each pixel and each spectral band.
Other approaches such as using maximum, mean or median values of Landsat bands and indices are
also used for Landsat image compositing [32-34].

2.2. Vegetation Change Detection Using LTS

Having knowledge of the spatial and temporal patterns of forest disturbance and recovery is
crucial to improving the accuracy of AGB estimates and associated dynamics (Sections 3 and 4). Forest
disturbances can be abrupt or subtle events caused by natural hazards such as wildfires, drought,
and insects or human activities such as logging and mining [35]. In contrast, forest recovery is
an ongoing process that can occur naturally through vegetation succession or artificially through
forest management [36]. The ability of LTS to capture changes occurring in forests has been widely
demonstrated, with various methods developed to characterise forest disturbance and recovery. In a
recent review, Zhu [13] categorized LTS change detection methods into six broad groups based on
the algorithms used for detecting changes (e.g., differencing, thresholding, trajectory classification,
regression, statistical boundary and temporal segmentation). Of these, thresholding, statistical
boundary and temporal segmentation have been the most commonly used. Table 1 lists some popular
algorithms based on those three methods. These pixel-based algorithms have proven to be capable
of detecting changes across large areas and long time-periods. In addition, they are fully automated,
publicly available and well documented algorithms.

Table 1. Common publicly available and automated change detection algorithms using LTS. See
Table Al for a description of spectral indices.

. Temporal .
Algorithm Method Frequency Spatial Scale Change Index Change Type
Vegetation Change Tracker Thresholding Annual Pixel Integrated Forest Z-score (IFZ) Abrupt
(VTC, [37])
Continuous Cha.n.ge ]?etectlon Statistical All available . Abrupt,
and Classification boundar images Pixel Landsat spectral bands radual
(CCDC, [38]) Y g g
Breaks for addl'tlve Season Statistical All available . Normalized difference Abrupt,
and Trend Monitor (BFAST boundar ima Pixel vegetation index (NDVI) radual
Monitor, [39]) ° y ges egetation inde g
Normalized burn ratio (NBR),
Landsat-based detection of Temporal NDVI, TC components Abrupt
Trends in Disturbance and pora Annual Pixel (Brightness (TCB), Greenness PY
segmentation gradual

(TCG), Wetness (TCW)),
spectral bands

Recovery (LandTrendr, [40])

The VCT is a threshold-based algorithm. It calculates IFZ as a forest probability index for each
Landsat pixel in a time-series and determines an IFZ threshold to detect forest disturbance (pixels with
an IFZ value smaller than the defined threshold are considered as disturbance) [37]. VCT provides
information about abrupt disturbances on an annual scale using an annual LTS. In contrast, CCDC
and BFAST Monitor estimate a statistical boundary for the entire time-series and define changes
as significant differences from the boundary [25,39]. Both of these algorithms utilize all available
Landsat images and are designed to detect both abrupt and gradual forest change. NDVI is often
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used with BFAST Monitor while CCDC runs on all Landsat spectral bands. LandTrendr is a temporal
segmentation algorithm utilising an annual LTS. This algorithm fits the spectral trajectory of each pixel
to a series of straight-line segments to capture multiple change events as well as the overall trend of
the trajectory over time. Land Trendr is capable of detecting both abrupt and gradual changes at an
annual timescale. Although NBR is often used as the change index for LandTrendr, other vegetation
indices (such as TC components and NDVI) and spectral bands have also been deployed [41,42].
The robustness of LandTrendr has been demonstrated across various contexts including different
geographical regions, forest types and disturbance regimes [13,14]. The algorithm has been recently
implemented on the Google Earth Engine platform, offering a consistent and quick approach for
mapping forest disturbance and recovery from LTS data [43].

The utility of a change detection technique is dependent on its ability to detect and distinguish
real changes (or changes of interest) from apparent changes caused by variations in background
signal or noise [42]. Studies have demonstrated that high-impact or stand-clearing disturbances
and subsequent recovery can be accurately detected from LST analysis. Whereas, changes caused
by medium/low-impact disturbances (such as selective logging and droughts) are more difficult to
distinguish and characterise [44]. Therefore, the selection of the most appropriate change detection
algorithm for a specific application is challenging and dependent on multiple factors including target
changes and the temporal density of LTS used. VTC mainly targets abrupt, high magnitude forest
disturbances while CCDC and LandTrendr target a broader range of forest changes (both discrete
and gradual changes, and both disturbance and recovery processes). Generally, methods requiring
a higher density of LTS (i.e., CCDC and BFAST Monitor) are often computationally expensive and
require long-processing times and substantial data storage. In many instances, an annual LTS should
be the most suitable temporal scale for mapping forest changes as it allows for the tracking of both
abrupt and gradual change without requiring as much processing effort. But regardless of the choice,
a benefit of using automate change detection algorithms is that they can robustly produce a suite
of spectral change metrics representing trends of forest disturbance and recovery. Change metrics
are often utilised in many applications such as attributing disturbance levels and causal agents and
improving forest biomass estimates [12,45-47].

3. How Has LTS Been Utilised to Improve the Estimation of AGB?

Since the opening of the Landsat archive in 2008, LTS data have been increasingly used for
estimating forest AGB over large areas, and not only for a static date but also for multiple points in time.
The contribution of LTS to improvements in forest AGB estimates has been demonstrated in a wide
range of contexts. In Table 2, we summarise the benefits of using LTS for forest AGB estimation into
two broad categories: (1) filling spatial and temporal data gaps in AGB predictions and (2) improving
the accuracy of AGB modelling.

Table 2. Benefits of using LTS to improve the estimation of forest AGB (both single-date and over time).

Benefit Specific Improvement/Finding Reference

Image composites derived from LTS are
necessary for spatially complete estimations of

AGB over large areas, regardless modelling Zald, Wulder [48]; Matasci, Hermosilla [49]

approach adopted
Filling spatial and. Demonstrating the utility of LTS-derived image Boisvenue, Smiley [50]; Matasci,
temporal data gaps in o . oo - . .
AGB predicti composites in consistently monitoring AGB over Hermosilla [51]; Kennedy, Ohmann [9];
predictions long time-periods (20-40 years) Nguyen, Jones [52]

Utilising LTS-derived image composites for AGB ~ Morel, Fisher [53]; Frazier, Coops [54]; Wilson,
predictions in different contexts Knight [55]; Nguyen, Jones [56]

Filling spatial and temporal data gaps in LTS

using a pixel-based temporal fitting process Deo, Russell [57]; Deo, Russell [58]
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Benefit

Specific Inprovement/Finding

Reference

Improving the accuracy
of AGB modelling

Using disturbance and recovery metrics derived
from LTS can improve the accuracy of AGB
predictions in comparison with using single-date
images

Pflugmacher, Cohen [28]; Pflugmacher,
Cohen [12]

Quantifying the capacity of LTS-derived change
metrics for estimating forest AGB

Frazier, Coops [54]

Demonstrating the utility of LTS-derived change
attributions (e.g., disturbance severity and agent)
in modelling forest structure and AGB

Zald, Ohmann [59]; Zald, Wulder [48]; Nguyen,
Jones [56]; Bolton, White [60]

Forest age derived from LTS can improve forest
AGB estimates

Lefsky [61]; Liu, Peng [62]

Identifiers of temporal patterns in spectral
trajectories provide improvements in modelling
and explaining historical AGB dynamics

Gomez, White [63]

Seasonal NDVI time series improving AGB
estimations compared with a single-date NDVI

Zhu and Liu [64]

Fitted LTS data improving the accuracy of AGB
predictions compared with raw/observed data.

Deo, Russell [58]

A pixel-based temporal fitting process improves
the temporal consistency of AGB predictions.

Matasci, Hermosilla [51], Deo, Russell [58];
Kennedy, Ohmann [9]

3.1. Filling Spatial and Temporal Data Gaps in AGB Predictions

Forest AGB is commonly estimated using high quality Landsat images (i.e., cloud-free observations)
from small areas e.g., [65-74]. However, when larger areas and long time-periods are desired, it
can be challenging to find cloud-free Landsat data, resulting in spatial and temporal gaps in AGB
prediction maps. This prohibits creation of wall-to-wall AGB maps over large areas (i.e., across
multiple Landsat scenes) and/or multiple points in time. LTS data provide an opportunity to overcome
these limitations by computing image composites (Section 2.1). Image compositing methods rely on
selecting representative pixels (e.g., via BAP) from a series of images rather than the best available
scene [29]. Landsat image composites are increasingly used to support the development of spatially
and temporally complete predictions of forest AGB (Table 2). Zald, Wulder [48] indicated that Landsat
pixel-based composites are important for improving the quality of AGB predictions over large areas,
regardless of the modelling technique and training data used. Matasci, Hermosilla [49] demonstrated
the utility of Landsat composites for extending localised concept studies to the national scale by creating
spatially explicit estimates of AGB across 552 million ha of Canadian boreal forests. The authors also
extended their work to estimate AGB dynamics across three decades (1984-2016) [51]. Despite the
significant increase in the number of cloud-free observations, following the launch of Landsat 8 in 2013
(and Landsat 9 expected in 2020), LTS-based image composites will remain essential for forest AGB
monitoring across large areas and long-time periods, especially for regions with persistent cloud and
snow cover [29,48].

Pixel-based temporal fitting is another process that can be performed on LTS to fill (or further
fill) spatial and temporal data gaps [48,58,75]. This process results in a “smoothed” or “stabilized”
temporal trajectory for each Landsat pixel, filling data gaps (i.e., no data observations) and removing
noisy pixels (due to unscreened cloud/shadow). Pixel-based temporal fitting can be used for filling not
only spatial gaps but also temporal gaps resulting from the unavailability of Landsat data at some
points in time. For example, Deo, Russell [58] applied a pixel-level curve fitting approach to a LTS of 17
cloud-free images representing 26 years (1986—2011) to obtain fitted images for years where cloud-free
images were not available. Pixel-base temporal fitting for a LTS can be conducted using curve fitting
tools [58] and temporal regression or segmentation algorithms such as LandTrendr [9,52].
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3.2. Improving the Accuracy of AGB Modelling

While a pixel-based temporal fitting process can be used for filling data gaps, a more important
purpose of this analysis is to minimize temporal noise/variations (due to exogenous factors such as
sun angle, phenology and atmosphere) at the pixel-level of LTS [9,51,57-59,76,77]. It is demonstrated
that this process enables the consistent implementation of a statistical model over time and improves
the accuracy of biomass predictions (Table 2). The use of calibrated predictor values is the key factor
enabling the consistent implementation of a statistical model across both space and time [20]. Advanced
developments in image pre-processing (Section 2.1) facilitate the generation of normalized time-series
images with minimal data gaps and a consistent radiometric response. This established a foundation
for estimating forest AGB measurements through time [51]. However, modelling continuous forest
attributes such as AGB can be negatively impacted by residual temporal noise or variations existing
in Landsat pixel-level spectral trajectories [28,48,57,58]. Thus, a pixel-based temporal fitting process
is necessary to mitigate temporal fluctuations and thus improve the temporal coherence in AGB
predictions. Deo, Russell [58] demonstrated that using spectral data (i.e., spectral bands and indices)
extracted from a fitted LTS can improve the accuracy of AGB predictions (RMSE = 47.64 Mg-ha™!)
in comparison with using observed data (RMSE = 54.18 Mg-ha™!), as the temporal noise has been
removed through a fitting process.

Pixel-based temporal fitting analysis captures spectral changes and trends of forested pixels (due
to forest disturbance and recovery processes) over time [37,38,40,42,78]. It is widely confirmed that
LTS-derived change metrics characterising the patterns of forest disturbance and recovery can improve
the accuracy of AGB estimates (Table 2). An early example of this application showing the utility
of disturbance and recovery metrics derived from an annual LTS analysis (1972-2010) in predicting
forest AGB is presented by Pflugmacher, Cohen [28]. Spectral change metrics such as disturbance and
recovery onset years, duration, magnitude, and time since disturbance (TSD), pre- and post-change
conditions were derived from a temporal segmentation analysis using the LandTrendr algorithm [40].
The study compared LTS-based models with traditional modelling approaches which rely on single-date
Landsat imagery and Lidar data. They found that forest disturbance and recovery metrics substantially
improved the accuracy of model predicting AGB of live trees (R? = 0.80, RMSE = 46.9 Mg-ha™!) in
comparison with single-date Landsat data (R?> = 0.58, RMSE = 65.1 Mg-ha™!). Moreover, LTS-based
models were significantly better in predicting AGB of dead trees (R? = 0.73, RMSE = 31.0 Mg-ha™!)
than Lidar and single-date models (R?2 =0.21, RMSE = 43.8 Mg-ha‘1 ; R2 =0.00, RMSE = 47.8 Mg-ha‘l,
respectively). The capacity of LTS-derived change metrics for estimating forest attributes, including
AGB, was further quantified by Frazier, Coops [54]. In this study, a number of disturbance and
recovery metrics (both simple and complex metrics) were calculated from LandTrendr-derived spectral
trajectories of TC components (TCB, TCG and TCW). Eleven RF models were then tested based on
different groups of predictor variables to investigate the importance of change metrics for estimating
forest biomass. The study concluded that simple change metrics (such as change onset year, duration
and magnitude, pre- and post-change values) have more predictive power than complex metrics (such
as longest recovery, year to year change rates, and last monotonic trends). In addition to spectral
change metrics, change attributions derived from LTS such as disturbance type (or causal agent)
and severity level have been recently used as predictor variables for forest AGB modelling [9,49,52].
These metrics can contribute to the improvement of prediction accuracy by distinguishing pixel-level
spectral conditions. For instance, pixels can experience a similar spectral change magnitude, at the
same point in time, but different casual agents (e.g., fire and logging), resulting in different forest
structure and biomass [47,59]. The utility of other LTS-based change metrics such as forest age has
also been demonstrated in different contexts [61,62]. Liu, Peng [62] found that including LTS-derived
forest age significantly improved the accuracy of AGB model when compared to using spectral indices
only (R? value increased from 0.50 to 0.73). The use of LTS change metrics in AGB estimation has
been facilitated by developments in change detection algorithms (Table 1) and innovative cloud-based
methods, such as the integration of the Land Trendr algorithm on Google Earth Engine [43].
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As an exception, Gomez, White [63] used “dynamic” variables extracted from LTS pixel trajectories
instead of spectral change metrics. “Dynamic” variables included transformed spectral trajectories and
temporal derivatives associated with those trajectories. These variables were derived as identifiers of
temporal patterns in spectral trajectories using two-dimensional (2D) wavelet transforms of an ordered
system. The study demonstrated that “dynamic” variables provided some improvements in modelling
and explaining historical AGB variability. However, the extraction of such “dynamic” variables is
dependent on the availability of re-measured AGB data.

Though most applications use an annual or near-annual LTS, some studies have demonstrated
the potential of using a higher temporal density LTS to improve the estimation of forest AGB [64,79].
Zhu and Liu [64] explored the use of seasonal LTS and found that seasonal NDVI time-series can
improve the accuracy of AGB estimations compared with a single-date NDVI (R? = 0.54 vs. R? = 0.42).
The study also indicated that NDVI in the fall season (September and October) has stronger correlation
with AGB (R = 0.64) than in the peak season (June, R = 0.46). Nguyen, Jung [79] used LTS to estimate
seasonal AGB for mixed coniferous forests in South Korea. Results from this study indicated that using
Landsat images in summer (August) can provide more accurate estimation of forest AGB than using
images from other seasons, although seasonal accuracies were relatively stable. The utility of using high
temporal LTS (i.e., seasonal or denser scales) should be further investigated across different contexts.

4. What LTS-Based Approaches Have Been Demonstrated for Estimating AGB and Its Dynamics
across Space and Time?

In this section, we review recent studies using LTS data as inputs for estimating forest AGB and its
dynamics across space and time (Table 3). Of note, all studies investigated boreal and temperate forests
in North America (US and Canada) and Europe, none of them was conducted in tropical forests. Study
areas ranged from regional scales (several Landsat scenes) to continental scales such as over 650 million
ha of Canadian forests [51]. Commonly investigated periods ranged from 20 to 40 years. Most of the
studies used Landsat TM/ETM+ data to form a LTS stack (starting in the 1980s) while few of them
utilized MSS data to extend the time-series further back to 1972 [12,62]. Studies often developed LTS
stacks at an annual timescale using cloud-free observations or image composites. However, multi-year
epochal or seasonal-scale approaches were also used in some applications. In addition, all studies
estimated historical AGB, except Ma, Domke [80] who made AGB future projections.
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Table 3. A summary of studies that used LTS-based approaches for estimating forest AGB dynamics. See Table A1 for a description of spectral indices.

Accuracy Assessment

Ecosystem Modelling Approaches Predicting AGB and Its Dynamics
Study (Year) . LTS Stack isi
Location Explanatory Data Reference Data Modelling Technique Te“.‘p oral Characterlslr.lg AGB
Estimates Dynamics
-Six spectral bands; L
. -Spectral indices: NDVI, Reduced Major Axis -Smoothing AGB _M.Odd C.ross—vahdatlon
Coniferous and . . . . S using withheld FI plots
. R Annual TCB, TCW, TCG, TC regression, Gradient trajectories using linear Lo
Powell, mixed forests in ; s . . . -Validating AGB change
cloud-free angle (TCA), TC distance  Field inventory Nearest Neighbour segmentation algorithms . .
Cohen [81] northern . . . . - Annual using re-measured field
(2010) Arizona and images (TCD), disturbance index (FI) plots (GNN) imputation (k = 1), to detect changes lots
. (1985-2006) (DI); Random Forest (RF) -Creating forest AGB p
Minnesota, US . - . . -Comparing scene-level
-Topographic and climatic regression disturbance maps . .
variables. AGB trajectories
-Smoothing AGB
trajectories using
nt I;a?icrllTr?g]ra 1 -Model assessment using
. egrating b 088 out-of-bag (OOB) errors
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As shown in Table 3, many LTS-based approaches for estimating and characterising forest AGB
dynamics have been carried out in different contexts and they have become more advanced and robust
over time. A conceptual diagram for estimating AGB dynamics from LTS is shown in Figure 1. LTS
data are processed to extract explanatory variables (e.g., spectral indices and change metrics). These
are then used in a modelling framework as predictor variables along with reference data (derived
from forest inventory or Lidar-based plots). The implementation of this step results in predictions of
AGB across space and time. Patterns of AGB dynamics are often characterized by integrating AGB
changes with forest disturbance and recovery history, which are normally derived from LTS. Accuracy
of predictions is often assessed using independent field plots or Lidar-based AGB data. A few studies,
however, followed other approaches (e.g., Ma, Domke [80] and Zhang, Lu [84]) to directly predict AGB
dynamics from LTS (Table 3).

Reference data
(forest inventory and/or
Lidar-based plots)

Landsat time-series (LTS)

Time-series analysis

(prepossessing, change
detection)

Y Y
: LTS-derived explanatory data

Forest disturbance i p ¥ e

+ Spectral indices Statistical

and recovery : :
+ Time-series change/trend models
maps :
metrics

AGB estimations across
space and time

> AGB change analysis

Figure 1. A common concept for estimating AGB dynamics using LTS data.

K

Accuracy
assessments

A

Spatial and temporal
patterns of AGB
dynamics

4.1. Modelling Approaches

4.1.1. Explanatory Data

Explanatory data used for multi-temporal AGB modelling generally include three groups of
variables: (1) Landsat image-based spectral variables (i.e., Landsat surface reflectance bands, vegetation
indices, band ratios, and texture metrics), (2) LTS-derived spectral change/trend metrics and (3) other
ancillary data such as topographic and climatic layers (Table 3).

Image-based spectral variables are key predictors for estimating forest AGB from Landsat data.
These tend to incorporate the near-infrared (NIR) and shortwave infrared (SWIR) wavelengths such
as TM/ETM+ band 5, OLI band 6, NBR, NDVI and EV], given they often have strong relationships
with observed AGB values [10,85]. The TC transformations, including TCB (overall reflectance), TCG
(contrast between NIR and visible reflectance), and TCW (contrast between NIR and SWIR) [86-89], are
also used due to their abilities in revealing key forest attributes, including AGB [28,54,85,90]. In addition
to indices directly derived from Landsat bands, the use of LTS has facilitated the introduction of
some pseudo/integrated spectral indices that are useful for AGB modelling, such as TCA, TCD, DI
and IFZ (see Appendix A for descriptions). These indices are often used with an assumption that
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using an integrated index may provide more useful information than using a group of individual
indices. Healey, Cohen [91] showed that using DI alone provided better results in a land cover change
analysis than using a group of TC components or TM reflectance bands. Since first introduced by
Powell, Cohen [81], TCA, a combination of TCB and TCG, has been utilised as an important predictor
for estimating forest AGB dynamics in a wide range of research contexts (Table 3). Though IFZ
(representing the likelihood of a pixel being forested) was initially used for forest change detection [37],
it has been used for AGB modelling in some recent studies [57,58,80]. According to Deo, Russell [58],
this metric provides a normalized predictor that can significantly reduce the spatial and temporal
variability of spectral signatures caused by atmospheric conditions and sensor issues, improving the
accuracy of AGB predictions. However, the utility of this index in estimating forest AGB has only
been demonstrated in deciduous and coniferous forests (North America) and thus needs to be further
investigated in other forested areas.

In the context of estimating forest AGB over time, the selection of spectral indices is not only
dependent on their relationship with observed AGB values but also their ability to capture the forest’s
history of disturbance and recovery. Among reviewed studies (Table 3), spectral indices such as
NBR, NDVI, TCW and TCA are the most popular given their sensitivity to changes occurring in
forests. These indices are often analysed through a temporal fitting process to extract forest disturbance
and recovery metrics that contribute to the improvement of AGB predictions (Section 3). Another
consideration when selecting spectral indices for estimating forest AGB over time is which sensors
are being used. Studies utilising MSS data often relied on simple band ratios [62] or modelled TC
indices [12]. Some spectral indices that are useful for AGB estimation and forest change detection such
as NBR cannot be calculated from MSS images due to the lack of SWIR bands. This suggests that the
inclusion of MSS data in LTS should be specifically considered for each case study. Spectral indices
that are the most important for AGB estimation, and also the most sensitive to forest change, should be
determined before processing MSS data. If selected indices are not available from MSS data, then the
inclusion of MSS images can negatively impact temporal predictions of forest AGB.

Forest AGB estimates can be enhanced by incorporating spectral change metrics representing
disturbance and recovery trends prior to the prediction date (Table 2, Section 3). However, the use of
disturbance and recovery metrics for multiple-date AGB predictions is different from a single-date
estimation. A single-date estimation can utilise temporal trends extracted from the full length of LTS.
In contrast, when estimating AGB over multiple dates, the length of LTS diminishes as the prediction date
moves further back in time and consequently, change metrics contain less information on disturbance
and recovery which may negatively impact prediction accuracy [12]. Pflugmacher, Cohen [12] found
that model accuracy gradually reduced when decreasing the length of LTS. Furthermore, they noticed
that the appropriate length of LTS needed to derive meaningful change metrics is dependent on
the disturbance frequency and intensity of a given study area (in their case between 10-20 years).
Gomez, White [63] demonstrated that 15-25 years is sufficient for identifying significant temporal
patterns in spectral trajectories to support AGB estimates in pine forests, Spain. This suggests that
the balance between the prediction accuracy and the required temporal density will depend on
the specific application. If only periodic dates are required for making predictions (e.g, more than
10 years), spectral disturbance and recovery metrics should be included to optimize the accuracy of
biomass predictions. In contrast, if predictions are required at higher temporal densities (e.g., annual),
single-date predictor variables should be used to maintain the temporal accuracy. Recent studies have
incorporated some change attributions, such as disturbance causal agents and TSD, in annual modelling
of forest biomass [9,51,52,62]. Though the predictive power of these metrics is normally not significant,
they can benefit AGB modelling by distinguishing pixels with similar spectral information [48].

In addition to LTS-based variables, ancillary data such as topographic and climatic information
are often included in AGB estimating across large areas (Table 3). The importance of these variables
for predicting AGB has been widely highlighted given topographic and climatic conditions are often
diverse over large areas, resulting in different forest ecosystems.
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4.1.2. Training Data

For predicting AGB across space and time, LTS data need to be combined with plot training data.
Studies often use two main sources of AGB training data: forest inventory and Lidar-based plots.
Observed AGB estimates are often directly calculated from forest inventory plots using species-based
allometric relationships between tree metrics and their biomass. On the other hand, Lidar-based AGB
plots are predicted through a modelling process that combines Lidar with forest inventory data.

Forest inventory is the most common source of AGB reference data. A significant benefit of using
forest inventory plots is that they provide the most accurate observations of AGB. Unfortunately, the
number of available field plots is often limited across large and remote areas. When developing a
LTS-based model, inventory plot data collected from multiple points in time and data sources can be
incorporated, increasing the sample density for AGB modelling. For example, Kennedy, Ohmann [9]
integrated all available plots from several inventories surveyed during 1991-2011 into a database of
4318 plots with 8454 measurements. The authors then developed a monolithic model to estimate
annual AGB by combining the plot database with LTS data (extracting spectral values from image dates
coinciding with plot measurement dates). In another study, Boisvenue, Smiley [50] used 1381 field
plots across Saskatchewan, Canada (originating from 1949) and LTS data to estimate AGB dynamics
from 1984 to 2012. It is important to note that uncertainties arising from ingesting different data sources
need to be carefully considered given the inconsistency in inventory methods including plot sizes and
survey techniques [9,50]. The use of forest inventory data is also dependent on modelling methods
used for estimating AGB dynamics. Some approaches rely on data from remeasured plots which are
often not available in many forested areas [50,80,84].

Airborne Lidar data provide the most accurate remote sensing-based predictions of forest AGB, but
they are often not available wall-to-wall and over time given high acquisition costs and computational
requirements. Alternatively, recent studies often employ airborne Lidar data as a sampling tool to
improve the efficiency of forest inventory data. Sample-based Lidar plots can significantly increase
the number of accurate samples of AGB estimates in areas without sufficient field inventory data [92],
reducing the variability in plot-level AGB values. Lidar-based plots can be used as an alternative for
training models based on LTS data, which are temporally and spatially complete [48,49].

The utility of Lidar-based plots in estimating forest AGB dynamics has been demonstrated in
several studies (Table 3). Pflugmacher, Cohen [12] used airborne Lidar to sample a wide range of
forest disturbance histories, as an alternative of 51 field plots within their study area. Lidar-based
AGB plots were then combined with LTS data for large-area modelling of annual forest AGB over
38 years (1972-2009). Matasci, Hermosilla [51] extracted nearly 85,000 Lidar plots from 34 survey
transects across Canadian forest ecosystems and integrated these plots with LTS to produce annual
AGB estimates and related dynamics from 1984 to 2016 at the national scale. However, Lidar-based
AGB predictions contain uncertainties that should be considered when describing the uncertainties in
Landsat-based predictions [12,48]. Although Lidar data often show a strong relationship with observed
AGB values, the consequences of introducing additional uncertainty into Landsat-based AGB maps
need to be further investigated. Furthermore, Lidar-based plots are often spatially constrained by
Lidar transects, which may not cover the full range of the forest population (e.g., transects may not
be systematically distributed across different forest types). This will add more uncertainty into AGB
predictions, especially in the case of a kNN imputation model, with k = 1, being used (i.e., predicted
values cannot exceed the range of sample dataset) [48]. Another limitation is that Lidar-based plots
cannot provide species composition information due to the lack of tree measurements; therefore, they
cannot be used when deriving species specific AGB estimates.
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4.1.3. Statistical Modelling Technique

Various techniques have been deployed for modelling AGB across space and time. These can
be grouped into three broad model types: parametric regression, nonparametric regression and
nonparametric imputation. Parametric regression is a traditional method for estimating AGB based on
remote sensing, which finds the linear relationship between observed AGB and predictor variables.
Few studies opt for this method (Table 3), given it is known to overestimate and underestimate low and
high AGB values, respectively. Furthermore, Powell, Cohen [81] and Zhang, Lu [84] compared different
empirical approaches for modelling AGB dynamics from LTS and both found that regression models,
such as Linear Regression and Reduced Major Axis, provide less accurate results than non-parametric
methods such as Random Forest (RF) and Gradient Boost Regression Tree.

Non-parametric approaches are increasingly used to derive forest structural attributes from remote
sensing data as they do not have restrictive assumptions on the data analysed. Two nonparametric
regression approaches commonly used for modelling AGB dynamics are regression trees and kNN [93]
(Table 3). Regression tree methods are widely used for forest applications due to their tremendous
analytical and operational flexibility. RF is a regression tree algorithm widely used for forest modelling.
It is an ensemble learning algorithm that develops a number of small regression trees that vote on
predictions. Each tree is constructed from a random subsample from the original dataset and nodes on
trees are split using a random subset of predictor variables [94]. RF is capable of accounting for complex
and non-linear relationships among variables, and robust in preventing over-fitting. An advantage of
using RF is that it can handle a large number of variables/metrics extracted from LTS data. In addition
to RF, other regression tree algorithms such as Decision tree (known as CART) and Gradient Boost
Regression Tree have also been used for modelling AGB dynamics [63,84]. kNN regression predicts
the AGB value for a target sample (pixel) as the mean of the k most similar reference samples, defined
using a distance metric. Although it is a commonly used modelling method for forest applications [95],
few studies have used kNN regression for estimating AGB over time based on LTS [79]. Nevertheless,
Wilson, Knight [55] demonstrated that KNN regression and RF produced comparable accuracies when
modelling forest AGB from LTS data.

Non-parametric imputation approaches have recently received considerable attention for forest
inventory mapping applications. These multivariate modelling approaches can simultaneously map
large assemblages of inventory attributes, therefore retaining the variance structure to that of the
observations [96]. For predicting forest AGB dynamics from LTS, the kNN imputation has been
frequently employed (Table 3). This method imputes (or shares) observed values of one or multiple
response variables to target samples/pixels [8]. Kennedy, Ohmann [9] demonstrated that the kNN
imputation approach performed well to overcome the saturation of Landsat signals known to occur
in forests with high biomass. Unlike regression, where a predicted value is often different from
any observed values, an imputed value will be the most similar observed value when the single
nearest neighbour is used (k = 1). When k > 1, an imputed value will be the mean of observed values
associated to the k nearest neighbours. While using a k > 1 can improve the imputation accuracy and
produce more smoothed predictions, the use of k = 1 is preferable to maintain the variance structure of
predictions that are similar to the observations [76]. Most studies deploying kNN for AGB dynamic
mapping used the single nearest neighbour as they preferred to utilize the full range of AGB values in
training data [9,51,52]. Deo, Russell [58] suggested that a k value of 3 to 5 is the most suitable in order
to improve model accuracy while retaining the variance structure of predictions closer to observations.
Nguyen, Jones [52] achieved this using k = 1 when processing the kNN model though a bootstrapping
analysis with multiple repetitions.

In kNN imputation, the nearest neighbours are found based on a distance metric derived using
different techniques such as Gradient Nearest Neighbour (GNN) [68] and RF [97]. GNN is a weighted
Euclidean distance-based technique which is a combination of the canonical correspondence analysis
and k = 1. In contrast, RF is a machine learning-based technique in which the distance metric is
calculated based on a proximity matrix [98]. Several studies have shown the utility of GNN in modelling
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AGB dynamics [9,81]. In a recent study, Kennedy, Ohmann [9] integrated LandTrendr and GNN-based
imputation in a robust empirical forest biomass monitoring system. RF-based kNN imputation has
been increasingly used in various contexts for estimating AGB dynamics based on LTS data. For
example, Matasci, Hermosilla [51] and Nguyen, Jones [52] used this method for large area predictions
of AGB dynamics through 30-year periods in Canada and southeast Australia, respectively. Studies
comparing different KNN distance techniques used for imputing forest attributes often indicated the
outperformance of RF [8,56,96].

When using kNN imputation, AGB can be predicted using either a direct or indirect imputation
approach. In the direct approach, AGB is imputed by directly linking observed AGB (as a response
variable) with Landsat-derived predictors through a kNN model [58,81]. However, recent studies
often used an indirect imputation approach for estimating AGB. In this method, a kNN model is
trained by forest structural variables extracted from inventory plots [9,52] or Lidar metrics extracted
from Lidar plots [51]. AGB is not included in the model and is attached as an ancillary variable
to the imputation process for target samples. In other words, the nearest neighbours are found
according to the relationship between structural variables and LTS-derived predictors and then
indirectly transferred to AGB. Response variables included in the model should appropriately capture
forest conditions and can be explained by Landsat spectral data. The accuracy of AGB predictions
can be enhanced as it is imputed based on another variable (or group of variables) that has higher
correlation with predictors. Nguyen, Jones [56] found that AGB can be better predicted using an
indirect imputation approach combining a group of basal area and stem density variables with LTS.
In addition, other forest attributes, along with AGB, can be mapped directly without new model
developments. Kennedy, Ohmann [9] combined field plot measurements, including basal area by
species and tree size classes, with LTS-derived predictors through a GNN-based imputation model.
This resulted in yearly inventory-like maps (each Landsat pixel was assigned tree measurements from
the nearest inventory plot), from which forest AGB and other attributes were calculated. Matasci,
Hermosilla [51] developed a RF-based imputation model trained by six Lidar measurements of return
height and percentage. Using this model, forest structural variables, including AGB, were then
indirectly imputed across space and time.

Ma, Domke [80] introduced a novel approach using matrix models for estimating AGB dynamics
from LTS. The study first developed a matrix model based on remeasured inventory data to predict
AGB from forest structural variables including stand basal area. The basal area in the matrix was
then replaced by Landsat spectral variables to project large-scale AGB dynamics short (5 years) and
long-term (30 years). This modelling method incorporates various combinations of remote sensing
and inventory data, avoiding a loss in accuracy from only using inventory variables. However, this
approach is dependent on the availability of cyclical inventory data.

4.2. Accuracy Assessment

Depending on the availability of validation data, different approaches can be used to assess the
performance of AGB models (Table 3). Where the sample size is large enough, studies often split the
reference data into two sets (training and testing data), so the model can be cross-validated using the
testing data. However, this approach often increases the variance in model training data, causing
negative impacts on model accuracy. Therefore, where the sample size of reference data is small, studies
often use internal assessment methods such as RF out-of-bag (OOB) errors and n-fold cross-validation
(also known as leave-one-out cross-validation when n = 1). Some studies compare AGB perdition
maps with independent AGB products such as national biomass maps [58,82] or Lidar-based AGB
data [9,49,52]. Lidar-based AGB data are often used as they are widely confirmed as the most accurate
remote sensing-based predictions.
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Perhaps more important than model accuracy, when extending single model through time, is the
need to evaluate (1) the temporal transferability of the model and (2) the robustness of the model in
capturing AGB changes resulting from forest disturbance and recovery. Unfortunately, this is often
dependent on the availability of validation data in multi-points in time (i.e., cycle inventory or Lidar
data), which are normally not available in many forested regions. Few studies that estimated historical
AGB have examined the temporal transferability of the model extension (Table 3). Powell, Cohen [81]
performed a Landsat scene-level assessment by comparing scene-level predicted AGB trajectories with
temporal trends of observed AGB derived from remeasured inventory plots. Matasci, Hermosilla [51]
conducted a multi-temporal assessment of annual AGB predictions using Lidar data acquired from
2006 to 2012. In a recent study, Nguyen, Jones [52] conducted a time-series assessment of 30-year
annual AGB prediction maps using un-changed, forested Lidar-based plots. Interestingly, these studies
all confirmed that a single-date LTS-based model is transferable to estimate AGB over time.

Validating of AGB change is the most challenging as it requires repeated AGB observations.
Where remeasured inventory plots are available, studies often extracted and compared observed AGB
change (i.e., the difference of AGB between measurement rounds) with predicted AGB change [12,
50,63,80,81,84]. Powell, Cohen [81] indicated that the accuracy of AGB change prediction improved
when applying a pixel-based temporal fitting to AGB trajectories. Boisvenue, Smiley [50] fit a linear
mixed-effect model to both observed and predicted AGB change datasets to estimate the long-term
mean values of AGB change for each forest type (AAGB = f(age)), which were then compared
together. Where remeasured inventory plots are unavailable, multi-temporal Lidar data can be used
as an alternative. Nguyen, Jones [52] did this when evaluating the ability of a LTS-based model in
capturing AGB change resulting from forest disturbance and recovery processes. If repeated AGB
observations are not available for validation, comparing with results from other studies could be an
alternative. For example, Powell, Cohen [82] compared LTS-based AGB loss from disturbance (at a
stratum-level) against results from several studies conducted within the same study area.

4.3. Characterising Spatial and Temporal Patterns of Forest AGB Dynamics

Forest AGB maps are normally created at the spatial resolution of 30 m, aligning with Landsat
pixels, and at an annual or near-annual temporal density (few studies produced seasonal or multi-year
epochal maps, Table 3). AGB change analysis across space and time is a crucial component of a forest
biomass monitoring system. Along with developing robust modelling methods for estimating historical
AGB, studies have proposed various approaches for quantifying spatial and temporal patterns of AGB
dynamics to effectively support forest management (Table 3).

Methods for characterising patterns of AGB dynamics can be stratified into two broad groups:
difference-based and trajectory-based. Difference is a traditional method for calculating AGB change
by subtracting AGB values between two prediction dates. Though this is a simple and straightforward
method, it often provides only generic information on AGB change. This method has been normally
used when the temporal density of AGB predictions is low (often multiple-year epochal) and the
intervals between prediction dates are wide enough to capture actual AGB changes in forests (5-10
years) [58,63,83,84]. As an exception, Boisvenue, Smiley [50] used the difference-based method to
compute AGB changes from 29 annual AGB maps, but the authors then developed a mixed-effect
model to summarize long-term trends of AGB at a stratum-level.

In contrast, most studies predicting AGB at an annual scale often used a trajectory-based method
for characterizing AGB dynamics (Table 3). This method allows consistently and comprehensively
tracking and understanding AGB changes across space and time according to forest disturbance and
recovery processes. Some studies applied a temporal fitting process to annual AGB trajectories to
create forest AGB disturbance and recovery maps [72,81]. Others integrated fitted AGB trajectories
with LTS-derived forest disturbance maps to quantify AGB loss from disturbance [82] and according to
different disturbance causal agents [9]. Matasci, Hermosilla [51] combined annual AGB predictions
with an LTS-derived disturbance map to characterise AGB dynamics of Canadian forests across three
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decades. Temporal AGB trends for each ecozone were summarised for three scenarios: undisturbed
forests, forests impacted by wildfires and harvesting. Nguyen, Jones [52] characterised spatial and
temporal patterns of AGB dynamics by computing change metrics, including AGB loss and gain from
disturbance and recovery, Recovery Indicator (RI), and Years to Recovery (Y2R). These allowed authors
to robustly track AGB change according to different disturbance scenarios (i.e., disturbance severity
and causal agents).

5. Conclusions and Future Opportunities

The opening to the public of the Landsat archive since 2008 has facilitated the use of LTS for forest
applications. In this review, we provide an overview of recent studies utilizing LTS for estimating
forest AGB and its dynamics. In summary, the use of LTS has the potential to improve the estimates of
forest AGB in comparison with using single-date images. It provides a unique opportunity to create
spatially and temporally complete products of forest AGB across large areas and long time-series.
Furthermore, time-series processing and variables extracted from LTS can help improve the consistency
and accuracy of AGB modelling. Many innovative approaches for estimating forest AGB across space
and time have been demonstrated throughout the last decade, with methods becoming more advanced
and robust in more recent studies. Thus, LTS-based products of AGB dynamics have become more
reliable to support forest managers and researchers.

Estimating forest AGB dynamics across space and time is an ongoing topic of interest. LTS is
increasingly used for this purpose as it provides the longest (and free) collection of imagery. Most
current studies focused on boreal and temperate forests, highlighting the need for exploring the utility
of LTS for estimating AGB dynamics in tropical forests. In contrast to boreal and temperate forests,
using LTS to calculate AGB dynamics is all the more challenging in tropical forest regions due to
persistent cloud cover. In addition, tropical forests are mainly found in developing countries, which
often lack a systematic inventory network and Lidar data. Implementing a single model to predict
AGB over time can produce temporal uncertainties (e.g., the balance of the model over time), which
has mostly been ignored in current studies. More research investigating both spatial and temporal
accuracies of LTS-derived AGB change are anticipated over coming years. Along with Landsat, other
satellites such as Sentinel 2 and SPOT have been providing imagery as a time-series, with higher
spatial and temporal resolutions. Incorporating such remote sensing data with LTS for improving the
estimates of forest AGB dynamics will be a main area of research in the near future. Some studies are
also investigating opportunities to combine LTS with active remote sensing data such as synthetic
aperture radar (SAR) and the Global Ecosystem Dynamics Investigation (GEDI) for forest biomass
estimation [99]. This is especially promising for tropical areas that suffer from extensive cloud/shadow
issues. Last but not least, some scientists are attempting to project future forest AGB dynamics using
LTS [80]. This is a challenging task for the forest remote sensing community, expected to be one of
the main foci in the next few years. Trends of AGB over the last 40 years derived from LTS will be
fundamental for predicting future AGB dynamics.
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Table A1l. Landsat spectral indices commonly used for forest AGB estimates.

Landsat Spectral Index

Calculation

Normalized Difference Vegetation Index (NDVI) [100]

NDVI = (NIR — R)/(NIR + R)

Normalized Burn Ratio (NBR) [101]

NBR = (NIR — SWIR)/(NIR + SWIR)

Normalized Difference Moisture Index (NDMI)

NDMI = (NIR — SWIR)/(NIR + SWIR)

Enhanced Vegetation Index (EVI) [102]

EVI=G*((NIR - R)/(NIR + C1* R~ C2*B + L))
L = value to adjust for canopy background,

C = coefficients for atmospheric resistance, B = the
blue band

Soil Adjusted Vegetation Index (SAVI) [103]

SAVI = ((NIR — R)/(NIR + R + L)) * (1 + L)

Chlorophyll Vegetation Index (CVI) [104]

CVI = (NIR x R)/G
G = the green band

Difference Vegetation Index (DVI) [105]

DVI=NIR - R

Linear transform of multiple bands [84]

VIS123=B+G+R
MID57 = TM band 5 + TM band 7 (SWIR)

Integrated Forest Z-score (IFZ) [37]

z-score measure of a pixel likelihood of being
forested, using TM bands 3, 5 and 7

Tasseled Cap (TC) transformations:
TC brightness (TCB); TC greenness (TCG); TC
wetness (TCW) [86-89]

TCW, TCB, and TCG are calculated by multiplying
Landsat band pixel values with TC coefficients. See
the coefficients in references.

TC angle (TCA) [81]

TCA = arctan(TCG/TCB)

TC distance (TCD) [106]

TCD = +TCB? + TCG?

TC Disturbance Index (DI) [91]

DI = TCB; - (TCG; + TCW;)
r = denotes rescaled TC indices based upon the mean
and standard deviation of the scene’s forest values
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