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Abstract: Submesoscale eddies play an important role in the energy transfer from the mesoscale down
to the dissipative range, as well as in tracer transport. They carry inorganic matter, nutrients and
biomass; in addition, they may act as pollutant conveyors. However, synoptic observations of
these features need high resolution sampling, in both time and space, making their identification
challenging. Therefore, HF coastal radar were and are successfully used to accurately identify,
track and describe them. In this paper we tested two already existing algorithms for the automated
detection of submesoscale eddies. We applied these algorithms to HF radar velocity fields measured
by a network of three radar systems operating in the Gulf of Naples. Both methods showed
shortcomings, due to the high non-geostrophy of the observed currents. For this reason we developed
a third, novel algorithm that proved to be able to detect highly asymmetrical eddies, often not
properly identified by the previous ones. We used the results of the application of this algorithm to
estimate the eddy boundary profiles and the eddy spatial distribution.

Keywords: surface currents; HF radar; eddy detection algorithms

1. Introduction

Transport in the ocean develops over an extremely wide range of scales, from the basin to the
dissipation scale (e.g., [1]). Our ability to observe and/or to model processes at smaller and smaller
scales has greatly increased over the last few decades. Phenomena that in the very recent past could
not be detected or described, and thus needed to be parametrized in terms of larger scales (e.g., [2,3]),
are now subjects of consolidated research, as is the case of mesoscale features. Now, our focus has
shifted to smaller dynamics, such as submesoscale motions. In the wide range of turbulent processes
in the ocean, submesoscale eddies are the most volatile ones, due to their short lifetime (few hours)
and length scale (below 10 km).

Submesoscale eddies principally act as energy conveyors from the mesoscale to the microscale,
and play a crucial ecological role: they may influence the state of health of ocean regions through
their ability to carry heat, inorganic matter, nutrients and biomass ([4,5]), ensuring the connectivity
between different ecosystems ([6]). They are particularly important for phytoplankton, as they develop
over timescales similar to those of phytoplankton growth ([7]), moreover, they may act as carriers of
pollutants (see, e.g., [8]). Consequently the detection of eddies, behind its inherent interest, is crucial
also for environmental applications.

As more and more synoptic, high resolution data on mesoscale and submesoscale eddies has become
available, thanks to remote sensing techniques at different resolutions, automatic eddy detection methods
have gained importance and interest. In the recent past, several eddy detection algorithms ([9–13]) have
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been developed and applied to velocity fields derived from altimeter data, numerical model outputs
and HF radar observations. They can be divided into three families: geometrical, dynamical and hybrid
ones. The definition depends on the flow characteristics extrapolated by the algorithm itself, that can
be geometrical, dynamical or both (e.g., [9–11] and respectively). However, the existing methods have
been mainly conceived for meso and larger scale recirculations, which display different kinematic
characteristics than submesoscale eddies, in particular in terms of divergence and (a)symmetry of the
flow field.

Mesoscale eddies scale with the first internal Rossby radius ([14,15]), which is of the order of
10 km in the Mediterranean (5 to 12 km according to [16]) and four to ten times as large in the north
Atlantic ([17]). Differently, submesoscale surface eddies have characteristic lengths starting from 0.1 km
up to the mesoscale ([8,18]). They are completely confined in the surface mixed layer, within depths
going from tens to hundreds of meters. Therefore, since their relative Rossby and Froude numbers,
Ro and Fr, are not small, these structures show highly non-geostrophic behavior, high divergent
flow patterns and strong asymmetries. As a consequence, the aforementioned algorithms, typically
designed to capture the features of vortices in geostrophic balance, may fail in detecting submesoscale
eddies as they are often unable to characterize highly deformed, divergent or convergent motions.
For this reason, we have designed a novel algorithm, presented in this paper, that has proved to be
able to capture the noncircular symmetry and the divergent character of submesoscale recirculations.

High resolution data is needed in order to identify submesoscale motions. In this framework,
HF radars are proving to be an almost irreplaceable tool: They are land-based remote sensing
instruments which allow to observe surface currents at very high spatial and temporal resolution,
thus suitable to monitor such small scale phenomena ([19,20]). Other remote sensing techniques are
available, even with much higher spatial resolution, and are thus able to detect submesoscale flow
features ([21–23], but they have very long revisit periods with respect to the hourly sampling provided
by coastal radars, thus allowing for detecting but not for tracking such features.

In this study we have utilized HF radar observations of surface currents in the Gulf of Naples
(GoN), a semi-enclosed area of the Tyrrhenian, a sub-basin of the western Mediterranean Sea. The GoN
is surrounded by a coast characterized by a quite uneven orography, dominated by the presence of the
Vesuvius volcano and of Mount Faito in the East, both exceeding 1000 m altitude, and of a number of
lower hills very close to the northern coastline. It has a complex bathymetry, with an average depth of
170 m which reaches down to more than 800 m in correspondence of two major canyons, the Magnaghi
and the Dohrn, which carve the shelf across the threshold connecting the Gulf with the open Tyrrhenian
Sea. Its surface circulation is mainly wind driven, with a strong seasonal regime ([24,25]), even though
the offshore circulation of the Southern Tyrrhenian may occasionally affect the current pattern in the
interior of the GoN ([25] and references therein). The Gulf represents a very complex system: It hosts a
heavily anthropized coastline, with industrial settlements in the immediate vicinity of the coast, side
by side with four marine/natural protected areas. Moreover, oligotrophic and eutrophic characteristics
coexist in the Gulf. Its outer portion is dominated by Tyrrhenian, oligotrophic waters, while the coastal
part is typically eutrophic, as can be expected ([26,27]). Water exchange inside the Gulf is ruled by
mechanisms acting at different spatial and temporal scales, triggered by external (local and remote)
driving as well as by bottom topography and coastal constraints ([25,28–31]). Fixed-point long term
investigations of the local plankton community composition have shown a strong variability of species,
alternatively coming from the coast or from offshore ([32]). Recent investigations have pointed out the
different roles of physical transport and biological processes, demonstrating in particular the effect
of transient current patterns (e.g., [33]). For the above reasons we believe that the Gulf may well
represent a universal example of a coastal area facing and intensively interacting with the open sea,
but more importantly characterized by the coexistence of different subsystems. In such a framework,
submesoscale eddies may act as an extremely powerful exchange mechanism among those subsystems
for water and its biogeochemical content, and are therefore worthy of the maximum consideration.
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The article is structured as follows. In Section 2 we describe our dataset and the dynamical fields
that allow us to identify recirculating structures. Then in Section 3 we accurately describe the chosen
detection algorithms, and in Section 4 we describe the algorithm tuning procedure and we provide
a method for estimating eddy boundaries and radii. In Section 5 we discuss the results obtained by
two algorithms and we analyze the spatial distribution of the detected eddies. Finally, in Section 6,
we summarize our results and highlight some possible research directions.

2. Materials

2.1. Dataset

For this study we used the HF radar observations of surface currents in the GoN collected by
a CODAR (Coastal Ocean Dynamics Application Radar) SeaSonde system. The product consists
of a two-dimensional velocity field with a spatial resolution of 1 km over an area of approximately
20–30 km alongshore by 15–20 km offshore, and with an hourly frequency. The specifics of the radar
network operating in the GoN can be found in [30]; see [20] for a review on HF radar theory and its
applications to coastal current observations; [34] for a recent utilization of HF radar-detected transport
to fisheries. Specific applications to the GoN in terms of description of the dynamics, data validation,
as well as their use in conjunction with numerical models, can be found in [24,25,33,35–38]. The data
utilized in this study refers to the late fall period 24 November through 8 December 2008. Since the
number of eddies was clearly detectable in radar observations, we selected this period among many
others, as a sort of training dataset for our algorithm, necessarily limited to a relatively short timespan
for validation issues.

Since the observed GoN eddies have radii in a range between 0.5 and 5 km (we found a mean
equivalent radius of approximately 0.8 km, with extrema reaching 4 km) we decided (following [10]) to
refine the grid to approximately 0.5 km, by means of a cubic interpolation, as illustrated in Figure 1.
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Figure 1. Surface currents data provided by the HF radar system in the Gulf of Naples (on the left)
and the interpolated data (on the right). Black arrows denote the velocity field whereas the blue line
represents the coastline.

With a reference velocity scale U of 10 cm s−1, a length scale L of 1 km and a Coriolis parameter
f ∼ 9.5 · 10−5 s−1, the Rossby number is Ro ∼ 1. It is thus evident that the quasi-geostrophic equations
are not accurate for describing the GoN dynamics.
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2.2. Dynamical Parameters Characterizing Recirculations

At a first glance, eddies of two-dimensional turbulent flows can be described as flow regions
characterized by a rigid-body rotation. In this approximation, many local and semi-local parameters
can be adopted to decide whether vortices exist or are likely to develop. As eddies are extensive
structures, it is natural to consider integral quantities, rather than pointwise ones, to identify them.
Nevertheless, the choice of the appropriate computational regions, specifically their shape and area,
is completely arbitrary. For this reason these parameters naturally depend on a scale coefficient.

2.2.1. Okubo–Weiss and Local Okubo–Weiss Parameters

The Okubo–Weiss parameter (OW) is a local dynamical field which, loosely speaking, measures
the relative dominance of the rate-of-strain tensor s over the vorticity ω of the velocity field (here |.|
denotes the euclidean module)

OW = |s|2 − |ω|2.

It was independently introduced by [39,40]. For a two-dimensional flow u = (u, v) it turns
out that

OW =

(
∂

∂x
u
)2

+

(
∂

∂y
v
)2

+ 2
(

∂

∂y
u
)(

∂

∂x
v
)

.

By definition OW < 0 whenever the rotation tendency exceeds the strain one.
The local version of the OW parameter, called the local Okubo–Weiss parameter (LOW) (see [10]),

depends on a positive distance a > 0 and is defined as the integral of OW over the disk of radius a:

LOW(x) =
∫

Ba(x)
OW(x′)dx′.

2.2.2. Local Normalized Angular Momentum and Momentum Flux Fields

In the rotating rigid-body analogy the angular momentum of a fluid particle has to be maximized
about the eddy center, as pointed out by [41]. This consideration suggested to define the local normalized
angular momentum field (LNAM):

LNAM(x) =
ẑ ·
∫

Ba(x)(x′ − x)× u dx′∫
Ba(x) (|u||x′ − x|+ |u · (x′ − x)|) dx′

,

which assumes extreme values±1 at the centers of circular symmetric eddies: +1 for cyclonic rotations
and −1 for anticyclonic ones (in [41] the term u · (x′ − x) appears with its sign; we added the modulus
to get |LNAM| ≤ 1.)

Analogously, the local normalized momentum flux field (LNMF) can be defined as follows:

LNMF(x) =

∫
Ba(x) u · (x′ − x)dx′∫

Ba(x) (|u||x′ − x|+ |u× (x′ − x)|) dx′
.

It is clear that LNMF identically vanishes on centers of rotating eddies, while it assumes extreme
values ±1 at the symmetric sources and sinks; so it can be adopted to distinguish these various types
of recirculating structures.
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3. Methods

3.1. Eddy Detection Algorithms

We implemented two versions of two different existing detection algorithms for our study.
The first method, the angular momentum eddy detection and tracking algorithm (AMEDA), developed
by [10], was tested on several products such as altimeter data, numerical simulations and laboratory
experiment. The second, proposed by [11], the ’Nencioli et al. algorithm’ (NEAL), was specifically
designed for certain HF radar derived datasets.

It is worth noting that in both cases above the velocity fields utilized for testing and application
were geostrophic or quasi-geostrophic. On the other hand the surface flow observed in the GoN
is highly non-geostrophic and significant variations of the divergence field frequently occur, often
associated to recirculating sources or sinks. So, to distinguish similar structures in our study area, it was
necessary to modify those algorithms, and yet, as discussed in the following, our proposed refinements
led to just moderate improvements. Therefore, in order to specifically address the aforementioned
classification problems, we defined a third method, yet another eddy detection algorithm (YADA),
inspired by [10,12].

3.2. Ameda

The AMEDA algorithm ([10]) determines the eddy centers accordingly with the following procedure:

1. Identifies grid points which are local extrema of LNAM satisfying LNAM > K and LOW < 0,
for a chosen threshold K ∈ (0, 1);

2. Verifies the existence of at least one closed streamline around each extremum.

However, as already pointed out, GoN eddies may have hyperbolic orbits, in contrast with the
geostrophic flows found in [10,11]. In such cases the second assumption is never verified, so we
decided to adopt the following alternative criterion (described in [11]):

2’. Confirms that the velocity field constantly rotates along the perimeter of the square domain of
edge 2b and centered at the extremum, for a chosen distance b.

The modified version of AMEDA, obtained by substituting 2 with 2’, is here denoted by
AMEDAmod.

3.3. Neal

The eddy detection algorithm developed in [11], and here denoted by NEAL, identifies the eddy
centers in several steps, namely:

1. Identifies couples of adjacent grid points (x1, x2) such that the meridional component of the
velocity field changes sign going westward along the zonal segment of length 2a, centered at xi,
and increases its magnitude away from this point. This computation also provides the expected
sign of rotation;

2. Verifies that, at any such grid point xi, the zonal component of the velocity field changes sign
going northward along the meridional segment of length 2a, centered at xi, and increases its
magnitude away from this point. This change must be compatible with the expected rotation;

3. Identifies the KE (kinetic energy) local minima inside a square domain of edge 2b, centered at xi,
which are global minima in a square neighborhood Qb of the same size;

4. Confirms that the velocity field constantly rotates along the perimeter ∂Qb.

3.4. Yada

The YADA algorithm searches for potential eddy centers in two steps:
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1. Identifies the local extrema of a dynamical field like LNAM, KE or OW;
2. Analyzes the streamline geometry within some neighborhood Qb of each extremum, ensuring

the existence of either bounded hyperbolic orbits (characterizing eddies with sink-like cores) or
elliptic orbits (in presence of eddies having stable orbits).

Note that the second step is precisely designed to distinguish different eddy geometries. During
this classification procedure, as we will see in the next section, the YADA algorithm computes quantities
that are strongly related to the eddy shape, and therefore provide useful information about its character,
which may be either hyperbolic or elliptic, depending on the streamline behavior.

3.5. Tuning Strategy

Each algorithm depends on some parameters, specifically the LNAM threshold K and the
neighborhood radii a and b, which have to be tuned in order to maximize the probability of detection.
In principle, such a training phase should be carried out with a set of completely characterized
observations, for which the real eddy population and its spatio-temporal distribution is perfectly
known. This is never the case for eddy detection studies. In [10] the authors, in order to cross-validate
their parametric algorithm, considered the number of detected eddies as a score function depending on
the algorithm parameters. The best model was then chosen by looking for parameters stabilizing the
score function. The reasoning behind this approach can be heuristically described as follows. One starts
with an inaccurate model which predicts too few (or too many) eddies. However, by randomly
exploring different parameter values, one may observe an increase (decrease) of the score function
until reaching a stable region in the parameter space. Then, elements within the stable region can be
considered optimal assuming that the observed local fluctuations are caused by the existence of eddies,
that randomly fall in (or escape from) the detection range as parameters vary. In our study we chose to
adopt the same tuning strategy, better described in the next section.

4. Results

In this section we first describe the tuning procedure for each chosen algorithm and then we
discuss the results. Before doing this, some observations about the algorithm definitions are needed.
Firstly, for numerical convenience, we substituted the disk Ba(x) in the definition of LNAM and LOW
with the square domain centered at x of edge 2a, which we denote by Qa. Secondly, we note that in
both algorithms AMEDA and NEAL the final step concerns the rotation of the velocity vector along a
boundary profile. This was explicitly done by following the path counter-clockwise and verifying that
any velocity vector at a given grid point was rotated to the left of the previous by an angle less than
π/2 radians; note that this criterion does not depend on the sense of rotation of the velocity field along
the path.

4.1. Ameda Tuning and Results

Three parameters have to be determined to run this algorithm: a, from the definition of LNAM
and LOW, K and b. To obtain all dimensionless parameters we divided a and b by the length scale l of
one pixel (l ∼ 0.5 km): a0 = a/l and b0 = b/l.

The optimal choice of these parameters depends on the scale analysis of the investigated dynamics:
if a0 is too large then LNAM may sum up the contribution of many eddies inside Qa, leading to a
wrong estimate of the angular momentum. Similarly a large b0 is not recommended, nor is a small one
since the velocity vector may abruptly rotate with an angular velocity greater than π/2 radians per
pixel in proximity of the eddy center. The parameter K, in turn, once a0 is coherently chosen, represents
a lower bound for the detected eddy intensity.

We ran the algorithm on the 10-day dataset described in Section 2.1 for different values of the
parameters a0 and b0, and analyzed the number of detected eddies Ne as a function of K, varying from
0.1 to 1 with step 0.1. The results are shown in Figure 2.
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Figure 2. Number of eddies detected in the observation period Ne, obtained with the angular
momentum eddy detection and tracking algorithm (AMEDA) for different values of the parameters a0,
b0 and K. In each figure, corresponding to a value of a0, the colored curves denote the graphs of Ne as
a function of K for different values of b0 (labeled as in the legend).

For any choice of a0 and b0 the values of Ne turned out to be approximately constant for K < 0.6,
so we set K = 0.6. On the other hand for a fixed a0 the maximum of Ne was achieved at b0 = 2;
so we chose this value for b0. Finally we noted that Ne weakly decreased as a0 increased, as expected,
suggesting to take a0 = 1. In summary, our optimal choice of the parameters turned out be (a0, b0, K) =

(1, 2, 0.6).
Since we were interested in discriminating diverging structures from converging ones we added

a third control to AMEDA (see above, Section 3.4):

3. Discards those extrema satisfying LNMF > 0.2.

In this way we allowed only a little divergence near the eddy core (see the LNMF contour line in
Figure 3 for instance). This correction reduced the number of detected eddies Ne by about 16% for
K = 0.6, and by 0.4% for K = 0.7; this behavior was expected since strong rotations often imply weak
divergences.
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Figure 3. Source-like eddy core detected by the algorithm AMEDA (black star), velocity field (black
arrows), local normalized angular momentum field (LNAM) contour lines (colored), local normalized
momentum flux (LNMF) = 0.2 contour (black lines) and coastline (blue line).
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Unfortunately this criterion is not optimal: It is a pure dynamical control depending on the local
behavior of the flow, but eddies are extensive structures which may admit internal divergences. In such
a case the eddy center and its real extension is difficult to estimate since it would be necessary to
understand the streamline geometry.

4.2. Neal Tuning and Results

By definition NEAL is a purely geometrical method, which is not required to compute any
differential quantity: Eddy centers are simply defined as energy minima. Of course this reduces the
computation time, making the algorithm fast and efficient. Moreover we note that, as in the previous
case, there are two parameters, a and b, to be determined; as before we considered the dimensionless
parameters a0 = a/l and b0 = b/l.

We ran the algorithm on the dataset for a0 = 1, . . . , 8 and b0 = 1, . . . , 8. In Figure 4 the number of
eddies Ne, discarding the unlikely results obtained for a0 = 1 (Ne > 1000), is shown. We observed
that for a0 = 2 there was a weak dependence on b0, but the values of Ne turned out to be much less
than those obtained by AMEDA. For a0 = 3, 4 the number of detected eddies highly depended on b0,
but the results did not converge anywhere; for a0 > 4 we obtained values depending weakly on b0

but much less than those for a0 = 2. These discrepancies were likely caused by asymmetrical eddies
lacking radially increasing velocity components. In conclusion, we were not able to tune NEAL, as no
stable regions in the parameter space were identified.
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Figure 4. Number of eddies detected in the observation period, Ne, obtained by the ’Nencioli et al.
algorithm’ (NEAL) for different choices of the parameters a0 and b0. Colored lines denote the graphs of
Ne as a function of b0 for different values of a0 (labeled as in the legend).

4.3. Yada Tuning and Results

The first step of the algorithm coincides with that of AMEDA: it identifies any local extremum x
of LNAM satisfying LNAM > 0.6 for a0 = 1 (having tested this values in tuning AMEDA).

The second step concerns the study of the streamline geometry in a neighborhood of the extremum.
It proceeds as follows: in a square neighborhood Qb centered at x with edge 2b, where the length b has
to be intended as an upper limit for the eddy radius (which, in this study, has been overestimated to
be b = 10l), it draws a circle Cr of radius r = l, centered at x and composed by 8 points (as many as
the grid points on the tangent square perimeter). It then computes the streamlines originated from
these points (each streamline is built by means of a fourth order Runge–Kutta method, with a step of 5
points per pixel. It is composed by up to 1000 points), collecting their mean points (geometric means)
and end points.

Then the algorithm performs a selection of all the streamlines such that:

(1) The end points belong to the square domain Qb−2l (that is: they stay away from the boundary
of the reference domain);
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(2) Each streamline completes at least one revolution.

The second control consists in looking at the cumulative winding-angle (given an oriented piece-wise
linear curve, its cumulative winding-angle is the sum, over all the angular points, of the angle,
with positive sign going counter-clockwise and negative going clockwise, between the two intersecting
segments, considered as vectors) of the streamline, as defined in [12]: it has to be, in modulus, equal to
or grater than 2π. If no such streamline exists we increase the radius of Cr by l until at least one
streamline satisfying (1) and (2) is found; the maximum allowed r will be b/2 (at any step we increase
the number of points in the circle to match the amount of grid points in the tangent square perimeter).

Note that if one such streamline exists it means that either it converges to some point inside the
domain or it definitely stays inside the domain without converging anywhere (at least for the first
1000 points). Of course some diverging streamline, which rotates without reaching the boundary of
the domain, could exist and be identified by the algorithm. However, a path starting from x and which
rotates around it at least three times before reaching the boundary, and having the same step-size of the
drawn streamlines, counts approximately 300–400 points. Then, if a spiral-like streamline diverging
from the center stays inside the domain without reaching the boundary, it has to complete at least
eight revolutions; even in this case we can safely affirm that an eddy exists.

Once the algorithm has selected all the streamlines satisfying (1) and (2) for the first allowable r,
it compares the distributions of the mean points with that of the end points. If the eddy core behaves
as a sink all the end points will accumulate near it. On the other hand if the orbits around the eddy are
elliptic the mean points will be close to the orbits’ common center of mass. So the algorithm chooses
the distribution with less variance and choose its mean point as eddy center of mass, or eddy symmetry
center (ESC); by contrast the extremum will be called the eddy extreme point (EEP). However, to ensure
it is not selecting another eddy in the square domain relative to a different extremum, it is required
that the expected ESC must belong to the disk bounded by Cr, otherwise the point is discarded and
the algorithm moves toward the next extremum; some examples of this procedure can be found in
Figures 5 and 6.
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Figure 5. Maps showing the functioning of ’yet another eddy detection algorithm’ (YADA) for two
eddies with sink-like cores. Once the eddy extreme point (EEP) (black crosses) is detected, YADA
identifies a circle (black stars), centered at the extremum, which emanates streamlines (blue lines)
with the following property: The streamline has to complete up to a revolution without reaching the
domain boundary. Then it evaluates the mean points (yellow stars) and end points (red stars) of such
streamlines, choosing the mean point of the second distribution as eddy symmetry center (ESC) (green
stars). Black arrows denote the velocity field. In both panels the mean point and the ESC coincide.
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Figure 6. Maps showing the functioning of YADA for two eddies having elliptic orbits. Once the
eddy extreme point EEP (black crosses) is detected, YADA identifies a circle (black stars) emanating
streamlines (blue lines) with the following property: Each streamline has to complete up to a revolution
without reaching the domain boundary. Then it evaluates the mean points (yellow stars) and end points
(red stars) of such streamlines, choosing the mean point of the first distribution as eddy symmetry
center ESC (green stars). Black arrows denote the velocity field. In both panels the mean point and the
ESC coincide.

Generally the ESC does not coincide with the eddy center even though it provides a better
approximation of the true eddy core than the EEP; e.g., Figures 5–8. As a consequence the distance
between the ESC and the EEP can be considered as a measure of the eddy asymmetry.

Following the procedure just described, the algorithm detected Ne = 255 eddies, about 30% more
than the value obtained with AMEDA. Eddies such as those in Figure 5, for instance, were missed by
AMEDA due to their small extension and asymmetry, whereas they were detected by YADA. However
there were still structures detected by AMEDA and missed by YADA, see for instance Figure 9. In some
of these cases we noted that the divergence around the LNAM extremum was so weak (LNMF < 0.2)
that some orbits complete up to three revolutions before leaving the region.

In conclusion we can affirm that YADA was able to detect and distinguish multiple kinds of
eddies and, as it will be shown in the next part, it can be refined to estimate their boundaries.

4.4. Eddy Boundaries

There is no universal definition of eddy boundary: many authors adopted OW or ω contour lines,
as well as closed streamlines or closed stream-function contours (not equivalent at all) to locate them.

Based on YADA architecture, we propose a different definition, which aims to distinguish eddies
with sink-like cores from those having elliptic orbits. Of course we can not expect to identify the true
boundary profile, so we assume it to be in general elliptic (rather than circular).

4.4.1. Sink-Like Cores

We considered the set Sr of all the streamlines originated from Cr and satisfying conditions (1) and
(2) as explained in the definition of YADA. We then evaluated the variance ellipse of this distribution
of points; let e be its eccentricity. Then we drew the ellipse Ed of eccentricity e, centered at the ESC,
with major semi-axis d = l. As we did for Cr we consider the streamlines emanated by Ed and if all
such streamlines belong to the ellipse interior we increment d by l, repeating the step up to reach
d = b. Further, in analogy with [10], we also control that the circulation along Ed does not decrease by
increasing d. The largest ellipse Ed satisfying this criterion will define the eddy boundary, as shown in
Figure 7.
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Figure 7. Map showing the YADA boundary computation of an eddy having a sink-like core. Once the
eddy extreme point EEP (black cross) and the eddy symmetry center ESC (green cross) are detected
the algorithm draws the ellipses centered at the ESC with increasing radii. The cycle breaks when
the black ellipse is drawn due to the existence of inadmissible streamlines (blue lines) leaving the
domain. The last computed ellipse (green line) will be considered as boundary. Black arrows denote
the velocity field.

4.4.2. Eddies Having Elliptic Orbits

For such eddies we also started by building the variance ellipse of the admissible streamlines
Sr. Then we drew the ellipses Ed with eccentricity e, centered at the ESC and having semi-major
axis d = l, 2l, . . . , d′, where d′ was the maximum distance for which the circulation around Ed was a
non-decreasing function of d, and we moved each Ed following the flow, thus collecting all the end
points of the streamlines emanated by Ed. We denoted this set by ε(Ed).

We expected that, if Ed approximated the eddy boundary, it had to be close to an elliptic orbit,
and therefore ε(Ed) had to be a small deformation of Ed. However, in order to ignore the effects of
translating motions, which could occur, we centered the two sets on the same reference point. Then we
evaluated the Hausdorff distance δ(d) between them (see the Appendix A for details).

Finally we took d∗ satisfying δ(d∗) = min {δ(d)}, and Ed∗ as eddy boundary; we chose Ed∗ to
keep the elliptic symmetric, though ε(Ed∗) would provide a better approximation. In Figure 8 we
plotted the various steps just described; in each panel the ellipse of semi-major axis d = l, 2l, . . . , d′

is drawn.
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Figure 8. Maps showing the YADA boundary computation of an eddy having stable orbits. From panel
(a–d) ellipses of increasing semi-major axes are drawn; the temporal frame is unchanged. Once the EEP
(black crosses) and the ESC (green crosses) are detected the algorithm draws the ellipses centered at the
ESC with increasing semi-major axis d (black stars); from panels (a–d) the semi-major axis increases
from 2 to 5 pixel lengths. It then evaluates the end points (red stars in panels (a,b,d), and green stars
in (c)) of the streamlines emanated by these ellipses. The algorithm selects the semi-major axis d∗ for
which the relative end points (green stars in (c)) form the closest deformation of the associated ellipse.
Black arrows denote the velocity field.

5. Discussion

5.1. Detected Eddies

In Section 4 we tried to tune the three chosen algorithms by following a stability criterion.
We succeeded for AMEDA, but failed for NEAL. Indeed, in the latter case, no stable parameter regions
were identified. The algorithm YADA, instead, was indirectly tuned by using the AMEDA common
parameters, namely K and a; in fact both these parameters served to set a lower bound to the eddy
rotational energy, which was independent on the algorithm itself.

We then compared the tuned version of the two algorithms, AMEDA and YADA. It turns out that
AMEDA detected 195 eddies within the time period, whereas YADA detected 255 eddies. However,
among these, 157 eddies have been identified by both, leaving 38 eddies detected by AMEDA but
missed by YADA and 98 seen by YADA but lost by AMEDA. Mismatches between AMEDA and YADA
detections were expected, as already observed: eddies like that in Figure 9 were missed by YADA
due to their large extension and weak, but still positive, divergence. On the other hand, deformed
recirculations, as in Figure 5, were easily hidden to AMEDA but not to YADA.
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Figure 9. Eddy detected by AMEDA and missed by YADA. The local normalized angular momentum
field LNAM extremum x (black cross) corresponds to an eddy core, but any circle centered at x (black
stars) emanates streamlines (blue lines) which complete up to 3 revolutions before reaching the domain
boundary (contact points in red). Black arrows denote the velocity field.

Finally we checked by visual inspection all the available time frames, in order to determine the
existence of false positive detections. Interestingly, no such detections were found, testifying the
reliability of both the algorithms, at least in terms of false alarms. The same inspection showed that
volatile and higly asymmetrical structures were still missed by both. However, our algorithm was able
to detect long-lived eddies for longer time periods, as shown in Figure 10.
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Figure 10. Sequence of time frames (from panel 1 to 6) showing the evolution of a detected eddy.
Red stars denote eddy centers identified by AMEDA, whereas blue stars indicate ESCs computed by
YADA. As the eddy changes shape and becomes less centrosymmetric AMEDA misses it (panel 3 to 4).
Black arrows denote the velocity field (not in scale).

5.2. Equivalent Radii

Following [10] we computed the equivalent radius ρ for each detected eddy. It is defined as the
radius of the circle bounding an area equivalent to that delimited by the eddy boundary. For elliptic
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contours it equals d 4
√

1− e2. The mean radius ρ̄ turned out to be 0.87 km, with a standard deviation
of 0.84 km and values of 2.8 and 3.6 km for the 95th and 99th percentile respectively. Similarly we
computed a mean eccentricity e of 0.71 with standard deviation of 0.02. It turned out that the mean
equivalent radius was merely 1–2 times the pixel length scale of the dataset, and therefore we could
expect that our method would not accurately describe some kinematic and dynamic features of eddies
having ρ close to ρ̄. It may have been possible to obtain a more accurate description by increasing the
spatial resolution up to reach l ∼ 0.3 km; however this would have implied performing interpolations
at a much higher resolution.

5.3. Spatial Distribution

The hourly sampling frequency of the HF radar allowed to track eddies having longer lifetime.
We identified such long-lived structures by looking for eddies encircling an EEP, coming from the
previous temporal frame, within their own boundary. The spatial distribution of all the detected
long-lived eddies, counted without repetitions, can be found in Figure 11.

Figure 11. Left panel: Spatial distribution of the detected eddies by means of YADA (colored circles);
different colors denote different sizes. Right panel: Detected long-lived eddies (circles) with lifetime
T ≥ 2 h. Initial, mid and final EEPs (black circles, blue circles and red stars respectively) with their
relative eddy trajectories (blue dashed lines) and eddy lifetimes T ≥ 3 h (blue numbers). Shoreline
(blue contour) and bathymetric contour lines (black lines) between 100 m and 800 m of depth.

A larger density can be noted in correspondence of a relatively flat plateau located in 40.73◦ N,
14.27◦ E, between 120 and 160 m of depth, excluding topographic wakes, that need steep bathymetric
slopes, as primary instability causes (for a comprehensive analysis of several submesoscale eddy
generation mechanisms see [5]). To understand the instability sources generating the GoN eddies,
therefore, it would be necessary to investigate the flow behavior within the SBL (surface boundary
layer). Unfortunately there are neither wind observations nor density profiles relative to the GoN
SBL. However, there is a work in progress, funded by the Science and Technology department of the
Parthenope University of Naples, aiming to investigate the vertical water profile through numerical
simulation. Such a study could provide more information to understand the instability sources within
the GoN.

Finally we observed that the detected long-lived eddies, namely those with lifetimes greater than
1 h, were 36, distributed as shown in Figure 11. They usually persisted for few hours, 5 or 7 h in some
cases, distributed in agreement with the entire density population. We also noted that, except for few
examples, they were almost stationary.
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6. Conclusions

Submesoscale motions play an important role in the transfer of energy from the mesoscale down
to the dissipative range ([5,42]) as well as in the transport of pollutants, of biomass, of organic and
inorganic matter ([43,44]). At present, they represent one of the frontiers of the study of transport in the
ocean. On the other hand, as recently pointed out by several authors (see, e.g., [5,8,45]), the observation
of submesoscale eddies in a synoptic way is challenging, feasible with remote sensing techniques
which are typicaly limited by available resolution. HF radars are land-based remote sensing tools that
can be very suitable for such investigations, given their temporal and spatial sampling characteristics.
In this paper we have tackled the issue of devising an algorithm for submesoscale eddy detection in a
high resolution surface velocity field provided by a network of 25 Mhz coastal radar antennas active
in the Gulf of Naples. We started by applying two different eddy detection algorithms, here denoted
by AMEDA and NEAL, based on the studies of [10,11] respectively, but they both displayed some
weaknesses. The application of AMEDA to the selected surface current dataset demonstrated to be
unable to distinguish submesoscale eddies entrapping fluid masses from the others. So we refined the
algorithm by measuring the divergence occurring in the eddy core. The number of detected eddies
then decreased. Differently, we did not succeed to tune the algorithm NEAL.

To obtain a more efficient detection method, able to distinguish asymmetric eddies entrapping
fluid masses, we developed a novel, modified algorithm, named YADA, which detected 255 eddies
(about 30% more than the refined AMEDA value). Then we used YADA to estimate the eddy
boundaries, assuming an elliptical symmetry, and we found a mean equivalent radius of 0.87 km and
a mean eccentricity of 0.71.

YADA’s results were validated comparison with the results of the algorithm AMEDA, as well as
by visual inspection of all time frames. Having developed a more robust algorithm, this also allowed
us to look at the spatial distribution of the detected eddies, and to observe a larger density at the
plateau located at 160 m of depth, and led us to exclude topographic wakes as main instability sources.
Moreover, we obtained estimates for their spatial scales taking into account the noncircular geometry
of the vortices.

As mentioned above, submesoscale eddies represent a relevant transport mechanism for waters
and their biogeochemical characteristics; their influence is particularly important in those coastal areas,
such as the Gulf of Naples, characterized by the coexistence of different subsystems, whose mutual
exchanges may strongly affect the whole functioning of the area. For this reason an accurate
identification of such structures is a necessary first step for the quantitative assessment of their
role, which we plan to further investigate in terms of their specific transport properties both in the
horizontal and in the vertical.
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Appendix A. the Hausdorff Distance

The Hausdorff distance δH(A, B) between two compact subsets A and B of the euclidean plane is
defined by the formula

δH(A, B) = max
{

supa∈Ad(a, B), supb∈Bd(b, A)
}

,

where d(a, B) and d(b, A) are the usual point-set distances:

d(a, B) = infb∈B|a− b|, d(b, A) = infa∈A|b− a|.

The Hausdorff distance δH makes the set of all compact subsets a metric space; in particular
δH(A, B) = 0 if and only if A = B.
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