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Abstract: Information about urban built-up areas is important for urban planning and management.
However, obtaining accurate information about urban built-up areas is a challenge. This study
developed a general-purpose built-up area intelligent classification (BAIC) system that supports
various types of data and classifiers. All of the steps in the BAIC were implemented using Python
modules including Numpy, Pandas, matplotlib, and scikit-learn. We used the BAIC to conduct
a classification experiment that involved seven types of input data; namely, Point of Interest (POI), Road
Network (RN), nighttime light (NTL), a combination of POI and RN data (POI_RN), a combination of
POI and NTL data (POI_NTL), a combination of RN and NTL data (RN_NTL), and a combination
of POI, RN, and NTL data (POI_RN_NTL), and five classifiers, namely, Logistic Regression (LR),
Decision Tree (DT), Random Forests (RF), Gradient Boosted Decision Trees (GBDT), and AdaBoost.
The results show the following: (1) among the 35 combinations of the five classifiers and seven types
of input data, the overall accuracy (OA) ranged from 76 to 89%, F1 values ranged from 0.73 to 0.86,
and the area under the receiver operating characteristic (ROC) curve (AUC) ranged from 0.83 to
0.95. The largest F1 value and OA were obtained using the POI_RN_NTL data and AdaBoost,
while the largest AUC was obtained using POI_RN_NTL and POI_NTL data against AdaBoost,
LR, and RF; and (2) the advantages of the BAIC include its support for multi-source input data,
its objective accuracy assessment, and its robust classifiers. The BAIC can quickly and efficiently
realize the automatic classification of urban built-up areas at a reasonably low cost and can be readily
applied to other urban areas in the world where any kind of POI, RN, or NTL data coverage is
available. The results of this study are expected to provide timely and effective reference information
for urban planning and urban management departments, and could also potentially be used to
develop large-scale maps of urban built-up areas in the future.
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1. Introduction

Information about urban built-up areas is important for assessing the status of urban development
and the level of urbanization. It is also a prerequisite for governments to implement urban spatial
strategic layout and limit management through macro land-use policies and spatial control measures [1].
Acquiring accurate information about urban built-up areas is an important yet challenging task [2].
Extensive research has been conducted on methods to acquire such information. Traditionally,
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information about urban built-up areas has mainly been obtained from remote sensing images. There is
often a significant difference in the brightness of nighttime light (NTL) between urban built-up areas
and non-built-up areas, and accordingly, NTL data are very commonly used to identify urban built-up
areas. In order to verify the validity of using NTL data to identify urban built-up areas, scholars have
proposed a variety of threshold techniques with reference to census data, government statistics, and
high-resolution image data [3–6]. Aside from NTL data, radar images are also commonly used to
identify urban built-up areas. There are often differences in the intensity of human activities, the level of
development and construction, and the spatial distribution of infrastructure in different areas of a city.
These heterogeneities can lead to differences in the scattering power, amplitude, and texture information
of radar images. Accordingly, scholars have proposed different methods for the classification of urban
built-up areas based on radar images [7–9]. Additionally, scholars have proposed various methods
for obtaining information about urban built-up areas from remote sensing images using vegetation
indexes, temperature inversion, and impervious surface density [10–12]. In recent years, with the rise
of artificial intelligence technology, machine learning (ML) has been applied in various fields such
as biology, energy, remote sensing, and urban planning [13–18]. ML has provided a new approach
for the high-accuracy identification of urban built-up areas. ML techniques such as support vector
machines (SVMs), decision trees (DTs), and artificial neural networks have greatly aided the progress
of research into the extraction of urban built-up areas [19–25].

In summary, various studies have successfully obtained information about urban built-up areas
from remote sensing images. However, overall there are two types of problems with the current
methods for the extraction of urban built-up areas. One type is the neglect of spatial independence
between training and test samples or even the missing of test samples in ML-based studies. Some studies
mixed training and test examples together in the spatial dimension, which results in overfitting due
to spatial autocorrelation between training and test samples [19,24]. The accuracy calculated by
this method may be high, however, the method may have poor generalization ability. Some other
studies which trained models with a ground-truth target achieved high accuracy scores but did not
perform model validation on a new dataset [11,20,22]; therefore, the model is overfitted and has
no generalization ability. The other type is that the accuracy of many methods is calculated based
on random sampling points or pixels, which makes the estimated accuracy low in confidence and
difficult to compare objectively [12,26]. The reason for this is that this type of method generally
involves the use of unequal-distance random sampling and obtains a final accuracy by generating some
individual random points or pixels and calculating the proportion of the number of correctly classified
points or pixels to the total number of points or pixels. The distance between some of the pairs of
sample points or pixels may be less than 100 m, however, the distance between most of the pairs is
larger than 100 m, and can even reach 500 or 1000 m. In this situation, the spatial distribution of
sample points is not uniform and cannot adequately represent the sample population in the study
area. Therefore, the overall accuracy calculated by this method is not appropriate to evaluate the entire
study area. Different studies that perform the same random sampling method will obtain different
distances between pairs of sample points due to the difference in the sizes of the study areas and
the number of sample points, thus, making it difficult to objectively compare the accuracy calculated at
different scales. Exploring a systematic method to solve the two abovementioned problems is necessary
and meaningful.

In this study, a general-purpose built-up area intelligent classification (BAIC) system that supports
various types of data and classifiers was developed. Seven types of input data; namely, Point of
Interest (POI), Road Network (RN), nighttime light (NTL), a combination of POI and RN data
(POI_RN), a combination of POI and NTL data (POI_NTL), a combination of RN and NTL data
(RN_NTL), and a combination of POI, RN, and NTL data (POI_RN_NTL), and five classifiers, namely,
Logistic Regression (LR), Decision Tree (DT), Random Forests (RF), Gradient Boosted Decision Trees
(GBDT), and AdaBoost, were tested in the BAIC. Training sample test samples are independent
in the BAIC. Additionally, 30 m × 30 m pixel accuracy metrics were used to evaluate the performance of
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the BAIC. The research results can provide a reference for local urban planning and urban management
departments. In the future, BAIC is expected to be used to provide large-scale maps of urban
built-up areas.

2. Materials and Methods

In this study, a BAIC system was developed using seven types of input data (i.e., POI, RN,
NTL, POI_RN, POI_NTL, RN_NTL, and POI_RN_NTL) and five classifiers (i.e., LR, DT, RF, GBDT,
and AdaBoost) to achieve intelligent extraction of urban built-up areas on a finer scale. The framework
of the BAIC includes data preprocessing, image digitization (raster to arrays), data combinations,
classifiers construction, accuracy assessment, and the extraction of built-up areas (Figure 1). The basic
principle of BAIC is to translate the process of extracting urban built-up areas into the recognition of
“1” (urban built-up areas) and “0” (non-built-up areas) of individuals 30 m × 30 m pixels. The initial
classification results of BAIC were divided into four types (Table 1).
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Figure 1. The framework of the built-up area intelligent classification (BAIC) developed in this study.

Table 1. The four types of classification results.

Predicted Category

1 0
Actual category 1 TP (True Positive) FN (False Negative or Omission Error)

0 FP (False Positive or Commission Error) TN (True Negative)

TP: True Positive; that is, areas that were correctly classified as urban built-up areas. FP: False Positive; that is,
areas that were incorrectly classified as urban built-up areas. FN: False Negative; that is, areas that were incorrectly
classified as non-built-up areas. TN: True Negative; that is, areas that were correctly classified as non-built-up areas.

2.1. Study Area

In this study, Xiamen City, Southeastern China, was selected as the research area. The city is located
in southeastern Fujian Province and covers a land area of 1699 km2 (Figure 2). Geographically, the city
is composed of in-island areas and out-island areas. In this city, differences in the spatial distribution
of natural resources, population, and economic growth have a significant influence on the structure of
urban built-up areas. Therefore, Xiamen is a representative sample for research on extracting urban
built-up areas. Additionally, there is spatial independence between in-island areas and out-island
areas, which is favorable for splitting the training set and the test set.
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2.2. Data Sources

2.2.1. Point-of-Interest (POI) Data

The POI data that were used in this study were obtained from the Gaode open platform web service
in May 2019 (https://lbs.amap.com/api/webservice/summary) via a manually written Python program.
A total of 62,501,795 POI records were obtained, covering the whole of China. A brief introduction to
the data acquisition steps is given as follows: (1) divide the administrative boundary range of China
into grids of an appropriate size and use each grid as the polygon of the query; and (2) construct bulk
URLs for POI data for all primary categories through a polygon search mechanism and send an HTTP
request to the Application Programming Interface (API) of Gaode’s search service. The API returns all
data in JavaScript Object Notation (JSON) format inside the corresponding polygon, and the returned
data are stored on a Structured Query Language (SQL) server.

The Gaode map uses a three-level classification system for POI data (Figure 3). The category code
for each POI datum consists of a six-digit decimal number; the first two digits of the category code
represent the primary category; the middle two digits represent the secondary category, and the last
two digits represent the tertiary category. The higher the classification of the category, the more detailed
the classification of the data. The Gaode POI data have 23 primary categories, 264 secondary categories,
and 869 tertiary categories. This study focuses on the primary category of Gaode POI data.

https://lbs.amap.com/api/webservice/summary
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A typical Gaode POI record, such as the Bird’s Nest, is: {“id”: “B000A7GWO5”, “name”: “National
Stadium”, “type”: “Sports and Recreation Service; Sports Venue; Comprehensive Gymnasium”,
“typecode”: “ 080101”,”address”: “National Stadium South Road No. 1 Olympic Park”, “location”:
“116.395777, 39.993427”, “citycode”: “010”, “cityname”: “Beijing”, “alias”: “Bird’s Nest “, . . . }.
The “adname” field records the name of the county-level administrative region of the POI data.
In the naming rules for the division of county-level administrative districts in China, the names of
all administrative divisions include the following suffixes (in Chinese characters): “Zone”, “City”,
“Domain”, “Flag”, “County”, “Island”, and “Administration”. Among these, the administrative
division units whose names are suffixed with “district” and “city” are mostly distributed inside
the urban built-up area. The administrative divisions whose names are suffixed with “domain”,
“flag”, “county”, “island”, and “administration” are mostly distributed in the non-built-up areas.
Based on the different suffixes of the “adname” field, a search for the “adname” field was conducted
from more than 60 million POI data records for China. Then, the Transact SQL (T-SQL) statement
in the SQL server was used to calculate the proportions of the various categories POI data that represent
urban built-up areas and non-built-up areas (see result in Section 3.1).

Based on the proportional difference between urban built-up areas and non-built-up areas, six
types of POI data (commercial house, enterprises, indoor facilities, pass facilities, public facilities, and
transportation services) with a relatively high proportion in urban built-up areas were selected from
the raw POI dataset (which contains 23 types of POI) and used to construct a combined POI dataset.
A detailed description of these selected category tags and the non-selected category tags is shown
in Appendix A.

2.2.2. RN and NTL

The RN data used in this study were obtained in February 2019 from the OpenStreetMap (OSM)
website (https://www.openstreetmap.org/; data are available free of charge). The NTL data used in this
study were monthly synthetic Visible Infrared Imaging Radiometer Suite (VIIRS) data acquired using
the Day/Night Band (DNB) of the Suomi National Polar-Orbiting Partnership (S-NPP) satellite. The data
can be downloaded directly from the website of the National Oceanic and Atmospheric Administration
(NOAA) National Geophysical Data Center (NGDC) (https://ngdc.noaa.gov/eog/index.html).

https://www.openstreetmap.org/
https://ngdc.noaa.gov/eog/index.html
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2.3. Preprocessing

2.3.1. Kernel Density Estimation (KDE)

The KDE method is a non-parametric density estimation (NPDE) method that estimates the possible
distribution of an indicator without assuming a density distribution or characteristic parameter.
The method has been widely used in landscape ecology, engineering, medicine, and many other
fields [27–29]. In the KDE method, it is assumed that a kernel function is characterized by adding
the density of the j− th sample point, and the kernel function is given by the following expression [30]:

f̂β(X) = (n ·β)−1
n∑

j=1

K
((

X−Xj

)
/β

)
) (1)

where K(x) is the symmetric probability density function, X1, X2, . . . , Xn is an observation sample
selected from the n-dimensional population, and β is the bandwidth.

In order to transform POI and RN datasets into input format of the same scale suitable for
the classifiers, KDE was used to convert the datasets into intensity maps (Figure 4a,b). A map of
the NTL data was also generated (Figure 4c).
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2.3.2. Rasterization and Combination

POI, RN, NTL, and ground truth were all transformed to the same coordinate system by projection
transformation. All of the data were rasterized to 30 m × 30 m pixel data by resampling. Therefore,
30 m × 30 m pixel data are standard inputs in the BAIC. Seven data inputs, namely POI, RN, NTL,
POI_RN (a combination of POI and RN data), POI_NTL (a combination of POI and NTL data), RN_NTL
(a combination of RN and NTL data), and POI_RN_NTL (a combination of POI, RN, and NTL data)
were generated from the three original inputs of POI, RN, and NTL.

2.4. Classification Algorithms

2.4.1. Logistic Regression

Logistic regression is a basic and common linear model used to solve classification problems [31].
It is also known as a log-linear classifier or logit regression. This model uses a logistic function to
model the probabilities of the possible outcomes of the classification result.

2.4.2. Decision Tree (DT)

The DT method is a non-parametric supervised learning classification method that predicts
the value of a target variable by learning specific decision rules from data features. The DT method
has a simple structure that is easy for people to interpret, and it has therefore been widely used to solve
classification problems in the field of remote sensing [32–34]. However, the DT method is unstable,
since a small change in the train data may lead to a completely different tree structure, and individual
DTs typically tend to cause overfitting and have low generalization ability. Using an ensemble of DTs
such as RF or AdaBoost can mitigate this problem.

2.4.3. Ensemble Methods

Ensemble methods are usually placed into one of two categories: averaging methods or boosting
methods. The basic principle of averaging methods is to independently build multiple estimators and
then take the average of their predictions. The combined estimator usually achieves a reduced variance
and has a better performance than the individual single-base estimator (e.g., a DT). Random Forests—an
ensemble classification method composed of a large number of DTs which was first proposed by
Breiman [35]—is a representative member of this category. In RF, each tree is built from a bootstrap
sample from the training set. By taking the average of the predictions from diverse trees, RF can
achieve a reduced variance and can remove some errors in individual decision trees.

By contrast, the driving principle of boosting methods is to built base estimators sequentially
and to attempt to make the bias of the post-build estimator lower than that of the previously
constructed estimator. Thus, a powerful ensemble is produced by combining several weak models.
Gradient Boosted Decision Trees and AdaBoost are two representative members of this category.
The former is a generalization of boosting to arbitrary differentiable loss functions; it is an effective and
accurate off-the-shelf method that can be used for classification problems in a variety of areas including
early warning of natural disasters and physical particle identification [36,37]. Meanwhile, AdaBoost,
which was first introduced by Freund and Schapire in 1995 [38], is a very popular boosting method
that has been widely used in classification problems [39,40].

Both averaging and boosting ensemble methods are insensitive to noise and outliers.
In the proposed BAIC system, the three ensemble methods of RF, GBDT, and AdaBoost were combined.

2.5. Training and Validation

The in-island and out-island areas of Xiamen were selected as training and test areas, respectively
(Figure 5a). In order to avoid overfitting, k-fold cross-validations were performed on the data
in training areas to optimize the parameters of different classifiers or estimators in the training
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procedure. The principle of cross-validation is that the parameter with the largest average F1-score was
returned after k-times validation. Then, data in the test areas were used to measure the generalization
performance of the classifiers in the validation procedure.
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The ground truth which was used consisted of a collection of maps of the distribution of real urban
built-up areas in Xiamen City provided by the Xiamen Municipal Natural Resources and Planning
Bureau (Figure 5b). These maps were binarized, with a value of 1 being used for the urban built-up
areas and a value of 0 being used for the non-built-up areas.

2.6. Accuracy Assessment

To assess the classification results for built-up areas, the F1-score was calculated based on
30 m × 30 m grids in test areas. The F1-score is a harmonic average of recall and precision; its value
ranges from 0 to 1; the greater the value, the higher the accuracy. The F1-score is given as:

F1 =

 2

recall−1 + precision−1

 = 2 ·
precision · recall

precision + recall
(2)

where precision is also known as the user’s accuracy, and recall as the producer’s accuracy [41].
In this study, we considered the F1-score to be a more important evaluation metric than the overall

accuracy (OA) and Kappa statistic since the study area contains imbalanced land cover types [42,43].
We calculated OA in order to compare the results of this study with those of others that used only
OA. Additionally, in order to determine the generalization ability of the BAIC, we plotted the receiver
operating characteristic (ROC) curve and calculated the area under the ROC curve (AUC) [44]. The ROC
curve was generated by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR).
TPR is a synonym for recall, and FPR is defined as follows:

FPR =
FP

FP + TN
(3)

The ROC curve was used to evaluate the performance of the classification model at different
classification thresholds. AUC is defined as the area enclosed by the coordinate axis under the ROC
curve. AUC shows the average performance value of a classifier, which can be used to compare different
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classifiers. Additionally, AUC can be used to solve the problem of class imbalance. Both the ROC curve
and AUC have been widely used in the evaluation of classification performance for classifiers [45–47].

3. Results

3.1. Distribution of POI within and outside of Urban Built-up Areas

The results showed that there is a difference between the distributions of POI data in urban
built-up areas and in non-built-up areas (Figure 6). POI data distributed in urban built-up areas
accounted for about 75% of the total amount of POI data, almost three times the proportion of POI
data distributed in non-built-up areas (25%).
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Figure 6. The proportion of the POI data which are located in urban built-up areas and non-built-up
areas for various POI categories in the whole of China in May 2019.

Of the 23 separate categories of POI data, there were data from 18 categories in the urban built-up
areas, accounting for more than 70% of the total number of categories, and data from five categories
in the non-built-up areas, accounting for less than 30%.

3.2. Parameters Selection

The bandwidth of KDE has no significant effect on the results. At a gradient of 250–2500 m at
250 m intervals, the range of POI cross-validation scores differs among the five classifiers, however all
of the scores are less than 0.07; similarly, the range of RN cross-validation scores differs among the five
classifiers, however, all are less than 0.02. As a result, the bandwidths of POI and RN in KDE were
selected as 250 m and 500 m, respectively.

Other key parameters obtained from the k-fold cross-validation results for the training set are as
follows: the maximum depths of DT and RF were selected to be 2 and 4, respectively, and the learning
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rates of AdaBoost and GDBC were selected to be 1 and 0.1, respectively. The other parameters were set
to the default values given in the scikit-learn Python library.

3.3. Extraction of Built-up Areas

A total of 35 combination results were generated by BAIC using five classifiers and seven types
of input data (Figure 7). Overall, there were more false negatives (FNs) than false positives (FPs)
in the two situations where BAIC failed. Of all the data types, RN data clearly had the largest variance
in spatial morphology because a large number of massive block urban built-up areas inside the test
area were incorrectly identified as non-built-up areas. The combinations of two or three types of data
had a lower spatial variance compared to single-input data. Of all the classifiers, the ensemble methods
of RF, AdaBoost, and GBDT achieved a more stable classification performance than the traditional
methods of LR and DT.
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3.4. Accuracy Assessment

3.4.1. Overall Accuracy

Among the 35 combinations between the five classifiers and seven types of input data, OA ranged
from 76 to 89% (Figure 8). Overall, the largest OA was obtained using the POI_RN_NTL data and
AdaBoost, while the smallest OA was obtained using RN data and LR. Most of the combinations of
two or three types of data achieved a higher OA than single-input data.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 19 
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3.4.2. F1-score

Among the 35 combinations between the five classifiers and seven types of input data, F1 values
ranged from 0.73 to 0.86 (Figure 9). Overall, the largest F1 value was obtained using the POI_RN_NTL
data and AdaBoost, while the smallest F1 value was obtained using RN data and LR. Similar to
the accuracy metric of OA, most of the combinations of two or three types of data achieved a higher F1

value than single-input data.
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3.4.3. AUC and ROC Curve

Among the 35 combinations between the five classifiers and seven types of input data, UC ranged
from 0.83 to 0.95 (Figure 10). Overall, the largest AUC was obtained using POI_RN_NTL and POI_NTL
data against AdaBoost, LR, and RF, while the smallest AUC was obtained using the RN data and DT.
The ROC curves for the 35 combinations are shown in Figure 11.
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4. Discussion

The BAIC has many distinct characteristics compared with previous classification systems.
The first characteristic is the spatial independence of the test samples. Some studies that get final
accuracy based on random sampling had mixed the training and test set in space, which will cause
overfitting [19,24]. Similarly, other studies calculate accuracy by generating some random points and
calculating the proportion of the number of correctly classified points in the same training area to
the total number of points to obtain a final accuracy without testing in new areas, which may also
cause overfitting [11,20,22]. The evaluation method of the BAIC is significantly different from that
of similar studies. In BAIC, the use of k-fold cross-validation to optimize parameters in the training
procedure does not mix the data between folds, therefore the test samples were spatially independent
of the training samples. Furthermore, in the BAIC, the test areas used to calculate the 30 m × 30 m
pixel-based accuracy were spatially independent of the training area. The spatial independence of
test samples reduces the degree of overfitting and achieves a stronger generalization ability compared
to validation procedures in similar studies. However, future study is needed to consider the spatial
independence between test and training sets in the validation procedure. Additionally, for test sets,
validation sample points should be collected from new test areas where no training sample points
were collected from.

The second distinct characteristic of the BAIC is the final accuracy based on 30 m × 30 m grids is
calculated in test areas independent of training areas. Compared to studies that calculate accuracy
based on random sampling points [12,26], our pixel-based accuracy evaluation method is more objective
and comprehensive, and additionally allows the comparison of the accuracy of different studies at
the same scale.

The third distinct characteristic of the BAIC is that it allows the visualization of the spatial
distribution of TPs, TNs, FPs, and FNs.

Furthermore, the fact that the BAIC uses three different types of open-source input data (POI, RN,
and NTL) means that it is cheaper compared to classification methods that use commercial data.
Moreover, the use of seven types of input data and five classifiers means that the BAIC is more robust
than classifiers that only use one type of input data or classifier.

Grids of 30 m × 30 m were used in the data preprocessing. The reason that smaller grids were
not used is that it would increase the running time of the BAIC, which would limit the application of
the model on a large scale. Additionally, selecting a unit greater than 30 m would increase the resolution
error (e.g., if 100 m was chosen, the error would be greater than or equal to 100 m).

In this study, the cross-validation of bandwidth for KDE showed that the classification results are
insensitive to changes in bandwidth. Different cross-validation gradients will produce different optimal
parameters. In the future, it would be meaningful to explore the impact of parameter optimization
using different cross-validation gradients on the classification results.

5. Conclusions

In this study, a general-purpose built-up area intelligent classification (BAIC) system was developed
supporting various types of data and classifiers. Additionally, a 30 m × 30 m pixel accuracy evaluation
method that takes into account the spatial independence of test samples was proposed for the first
time and used to evaluate the classification results. All of the steps in the BAIC were implemented
using Python modules including Numpy, Pandas, matplotlib, and scikit-learn. Seven types of input
data, namely, POI, RN, NTL, POI_RN, POI_NTL, RN_NTL, and POI_RN_NTL, and five classifiers,
namely, LR, DT, RF, GBDC, and AdaBoost, were used in the proposed BAIC, and the results for each
were compared.

The results show that, among the 35 combinations between the five classifiers and seven types of
input data, the best classification performance was achieved using POI_RN_NTL as input data and
AdaBoost as the classifier. Moreover, a lower variance was achieved using the combinations of two or
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three types of data. More robust classification results were obtained using ensemble methods of RF,
GBDT, and AdaBoost compared to the traditional methods of LR and DT.

The advantages of using the BAIC include its multi-source input, more objective and comprehensive
accuracy evaluation method, better generalization performance, lower cost, and strong robustness.
Therefore, the proposed BAIC provides a new research avenue and an effective reference for
the intelligent extraction of urban built-up areas using open-access RN, NTL, and POI data. This method
can efficiently realize the automatic identification of urban built-up areas at a very low cost and can be
easily applied to other urban areas in the world that have any kind of POI, RN, or NTL data coverage.
The results of the present study are expected to provide timely and effective reference information for
urban planning and urban management departments.
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Appendix A Gaode Official POI Classification and Coding Table

The POI classification and coding table associated with this article can be found at https://github.
com/FirstPotato/Urban-built-up-areas/blob/master/POI_Classification_and_coding_table.csv.
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