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Abstract: In Thailand, crop depredation by wild elephants intensified, impacting the quality of
life of local communities and long-term conservation of wild elephant populations. Yet, fewer
studies explore the landscape-scale spatiotemporal distribution of human–elephant conflict (HEC).
In this study, we modeled the potential HEC distribution in ten provinces adjacent to protected
areas in Eastern Thailand from 2009 to 2018. We applied the time-calibrated maximum entropy
method and modeled the relative probability of HEC in varying scenarios of resource suitability
and direct human pressure in wet and dry seasons. The environmental dynamic over the 10-year
period was represented by remotely sensed vegetation, meteorological drought, topographical, and
human-pressure data. Results were categorized in HEC zones using the proposed two-dimensional
conflict matrix. Logistic regression was applied to determine the relevant contribution of each scenario.
The results showed that although HEC probability varied across seasons, overall HEC-prone areas
expanded in all provinces from 2009 to 2018. The largest HEC areas were estimated during dry
seasons with Chantaburi, Chonburi, Nakhon Ratchasima, and Rayong provinces being the HEC
hotspots.However, the HEC potential was reduced during severe and prolonged droughts caused
by El Nino events. Direct human pressure caused a more gradual increase of HEC probability
around protected areas. On the other hand, resource suitability showed large variation across
seasons. We recommend zone-dependent management actions towards a fine-balance between
human development and the conservation of wild elephants.

Keywords: Asian elephants; human–elephant conflict; crop depredation; species distribution
modeling; MaxEnt; MODIS; KBDI

1. Introduction

Although wild Asian elephants (Elephas maximus) are listed as endangered species under the IUCN
(International Union for the Conservation of Nature) Red List of Threatened Species, their conservation
is hampered by humans as a reaction to crop depredation caused by elephants [1]. In Asia, approx.
10%–15% of total agricultural output can be damaged by wild elephants, which threaten human
security and well-being [2]. India hosts the largest population of wild Asian elephants: each year,
400 people and 100 elephants die as a result of human–elephant conflict (HEC) [3]. Understanding the
HEC phenomenon is critical to both conservation success and the livelihood of human communities in
close proximity to wild elephant habitats.

Thailand is estimated to have 3000–3500 wild elephants in 68 areas, 41 of which are facing HEC,
commonly in the form of crop depredation [4]. Historically, elephants have been recorded inside

Remote Sens. 2020, 12, 90; doi:10.3390/rs12010090 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-3213-4807
https://orcid.org/0000-0002-9138-6601
http://dx.doi.org/10.3390/rs12010090
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/1/90?type=check_update&version=2


Remote Sens. 2020, 12, 90 2 of 20

Bangkok, Thailand’s capital city, and the surrounding provinces [5]. Nowadays, the estimated home
range of wild elephants in the country lies in heavily fragmented landscapes and is surrounded
by human-dominated activities [6]. Consequently, interaction between wild elephants and humans
became more frequent, increasing the likelihood of conflict.

Across countries with presence of wild elephants, various mitigation strategies have been
implemented that include guarding (e.g., watchtowers), deterrents (e.g., firecrackers), physical barriers
(e.g., trenches and various form of fences: electric, chilies), translocation of elephants or humans,
and compensation [7]. In Thailand, guarding, together with traditional deterrents, are the most
common strategies [8]. In high conflict areas, large fences and trenches were constructed by the
government, but proved ineffective due to lack of proper maintenance [9]. Recently, more active
approaches were employed, such as (i) GPS collaring of wild elephants known to forage outside
protected areas to track their movement [10], and (ii) issuing of government insurance schemes for
crop damage by elephants [11]. Landscape planning is viewed as a potential long-term solution [12],
but its implementation has not yet been established despite being mentioned in the draft of 20-year
Master Plan for Elephant Conservation [11].

Apart from the negative human–elephant interaction, HEC also includes conflicting human
objectives [13,14]. Social factors, such as trust in authority, education, income, culture, and religion,
influence community tolerance and willingness to coexist with elephants [12,15]. Simultaneously,
competition for scarce resources between humans and wildlife in a shared landscape remains a
fundamental cause of conflict [16,17]. Knowledge of the spatiotemporal variation of resources and its
effect on the pattern of conflict is an important initial step toward a sustainable, long-term solution [18].

Studies in Thailand generally focus on social aspects of HEC, such as people’s attitudes and
perceptions [19,20], conservation, and legal management [21,22]. An existing study on the spatial
distribution of wild elephants included only localized habitat suitability assessment in a single
conservation area [5]. Studies on spatiotemporal patterns of HEC across landscapes remain limited but
they are crucial for appropriate decision making [23]. Compared to African elephants, such studies are
relatively few in Asia [18,24,25] and, to the best of our knowledge, no such study exits in Thailand.

Species Distribution Models (SDMs) are widely used in ecology to predict spatial patterns
of species. SDMs are numerical models that quantify the relationship between ecological (e.g.,
species/population abundance) and environment variables [26]. SDMs estimate the environmental
similarity between locations to known ecological response and extrapolates from local samples to
entire target landscapes. Their application has been seen in human-wildlife conflicts [27], but remains
relatively few in HEC modeling.

Previous ecological studies on elephants have researched the seasonal variation in elephant
movement and dispersal [28,29]. Nevertheless, SDMs commonly employ environmental data that
provide less dynamic information with often irrelevant temporal resolution between predictor and
response variables. This is specifically true for meteorological time series, which are often interpolated
from weather stations, introducing uncertainty due to uneven data distribution and availability in
developing countries [30]. In contrast, remotely sensed satellite datasets can provide spatially explicit
and continuous observation which are believed to enhance SDM accuracy [31]. Previous studies
highlighted model-performance improvement due to the utilization of remote sensing datasets, such
as vegetation phenology [32], and human activities [33]. In addition, a generic assumption in SDMs is
that ecological response can be described by a single function, which results in over-simplification [34],
reducing the ability to identify drivers of response [35]. Specifically in habitat modeling, a single
function SDM will overlook certain management areas (e.g., sink-like habitat) when key factors
that determine the occurrences are not positively correlated [36]. Therefore, modeling occurrences
based on two SDMs from the perspective of different key factors allows for a more informative
assessment [35–37]. HEC, in particular, depends on two prominent physical variables: resource
suitability and human pressure. Such a two-dimensional approach has not yet been applied in
HEC modeling.
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The aim of this study was to bridge the knowledge gap on the physical factors that potentially
govern the spatial distribution of HEC in Eastern Thailand. Given the large landscape extent and the
dynamic spatiotemporal variation of environmental and physical factors, we utilized remotely sensed
satellite data and quantified the spatiotemporal HEC distribution over a 10-year period. Our specific
objectives were to (i) model the potential spatial distribution of seasonal HEC from 2009 to 2018 with
the use of time-calibrated SDMs, (ii) identify and distinguish the contribution over time of important
modeling factors (resource suitability and direct human disturbance), and (iii) prioritize the areas that
require targeted management and increased intervention.

2. Materials and Methods

2.1. Study Area

Our study was carried out in two forest-dominated areas of Eastern Thailand (Figure 1) covering
eight eastern and two north-eastern provinces. The area has a tropical monsoon climate. The monsoon
season occurs from mid-May to mid-October with an average rainfall of 1400 mm, while the area
during dry season receives about 400 mm of rainfall [38,39]. The region has nine national parks (NP)
and wildlife sanctuaries (WS) hosting elephants [5]. Khao Angruenai-WS, for example, experiences
high density of wild elephants, approx. 0.2 elephant/km2 [40]. In addition, a constantly low elevation
in the central region enabled elephants to easily disperse into agricultural land. Consequently, this area
is suspected to be a HEC hotspot. Agriculture is the dominant land cover. The five most important
crops in planting areas are rice, cassava, rubber plant, sugarcane, and maize. Orchards and plantations
commonly spread out in the southern areas. To limit the modeling boundary to only those potentially
accessible by elephants, a 20-km buffer was created from the boundary of protected areas and village
location with reported HEC. The seasonal models were set according to the monsoon pattern, with
May to October as the wet season and November to April of the following year as the dry season.

Figure 1. The study area in Eastern Thailand (a). The area is dominated by croplands and savannas,
while the damaged villages are located near the forests (b). Human–elephant conflict was modeled
within 20-km buffers generated around the nine protected areas (c, d), which are natural habitats for
elephant populations.
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2.2. Data

HEC occurrences were collected from online news reported between 2014 to 2018.
The environmental predictors were prepared under the same time period. Based on this data,
we modeled the spatial distribution of HEC across the study area for the period 2009–2018 and
developed maps of HEC category. The flow chart of this study is shown in Figure 2.

Figure 2. Flow chart of the study. Two models for each season under resource availability and direct
human pressure were constructed. Projected probability during 2009–2018 were classified and overlaid
using proposed conflict category.

2.2.1. HEC Occurrence Data

Until March 2019 when elephant-induced damages were first included in farmers’ insurance
schemes, HEC was neither compensated, nor insured by the Thai government [11]. Consequently,
official records were not consistently maintained across protected areas. Although elephants’ locations
outside of protected areas were sometimes documented, the presence of elephants is not always
equivalent to HEC. Reporting from news sources usually happens when negative outcomes occur,
and this better reflects HEC occurrences. Therefore, HEC incidences were retrieved from online news
sources. ‘Wild elephants’ in Thai language was used as a search keyword from the News section of
Google Search Engine. A customized time period was set between 2014 and 2018. Each search output
was investigated manually to exclude duplicated reports of the same incident.

The news reports, however, did not mention the precise locations of HEC occurrence but only
the village names. To overcome this lack of exact occurrence locations, we simulated the occurrence
locations using a conditional random sampling method. The sampling boundaries were restricted
within a 3-km buffer around the center of each mentioned village, excluding areas that fall within the
protected areas, large water bodies (e.g., reservoirs), and major road networks. We excluded locations
with the aforementioned features because HECs are unlikely to occur within them. The numbers of
random occurrence points were generated according to the numbers of damage incidents reported
within each village. A total of 124 incidents occurred in the wet season; a combination of 7, 12, 14, 31,
and 60 incidents from 2014 to 2018 respectively. The dry season had 122 reports in total; 5, 20, 20, 20,
and 57 of which occurred respectively in the same period of time.

Five sets of random occurrences were generated. A Wilcoxon–Mann–Whitney test [41] was
performed to compare the distribution profile of each independent variable to that of the other four
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sets of simulated occurrence records. A p-value of over 0.05 indicated no significant difference between
each set. We then selected one set for our model constructions.

2.2.2. Predictor Variables

Thirteen variables were analyzed. We grouped the predictors into two scenarios: (i) resource
suitability and (ii) direct human pressure. Resource suitability comprised of vegetation
productivity (Enhanced Vegetation Index—EVI), seasonal vegetation changes (EVI slope, and EVI
standard deviation), landscape composition (EVI homogeneity), meteorological drought condition
(Keeetch–Byram Drought Index), refuge locations (Forest percent cover, Distance to forest),
and topographic condition (Terrain Roughness Index). Direct human pressure included distance
to lit-up area, to main roads, to protected habitats, and human population density. Indirect human
pressures, such as sociopolitical factors, were not considered in this study. All the predictors were
re-projected to the WGS 84/UTM zone 47N (EPSG:32647) and resampled to a 500-m resolution using
bilinear interpolation. Pre-processing was performed using Google Earth Engine [42] and R version
3.5.3 [43]. Table 1 shows each variable together with the data source, the original resolution, and the
temporal period used.

Table 1. List of predictor variables including data source, spatial resolution, and temporal scale in
which data was prepared (temporal scale: An—Annual, Se—Seasonal, St—Static).

Variable Source Resolution

Resource-related
Keetch–Byram Drought Index (KBDI) KBDI product 4000 m Se
Enhance Vegetation Index (EVI) MOD09A1 500 m Se
EVI change slope MOD09A1 500 m Se
EVI standard deviation MOD09A1 500 m Se
EVI landscape heterogeneity MOD09A1 500 m Se
Distance to forest MCD12A1 500 m An
Forest percent cover MCD12A1 500 m An
Distance to Water Global Water Surface product 30 m An
Terrain Roughness Index (TRI) SRTM 90 m St

Direct human pressure
Distance to lit-up areas Intercalibrated DMSP and VIIRS 1000 m An
Human population density Landscan product 1000 m An
Distance to main roads Thailand Bureau of Highway vector St
Distance to protected habitats WDPA vector St

Normalized Difference Vegetation Index (NDVI) was found to be an effective proxy of forage
availability [44]. Dispersal of African elephants was shown to coincide with the greening-up measured
by NDVI [45]. For this study, we utilized the Enhanced Vegetation Index (EVI). Despite being similar to
NDVI, EVI improved saturation in high biomass regions, corrected for aerosol influence, and reduced
noise from soil background [46]. Following [47], EVI was calculated from MODerate Resolution
Imaging Spectroradiometer (MODIS) Terra product (MOD09A1) as:

EVI = 2.5 × ρNIR − ρRed
(ρNIR + 6 × ρRed − 7.5 × ρBlue + 1)

(1)

where ρNIR, ρRed, and ρBlue represent the reluctance of the near-infrared, red, and blue bands
respectively. Only the pixels under clear cloud state and no cloud shadow were used. We first calculated
the monthly median of EVI for each month from 2009 to 2018. The missing monthly pixels were filled
using the 10-year averaged EVI value in the same pixel location of the same month. From the monthly
EVI data, we calculated mean EVI for each season which represents vegetation productivity. Next,
the EVI slope variable, representing the rate of change in vegetation condition (e.g., crop senescence),
was calculated by applying pixel-wise linear regressions over the monthly EVI within each season.
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A standard deviation of the monthly EVI values within each season was calculated next which
represents fluctuation in vegetation dynamic. Lastly, a spatial homogeneity of EVI was generated
using the Gray Level Co-Occurrence Matrix [48]. These EVI variables can also be linked to different
characteristics of land cover types. For example, a high EVI and a EVI slope near zero usually associate
with tropical forest land cover (Figure S1).

Drought influences surface water availability and vegetation quality, which govern elephant
habitat use [28]. The Keetch–Byram Drought Index (KBDI) estimates the dryness of soil layers.
The KBDI product was computed using the precipitation data derived from the Global Satellite
Mapping of Precipitation (GSMap) and land surface temperature (LST) data from Multi-functional
Transport Satellite (MTSAT) [49]. The value of KBDI ranges from 0 (no moisture deficit) to 800 (extreme
drought). The daily data from 2009 to 2018 was averaged by season. Additionally, wild elephants were
observed to move toward inland areas during the dry season as waterhole in coastal regions dried
up [29]. To capture accessibility to water, locations of surface water were obtained from the monthly
historical Landsat Global Water Surface Product [50]. Within a single year, pixels detected with water
for at least 3 months were marked as water and Euclidean distance to them were calculated.

Forest is considered a natural habitat and represents a potential refuge location. Forest land
cover classes from the MODIS land-cover product (MCD12Q1) was used. Since the study area was
dominated by dry evergreen forest (90% of all forest classes), we reclassified all forest types to a single
land cover class. According to an interview with park rangers conducted by the authors, 6 km was
suggested to be a one-way distance traveled by wild elephants between patches of the forest outside
the protected areas. Two variable were calculated, a mean Euclidean distance from each pixel to
forest and a percentage of forest cover within 6-km buffer around each pixel. Lastly, we calculated
terrain ruggedness index (TRI) from the Shuttle Radar Topography Mission data (SRTM) [51]. The TRI
represents the relative change in elevation from a center cell and eight surrounding cells. A higher TRI
value indicates more rugged areas.

Direct human disturbance was measured based on human population density, as well as Euclidean
distance to protected habitats, to main roads, and to lit-up areas. The pixels detected with light or the
lit-up pixels were computed from satellite-derived night time light data. The Defense Meteorological
Satellite Program’s Operational Linescan System (OLS) and the Suomi National Polar-orbiting
Partnership satellite’s Visible Infrared Imaging Radiometer Suite (VIIRS) were the main sources
of night-time light product. Calibration among OLS sensors, as well as between OLS and VIIRS, was
necessary. We applied a second-order regression model from [52] for the calibration among OLS
sensors. For OLS and VIIRS inter-calibration, we first created VIIRS annual composite following [53]
and then applied a combination of power function and Gaussian low pass filter [54]. The pixels with
digital numbers of over 20 were used to calculate Euclidean distance. The density of the human
population also influences alteration of landscape and intensity of anthropocentric activities, which
may not be captured by the night-time lights. Hence, mean human population density was computed
using yearly estimations from LandScan.

2.3. Model Construction and Evaluation

2.3.1. Bias Correction

HEC incidences from online news sources are opportunistically collected and not randomly
sampled. Such datasets often contain sampling bias wherein more reporting are made from easily
accessible locations or well-known hotspots [55]. With sampling bias, it is hard to determine whether
occurrences were reported due to preferable conditions in that locations or concentration of search
effort. When relative search effort across the landscape is known, sampling bias can be directly
modeled and provided as prior distribution during SDM construction [56,57]. Alternatively, the effect
from sampling bias can be partially accounted for by subsampling the training dataset or adjusting
the background selection [55,58,59]. Due to low occurrences in our study, we applied background
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selection method which nullifies bias by generating a similar bias in the background [57]. Bias grids
were produced by deriving a Gaussian kernel density map of the village locations weighted by the
average number of duplicated reports within each village. The bias values were re-scaled from 1 to 20,
following [58] to avoid extreme values, and used as probability in sampling background points. We
sampled a total of 10,000 points, a combination of 2000 each year from 2014 to 2018. The generated
background points were later used as pseudo-absences in model construction.

2.3.2. Maximum Entropy Modeling

The Maximum Entropy algorithm from MaxEnt [60] was used. MaxEnt is a machine-learning
technique that estimates the unknown distribution of suitability by contrasting the values of predictors
at occurrence locations with the overall distribution of these predictors [56]. A detailed explanation
and related equations can be found in [60]. MaxEnt had shown a high performance even with few
occurrence records and was least affected by errors of occurrence location [56]. It also outperformed
other methods [61]. All our models were constructed using dismo package in R with MaxEnt 3.3.4
version [62]. The logistic link function was used to derive a relative probability of potential HEC
occurrence ranging between zero (low probability) and one (high probability) [60].

A time-calibrated method [63] was applied in which each occurrence point was matched with
environmental predictors from the relevant season during which HEC was reported. This resulted
in time-independent models which allowed comparability across the study period. MaxEnt requires
background points as pseudo-absent. The 10,000 background samples previously generated in
Section 2.3.1 were used.

Prior to model construction, multicollinearity among predictors was evaluated. Variables that had
Variance Inflation Factors (VIF) greater than 10 and high Pearson correlation (−0.75 < r < 0.75) were
removed. Since feature classes and regularization multiplier (RM) impacted modeling results [56],
parameter optimization was conducted using EMNeval package in R [64]. Product and Threshold
features were excluded in our models. Product-feature tends to over-fit and complicates interpretation
of variable responses [65]. Threshold-feature should be used when a drastic cut-off exists in species’
response to environmental factors, but no such cut-off has been identified for Asian elephants.
Therefore, only Linear/Quadratic/Hinge combinations were selected and k-fold cross-validation
was performed with RM value from 0.5 to 5 at 0.5 increments. Akaike Information Criterion (AIC) was
used for optimal parameters selection. Other settings were left with default values which included
500 iteration maximum and convergence thresholds.

After optimal parameters were identified, the models were constructed using k-fold cross
validation (k = 5) and evaluated with Receiver Operating Characters (ROC) with average Area
Under the Curve (AUC) from all replicas. In addition, a jackknife test was used to identify important
predictors. Responses for each variable were also generated. A total of four models were constructed,
one model for each season under the two high-level scenarios (resource suitability and direct human
pressure). We identified the differences between environmental predictors from each season to those
used for model construction using Multivariate Environmental Similarity Surface (MESS) and limiting
factors [58]. The negative MESS score indicated a novel condition in variables used for prediction
which implies possible uncertainty. We then estimated relative probability of HEC across the landscape
for 20 seasons by applying our constructed models on the predictors from 2009–2018.

2.4. Conflict Classification and Analysis

The probability of HEC occurrence for each high-level group was then categorized in three
classes (High, Low, Very Low). Two thresholds were used, (i) 10th percentile of presence locations
and (ii) maximum training sensitivity plus specificity (maxSS). The first threshold allowed omission
of 10 percent of occurrences which reduces sensitivity to extreme localities [66], while the second
threshold was evaluated as an effective threshold value for presence-only modeling [67]. Probability
lower than the first threshold was set as Very Low class. We then applied the second threshold where
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the probability lower than maxSS was set as Low, and those higher or equal to maxSS was set as High.
Interpretation of resource suitability is straight forward in which high HEC probability occurred in
a more suitable condition. Conversely, the high HEC probability of human pressure captured the
disturbance level in which conflict peaked. In reality, high human disturbance beyond the peak level
existed, but likely restricted occurrence of elephants resulting in low predicted HEC probability.

Each classified maps from different scenario in the season were then overlaid into a
two-dimensional HEC categorical map (Figure 2). These categorical classification contained Avoid
matrix (at least one very low class from either scenario), Rare conflict (low resource suitability and
low human pressure), Low conflict (high resource suitability but low human pressure), Likely conflict
(low resource suitability and high human pressure), and High conflict (high resource suitability with
high human pressure). By using two-dimensional classification, we can identify two main key
management-relevant actions related to each group of factors. First, management actions associated
with resource suitability are linked to natural resource and land management (e.g., land-use policies,
establishing elephants corridors) (e.g., [68,69]). Second, HEC occurrences are also governed by level
of human disturbances which can be associated with different management actions directed more
toward human co-adaptation (e.g., insurance schemes, behavioral adjustment in crop husbandry)
(e.g., [70,71]).

We generated two HEC maps (a wet seaon map and a dry season map) for each year during
2009–2018. Areas of different HEC levels were calculated by summing the number of pixels within
each category and multiplying that by the pixel size. We calculated affected areas for each map by
season from 2009 to 2018 both for the whole region and separately by provinces. The distributions of
conflict hotspots, which are the areas repeatedly predicted with the same conflict category across the
years, were identified. The change in probability of HEC occurrence under resource suitability and
direct human pressure scenario over 10 years was calculated by fitting pixel-wise linear regression on
predicted probability from 2009 to 2018. The slope coefficient of the fitted regression indicated the rate
and direction of change in HEC probability. The intercept represented the baseline probability in 2009.

3. Results

3.1. Model Performance and Variable Responses

The p-value of all simulated HEC occurrences were greater than 0.19. The mean cross-validated
AUCs were 0.81 for resource suitability/wet season, 0.73 for resource suitability/dry season, 0.78 for
direct human pressure/wet season, and 0.77 for direct human pressure/wet season. Jackknife analysis
for the resource suitability scenario (both seasons) indicated that Forest Percent Cover had the highest
predictive contribution. Together with KBDI, EVI slope, and Distance to Forest, these four predictors
accounted for over 80% of the models’ predictive power. For the dry season model, KBDI had slightly
less contribution, while distance to forest edge became more important. Under human pressure
scenario, Distance to Protected Habitats was the most influential variable for both season. The next
important predictor for the wet season was Human Density, while Distance to Main Roads was for the
dry season.

Figure 3 shows how the HEC probability changes as each environmental predictor is varied,
while keeping all other environmental variables at their average sample value. The response of
Forest Percent Cover was similar for both seasons. In the highest and lowest forest densities, lower
HEC probability was expected, while higher HEC probability was found in moderate forest densities.
For KBDI, higher probability of HEC in wet season occurred at low KBDI, with a continuous reduction
after KBDI of around 50. In the dry season, however, HEC probability peaked at intermediate KBDI
around 300–400 and decreased slowly. The response of EVI Slope for the wet season indicated that
HEC was more likely to occurred where vegetation conditions were changing (diverted from zero),
the highest HEC probability occurred when EVI was reducing over the season. In the dry season,
however, probability of HEC was higher when EVI was relatively stable (EVI of zero) or increasing
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slightly (EVI of 0.05), indicating green-up of vegetation. The patterns of EVI slope from both seasons
corresponded to the characteristics of EVI slope from forest and savanna land cover (Figure S1).
For human pressure, response of Distance to Protected Habitats, Distance to Main Roads, and Distance
to Lit-up Areas had similar characteristics for both seasons. In the dry season, a slower reduction
in HEC probability was observed for Distance to Protected Habitat and Distance to Lit-up Areas
as distance increased. For Human Density, HEC probability in the wet season reduced as density
approached 1000 person/km2, but did not affect HEC probability in the dry season. Possible higher
tolerance to high human pressure of elephants was captured in dry season.

Figure 3. Relative probability of human–elephant conflict (HEC) occurrences for each environmental
predictor, grouped based on resource suitability (top) and direct human pressure (bottom), while
keeping all other predictors at average values. The predictors shown had a combined contribution
greater than 80%. KBDI, Keetch–Byram Drought Index. EVI, Enhanced Vegetation Index.

MESS results indicated similarity of variables under the resource suitability scenario across the
study period. For direct human pressure scenario, dissimilarity with negative MESS was identified in
2009 and 2012–2013, which we suspected was due to the use of different sensors for night-time light
dataset. Limiting factors were relatively similar within the same season across the study period except
for 2010 and 2014–2016 under the resource suitability scenario. During those years, KBDI became
prominent limiting factors, affecting large areas especially in wet season.

3.2. Distribution of Conflict and Conflict Hotspot

The potential for HEC occurrence was higher during the dry season: High and Low conflict areas
were larger and more frequent. In contrast, during the wet season, the Likely and Rare conflict
categories were more frequent, suggesting lower HEC potential. The hotspots of High conflict
category were concentrated around the south and south-west of Ang Ruenai-WS in Chonburi, Rayong,
and Chantaburi provinces (Figure 4). In the north, smaller clusters, especially near the protected
areas, was predicted in Nakhon Ratchasima, Nakhon Nayok, and Prachinburi provinces. The high
HEC zones shrunk closer to the protected areas in the wet season and mainly located around Khao
Chamao Khao Wong-NP at the border between Rayong and Chantaburi, east of Khao Soi Dao-WS in
Chantaburi, and northwest of Khao Yai-NP in Nakhon Ratchasima. Additionally, our models estimated
that many areas under High conflict category in the dry season changed to Likely conflict category
in the wet season. This result implied that such locations have potentially experienced year-round
HEC in different levels (e.g., intensity or frequency). Low conflict class was predicted in large areas
in the dry season, affecting all provinces. Although less in frequency and intensity, in the wet season
coldspots of Low and Rare conflict categories were concentrated around the main roads, with some
areas located far from protected areas.
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Figure 4. Conflict probability classes based on the number of years with repeated predictions of
human–elephant conflict from 2009 to 2018.

During 2009–2018, overall areas of potential conflict were estimated to be increasing as shown in
Figure 5. The increasing trend of High HEC was captured in both dry and wet season, although the
peak values were lower in the wet season. Potential HEC areas expanded more than double between
2016 and 2017, of which areas with High conflict increased from 2235 to 4306 km2 and 115 to 2467 km2

in the dry and wet season respectively. The dry season was dominated by two conflict categories: High
and Low. On the other hand, similar trends were presented across all conflict categories in the wet
season despite variations of affected areas among the years. For Likely conflict, the wet seasons had a
similar increasing trend to that of the High conflict category. However, the dry seasons had relatively
stable areas of the Likely and Rare HEC.

Chantaburi was estimated to have the largest areas of HEC, followed by Nakhon Ratchasima
(Figure 6). In Chantaburi, large areas of High HEC (~900 km2) were estimated in the dry season
from the beginning of the study period. The province showed an increase in overall areas of conflicts,
as well as the largest area expansion of High HEC captured in the wet season, from 170 km2 in
2009 to 689 km2 in 2018. Nakhon Ratchasima also had large HEC-prone areas, but the High conflict
category showed a large increase only from 2014 onward. Similar to Nakhon Ratchasima, Buri-Ram
and Chachoengsao were predicted with High HEC from 2014. Except Nakhon Nayok and Trat, all
provinces were predicted to have a larger area of High conflict category during the dry season. HEC
areas were increased more than double from 2016 to 2017 in Buri-Ram, Chachoengsao, Chantaburi,
Nakhon Ratchasima, Prachinburi, Rayong, and Sa Kaeo. On the other hand, a decrease in the areas of
HEC was identified in 2010 and 2014–2016 for most provinces.
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Figure 5. Total areas of human–elephant conflict under each category showed an overall increasing
trend from 2009 to 2018 with larger affected areas under High category in the dry season.

Figure 6. Areas of human–elephant conflict (HEC) from each category calculated by province from
2009 to 2018 showed that Chantaburi had the largest HEC areas and the expansion of HEC zones was
observed in 2017 for most provinces.
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3.3. Drivers of Changes in HEC Probability Over Time

We identified the contribution to changes of HEC by evaluating HEC probability from resource
suitability and direct human pressure across the study period. From Figure 7a, HEC probability from
direct human pressure scenario generally showed a gradual increasing trend with an exception of a
drastic area expansion in both High (2203 to 6503 km2) and Low (4773 to 8983 km2) classes in 2014.
This sudden increase was likely caused by lit-up areas increased as a result of improved night-time
light sensor started from 2014 onward. For resource suitability scenario, a clear pattern cannot be
observed. Hence, variation of predicted HEC category seen among different years were likely due
to the dynamic changes in suitable resources. Areas of High and Low probability under resource
suitability were reduced over half in 2010 and seemed to continuously decrease from 2012 to 2016. This
reduction in HEC areas coincided with the high anomaly of KBDI period in Thailand. Figure 8 showed
examples of KBDI anomaly from which positive values observed in 2014–2016 indicated higher KBDI
than the 10-year average values, while 2013 represented a relatively normal condition.

Figure 7b shows spatial distributions of changes in HEC probability from 2009 to 2018 under
resource suitability and direct human pressure scenario. Each location on the maps conveys two
information, (i) a regression slope (a rate and direct of change in HEC probability), and (ii) a regression
intercept (a baseline of HEC probability in 2009). A decreasing trend is shown in red and an increasing
trend in blue. A high 2009 baseline is shown in bright green, while a lower baseline is in darker shade.

Figure 7. (a) Temporal distribution of areas predicted as High, Low, and Very Low category during
2009–2018. (b) Changes in HEC probability from 2009 to 2018 under resource suitability and direct
human pressure scenarios. Each location presents two values, a slope and an intercept. The maps are
visualized using RGB composite, Red: negative slope (decreasing trend), Green: intercept (baseline of
HEC probability in 2009), and Blue: positive slope (increasing trend).

In resource suitability maps, areas with orange color corresponded to a high baseline with
moderate negative rate of change in HEC probability. This decreasing trend (−0.07 to −0.04 per year)
in both wet and dry season was mainly predicted around the edge of the forests. Base on MODIS
land cover (Figure 9), the reduction of HEC probability near the forest was due mainly to forest cover
increased over the years. According to the predictors’ responses in Figure 3, areas with high forest
densities and nearer to forest were estimated with lower HEC probability. Positive trends (0.2 to
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0.4 per year) was sparsely predicted in both wet and dry seasons on the west-side of Ang Ruenai-WS
in Chachoengsao and Chantaburi provinces. Although we cannot specify a reason behind this increase,
we observed from MODIS land cover that there was an expansion of the savannas land cover during
2017–2018, as well as increased of forest in those areas (Figure 9b). The high HEC probability of
EVI slope corresponded to the characteristics of forest and savanna which may have heightened the
predicted probability.

Figure 8. Anomaly of Keetch–Byram Drought Index (KBDI) showed large positive value in 2014–2016
compared to relatively normal condition in 2013. Positive KBDI anomaly indicated deficit of soil
moisture, which is suspected to restrict the availability of resources and alter the potential HEC
distribution.

Figure 9. (a) Areas of different land cover types from 2009 to 2018 based on the reclassified MODIS
land cover classes (b) Dominant land cover changes detected from 2016 to 2017.

For direct human pressure scenario, large areas of increasing trend occurred in previously low
and moderate HEC probability baseline in wet (a pure bright blue) and dry (a dark greenish-blue)
season respectively. These areas were located around Ang Ruenai-WS, north-east of Khao Yai-NP,
and north of Thablan-NP. Since the variables used under direct human pressure scenario only contain
static and annual characteristic (Table 1), the differences observed between seasons were not the result
of physical differences. The dissimilarities were due to seasonal differences of variable response that
governed HEC prediction. In addition, the southern areas of Ang Ruenai-WS were predicted with
constantly high HEC probability (around 0.7) from human pressure in the dry season. The increasing
trend within the same areas in the wet season (a rate of 0.07 to 0.10 per year) likely caused a year-round
HEC. The large positive trend from direct human pressure, when happen in areas with already high
HEC probability predicted under resource suitability, may escalate HEC to a higher category. Lastly,
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spares areas in orange indicated a decreasing trend in HEC probability. These areas scattered in the
west near the main roads. This is due to human population growth. The same was not predicted for
the dry season because of the differences in variable response between the two models.

4. Discussion

Using two-dimensional classification together with time-calibrated SDM on remotely sensed
satellite data, we predicted and compared potential HEC distribution in Eastern Thailand across
20 seasons. Overall, our models predicted the occurrence of large HEC-conflict areas during the dry
season which decreased both in term of spatial extent and intensity during the wet season. Chantaburi
and Nakhon Ratchasima were predicted to have the largest HEC-prone areas. Drought-induced
decrease in the distribution of suitable resources (base on KBDI index), resulted to a relevant decrease in
the spatial extent of HEC. The high KBDI detected in 2010 and 2014–2016 (Figure 8) coincided with the
El Nino phenomena that caused severe and prolonged drought in Thailand [72]. This caused a decrease
in the spatial HEC extent in some provinces, but HEC extent increased in other provinces. Previous
studies in arid savannas showed that extreme drought can alter the distribution and abundance of
elephants population, leading to mass starvation [73,74]. However, such extreme events is usually
not considered during modeling. Considering that dry periods, and their associated extreme drought
events, may occur more frequently due to climate change, HEC distribution may become unpredictable,
causing critical management implications. Additional field investigation is required to examine
whether or not a decrease in the spatial HEC extent in some areas may result to concentrated increase
of elephant-induced damages in other locations.

The peak of HEC probability for forest percent cover, a variable with the highest predictive power,
was identified at 25%–45%. Forest land cover mainly entailed protected areas. Hence, HEC occurred
in areas close to elephant natural habitats. Although high HEC occurrence near protected areas is
expected, the peak probability implies that conflict incidents do not always locate directly adjacent to
protected parks. Available patches of forest outside of protected areas, such as community forest, may
assist in wild elephant dispersal as long as the composition with other land cover provide 25%–45%
cover within 6 km. Further field study is necessary to identify the size of forest patches required by
elephants outside of protected areas.

HEC hotspots along the southern and western of Ang Ruenai-WS were dominated by savannas
land cover, a mixed tree and grass system. The peak in HEC probability as seen from EVI slope
coincided with characteristics of MODIS savannas and forest land cover class. By comparing MODIS
land cover with land use map from Land Development Department, Ministry of Agriculture and
Cooperatives of Thailand, savannas land cover was generally rubber plantations and orchards.
Available tree canopies in these land use, despite being sparse, may provide cover for elephants and
assist in their movement. Studies in India and China identified proximity to forest edge and high-statue
vegetation (e.g., eucalyptus and acacia) as important factors determining elephant occurrences outside
of protected areas [25,75,76]. With large continuous extant of savannas within these hotspot, together
with high HEC predicted across both season, elephants may already be frequent and even residing
permanently in the areas.

Although predictor responses were generally similar to studies from other Asian countries,
some variable contributions were different. Distance to water has been identified as an important
factor determining elephants distribution in China [25], Indonesia [77], India [78], and Thailand [79].
In this study, however, it was not a prominent predictor. We expected the reason to be the coarse
spatial resolution as we re-sampled the data from 30m to 500m. Consequently, small water bodies
located in individual farmers’ lands might not be captured. Although vegetation index was a good
proxy for forage quality in [44], the EVI variable had relatively lower predictive importance in our
study. Usefulness of vegetation index depends highly on the types of habitat and the season [80].
In tropical forest, elephant forage abundance was unable to be mapped directly using average value
of NDVI [81]. Nevertheless, EVI slope had the highest predictive power among all EVI variables,
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implying possible importance of vegetation phenology. A study of crop raiding behavior in African
elephants identified crop availability and ripening timing as important indicators for predicting crop
damage [82]. Therefore, variables related to crop types along with its phenology, which can be detected
from remotely sensed satellite data, should be further studied.

Overall our calibrated models had a good to very good predictive power with AUC ranging
from 0.73–0.81. Nevertheless, this study still contains limitations and uncertainties. First, although
bias correction was applied, we still cannot account for unreported locations where HEC occurred
but not reported in the news. Second, different in variable responses were identified between wet
and dry season, but the significance between predicted wet and dry HEC distributions remain to be
evaluated. Having two separate HEC maps can support effective operational planning (e.g., seasonal
patrol routes), but can also cause difficulty for policy-level planning. Future study can evaluate models
from key season similar to [35] in which winter season was chosen. Third, additional variables can be
included to provide better prediction of HEC occurrence. Besides potential use of cropping pattern and
phenology, human tolerance and perception of risk should also be considered. These factors represent
the possibility of coexistence between human and wildlife [16]. Fourth, current mitigation efforts have
not been included, but are essential as they can alter elephants’ access to resources. Previous studies
have shown that implementation of physical barriers shift HEC to new locations [83]. Such data on
existing mitigation can be incorporated after to identify movement routes and potential corridors.
Lastly, future study can include assessment of habitat quality within protected areas. Our models
predicted an increase in potential HEC areas after prolong drought during 2014–2016. We cannot infer
a conclusion based on our current study. However, extreme events can cause a change to land use and
vegetation in the following years, impacting elephant’s natural habitat and adjacent agricultural lands.
Such information can elucidate root cause of conflict and enhance management decision.

Making informed decision on where to allocate limited resources is crucial for government and
conservation organizations alike [84]. A two-dimensional classification approach has been used
to identified management-relevant actions in habitat modeling [35–37]. Utilizing similar method,
we recommended prioritization of HEC-zone dependent management actions. Two groups of
management actions are considered, (i) natural resource/land management and (ii) promotion of
human adaptation. High HEC zones must receive first priority with parallel emphasis on both land-use
policies and human adaptation. Together with HEC-relevant land management, behavioral adaptation
of those who live in the areas are important to reduce risky behaviors. In Likely HEC zones, certain
land management actions are not necessary (e.g., permanent electric fences), but more focus should be
put on community development. For areas with Low HEC category, the extensive change in human
behavior may not be needed (e.g crop husbandry), but general knowledge on appropriate actions
when encountering with wild elephants are potentially useful. In such areas, land use planning is
more important in preventing further escalation of conflict. Lastly, Rare HEC zones were predicted
sparsely and far from protected areas (Figure 4). Since these areas were concentrated closer to the main
roads, management may focus on the risk of vehicle-elephant-collision. Further field investigation and
data collection are necessary to pinpoint appropriate management actions.

5. Conclusions

This study utilized publicly available dataset and applied time-calibrated SDM with
two-dimensional conflict classification to estimate time-series distribution of potential HEC in eastern
Thailand. We illustrated the impact of inter-annual and seasonal variation on the distribution of
potential HEC, as well as distinguished the contribution between resource suitability and direct human
pressure. Overall increasing trend of HEC was predicted from 2009 to 2018, with larger extend in the
dry season. Large reduction of conflict areas in 2010 and 2014–2016 were likely explained by server
drought due to El Nino events which was captured by KBDI. Our results also suggested that variation
in probability and distribution of HEC was due to changes in resource suitability, while a more
continuously gradual increase was observed from direct human pressure. Besides identifying HEC
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response to environmental characteristics, our findings can also support prioritization of conservation
resources. We recommended HEC-zone dependent management focus. Parallel emphasis on extensive
land management and human co-adaptation should be performed in High HEC-zones. In Likely
HEC-zones, more attention should be given to raise safe behaviors for communities. Land use
policies in Likely HEC-zones should be strengthened with general awareness of appropriate actions
when encountering wild elephants. Rare HEC-zones were scattered close to main roads, hence we
recommended investigation to prevent vehicle-elephant collision. Within each zone, more priority can
be given to hotspots that estimated with repeated HEC. Lastly, this study highlighted the advantages
of satellite-derived variables with high temporal resolution which can capture annual and seasonal
variation.
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Figure S1: Histograms of three Enhanced Vegetation Index (EVI) properties.

Author Contributions: N.K. and W.T. conceived and designed the study; N.K. performed data curation; N.K.
analyzed the data; W.T. supervised and provided resources; N.K wrote the paper; W.T. reviewed and provided
revision suggestions. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the Department of National Parks, Wildlife and Plant
Conservation of Thailand for allowing us to attend a workshop and conduct interviews with park rangers at
Khao Yai National Parks. We also thank reviewers and editors whose comments helped improve and clarify this
manuscript. This study was in part supported by the Royal Thai Government Scholarship Program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. IUCN/SSC Asian Elephant Specialist Group. Asian Elephant Range States Meeting: Final Report; Technical
report; The IUCN Species Survival Commission (SSC): Jakarta, Indonesia, 2017.

2. Barua, M.; Bhagwat, S.A.; Jadhav, S. The hidden dimensions of human–wildlife conflict: Health impacts,
opportunity and transaction costs. Biol. Conserv. 2013, 157, 309–316. doi:10.1016/J.BIOCON.2012.07.014.
[CrossRef]

3. Rangarajan, M.; Desai, A.; Sukumar, R.; Easa, P.; Menon, V.; Vincent, S.; Ganguly, S.; Talukdar, B.K.; Singh, B.;
Mudappa, D.; et al. Gajah: Securing the Future for Elephants in India; Technical report, The Report of the
Elephant Task Force; Ministry of Environment and Forests: New Delhi, India, 2010.

4. Noonto, B. Managing Human-Elephant Conflict (HEC) Based on Elephant and Human Behaviors: A Case
Study at Thong Pha Phum National Park, Kanchanaburi, Thailand. Ph.D. Thesis, Mahidol University,
Salaya, Thailand, 2009.

5. Sukmasuang, R. Human-Elephant Conflict Status and Resolution in Thailand. In Proceedings of the
Conference on Biodiversity 2015, Bangkok, Thailand, 10–12 March 2015.

6. Leimgruber, P.; Gagnon, J.B.; Wemmer, C.; Kelly, D.S.; Songer, M.A.; Selig, E.R. Fragmentation of Asia’s
remaining wildlands: Implications for Asian elephant conservation. Animal Conserv. 2003, 6, 347–359.
doi:10.1017/S1367943003003421. [CrossRef]

7. Desai, A.A.; Riddle, H.S. Human-Elephant Conflict in Asia; Technical Report; United States Fish and Wildlife
Service: Falls Church, VA, USA, 2015. Available online: https://www.fws.gov/international/pdf/Human-
Elephant-Conflict-in-Asia-June2015.pdf (accessed on 16 April 2019).

8. WCS Thailand. A Manual for Human-Elephant Conflict Mitigation; Saeng Muang Printing: Bangkok, Thailand,
2007; pp. 1–56.

9. Vinitpornsawan, S. Elephant-Proof Trench. In Wildlife Yearbook 14; Wildlife Research Division, Wildlife
Conservation Office, Department of National Parks, Wildlife and Plant Conservation: Bangkok, Thailand.
2012; pp. 195–202.

10. Salim, S. Collaring Wild Elephants to Save Their Lives. World Wildlife Fund (WWF). 2019. Available online:
https://blog.wwf.sg/endangered-species/2019/02/asian-elephant-wild-eastern-thailand/ (accessed on 20
June 2019).

http://www.mdpi.com/2072-4292/12/1/90/s1
https://doi.org/10.1016/J.BIOCON.2012.07.014
http://dx.doi.org/10.1016/j.biocon.2012.07.014
https://doi.org/10.1017/S1367943003003421
http://dx.doi.org/10.1017/S1367943003003421
https://www.fws.gov/international/pdf/Human-Elephant-Conflict-in-Asia-June2015.pdf
https://www.fws.gov/international/pdf/Human-Elephant-Conflict-in-Asia-June2015.pdf
https://blog.wwf.sg/endangered-species/2019/02/asian-elephant-wild-eastern-thailand/


Remote Sens. 2020, 12, 90 17 of 20

11. Nuntatripob, N. Management Solution for Conflict between Human and Wild Elephant; Legislative Institutional
Repository of Thailand (LIRT): Bangkok, Thailand, 2019; pp. 1–9. Available online: http://dl.parliament.go.
th/backoffice/viewer/viewer.php (accessed on 19 October 2019).

12. Saif, O.; Kansky, R.; Palash, A.; Kidd, M.; Knight, A.T. Costs of coexistence: Understanding the
drivers of tolerance towards Asian elephants Elephas maximus in rural Bangladesh. Oryx 2019, 1–9.
doi:10.1017/S0030605318001072. [CrossRef]

13. Dickman, A.J. Complexities of conflict: The importance of considering social factors for effectively resolving
human-wildlife conflict. Animal Conserv. 2010, 13, 458–466. doi:10.1111/j.1469-1795.2010.00368.x. [CrossRef]

14. Redpath, S.M.; Bhatia, S.; Young, J. Tilting at wildlife: Reconsidering human–wildlife conflict. Oryx 2015,
49, 222–225. doi:10.1017/S0030605314000799. [CrossRef]

15. Nyhus, P.J. Human–Wildlife Conflict and Coexistence. Ann. Rev. Environ. Resour. 2016, 41, 143–171.
doi:10.1146/annurev-environ-110615-085634. [CrossRef]

16. Morzillo, A.T.; de Beurs, K.M.; Martin-Mikle, C.J. A conceptual framework to evaluate human-wildlife
interactions within coupled human and natural systems. Ecol. Soc. 2014, 19, 44. doi:10.5751/ES-06883-190344.
[CrossRef]

17. Shaffer, L.J.; Khadka, K.K.; Van Den Hoek, J.; Naithani, K.J. Human-Elephant Conflict: A Review of Current
Management Strategies and Future Directions. Front. Ecol. Evol. 2019, 6, 235. doi:10.3389/fevo.2018.00235.
[CrossRef]

18. Chen, Y.; Marino, J.; Chen, Y.; Tao, Q.; Sullivan, C.D.; Shi, K.; Macdonald, D.W. Predicting Hotspots of
Human-Elephant Conflict to Inform Mitigation Strategies in Xishuangbanna, Southwest China. PLoS ONE
2016, 11, e0162035. doi:10.1371/journal.pone.0162035. [CrossRef]

19. Van de Water, A.; Matteson, K. Human-elephant conflict in western Thailand: Socio-economic drivers and
potential mitigation strategies. PLoS ONE 2018, 13, e0194736. doi:10.1371/journal.pone.0194736. [CrossRef]

20. Jenks, K.E.; Songsasen, N.; Kanchanasaka, B.; Bhumpakphan, N.; Wanghongsa, S.; Leimgruber, P.
Community Attitudes toward Protected Areas in Thailand. Nat. Hist. Bull. Siam Soc. 2013, 59, 65–76.

21. Parr, J.W.K.; Jitvijak, S.; Saranet, S.; Buathong, S. Exploratory co-management interventions in Kuiburi
National Park, Central Thailand, including human-elephant conflict mitigation. Int. J. Environ. Sustain. Dev.
2008, 7, 293–310. doi:10.1504/IJESD.2008.021901. [CrossRef]

22. Thongjan, N.; Horayangkura, P.; Sirichalearn, D.; Yanpirat, W.; Chatprapachai, P.; Chongpanish, T.;
Chureemas, R. Legal Measures for Managing Areas to Conserve Wild Elephants. CMU J. Law Soc. Sci. 2017,
10, 115–132.

23. Gubbi, S.; Swaminath, M.H.; Poornesha, H.C.; Bhat, R.; Raghunath, R. An elephantine challenge:
human–elephant conflict distribution in the largest Asian elephant population, southern India.
Biodivers. Conserv. 2014, 23, 633–647. doi:10.1007/s10531-014-0621-x. [CrossRef]

24. Goswami, V.R.; Medhi, K.; Nichols, J.D.; Oli, M.K. Mechanistic understanding of human-wildlife
conflict through a novel application of dynamic occupancy models. Conserv. Biol. 2015, 29, 1100–1110.
doi:10.1111/cobi.12475. [CrossRef]

25. Li, W.; Liu, P.; Guo, X.; Wang, L.; Wang, Q.; Yu, Y.; Dai, Y.; Li, L.; Zhang, L. Human-elephant conflict
in Xishuangbanna Prefecture, China: Distribution, diffusion, and mitigation. Glob.Ecol. Conserv. 2018,
16, e00462. doi:10.1016/J.GECCO.2018.E00462. [CrossRef]

26. Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for
ecologists. Divers. Distrib. 2011, 17, 43–57. doi:10.1111/j.1472-4642.2010.00725.x. [CrossRef]

27. Mateo-Tomás, P.; Olea, P.P.; Sánchez-Barbudo, I.S.; Mateo, R. Alleviating human-wildlife conflicts:
Identifying the causes and mapping the risk of illegal poisoning of wild fauna. J. Appl. Ecol. 2012,
49, 376–385. doi:10.1111/j.1365-2664.2012.02119.x. [CrossRef]

28. Sukumar, R. The Asian Elephant: Ecology and Management; Cambridge University Press: Cambridge, UK, 1992.
29. Santiapillai, C.; Chambers, M.R.; Ishwaran, N. Aspects of the ecology of the Asian elephant Elephas maximus L.

in the Ruhuna National Park, Sri Lanka. Biol. Conserv. 1984, 29, 47–61. doi:10.1016/0006-3207(84)90013-2.
[CrossRef]

30. Bedia, J.; Herrera, S.; Gutiérrez, J.M. Dangers of using global bioclimatic datasets for ecological
niche modeling. Limitations for future climate projections. Glob. Planet. Chang. 2013, 107, 1–12.
doi:10.1016/j.gloplacha.2013.04.005. [CrossRef]

http://dl.parliament.go.th/backoffice/viewer/viewer.php
http://dl.parliament.go.th/backoffice/viewer/viewer.php
https://doi.org/10.1017/S0030605318001072
http://dx.doi.org/10.1017/S0030605318001072
https://doi.org/10.1111/j.1469-1795.2010.00368.x
http://dx.doi.org/10.1111/j.1469-1795.2010.00368.x
https://doi.org/10.1017/S0030605314000799
http://dx.doi.org/10.1017/S0030605314000799
https://doi.org/10.1146/annurev-environ-110615-085634
http://dx.doi.org/10.1146/annurev-environ-110615-085634
https://doi.org/10.5751/ES-06883-190344
http://dx.doi.org/10.5751/ES-06883-190344
https://doi.org/10.3389/fevo.2018.00235
http://dx.doi.org/10.3389/fevo.2018.00235
https://doi.org/10.1371/journal.pone.0162035
http://dx.doi.org/10.1371/journal.pone.0162035
https://doi.org/10.1371/journal.pone.0194736
http://dx.doi.org/10.1371/journal.pone.0194736
https://doi.org/10.1504/IJESD.2008.021901
http://dx.doi.org/10.1504/IJESD.2008.021901
https://doi.org/10.1007/s10531-014-0621-x
http://dx.doi.org/10.1007/s10531-014-0621-x
https://doi.org/10.1111/cobi.12475
http://dx.doi.org/10.1111/cobi.12475
https://doi.org/10.1016/J.GECCO.2018.E00462
http://dx.doi.org/10.1016/j.gecco.2018.e00462
https://doi.org/10.1111/j.1472-4642.2010.00725.x
http://dx.doi.org/10.1111/j.1472-4642.2010.00725.x
https://doi.org/10.1111/j.1365-2664.2012.02119.x
http://dx.doi.org/10.1111/j.1365-2664.2012.02119.x
https://doi.org/10.1016/0006-3207(84)90013-2
http://dx.doi.org/10.1016/0006-3207(84)90013-2
https://doi.org/10.1016/j.gloplacha.2013.04.005
http://dx.doi.org/10.1016/j.gloplacha.2013.04.005


Remote Sens. 2020, 12, 90 18 of 20

31. He, K.S.; Bradley, B.A.; Cord, A.F.; Rocchini, D.; Tuanmu, M.N.; Schmidtlein, S.; Turner, W.; Wegmann, M.;
Pettorelli, N. Will remote sensing shape the next generation of species distribution models? Remote Sens.
Ecol. Conserv. 2015, 1, 4–18. doi:10.1002/rse2.7. [CrossRef]

32. Tuanmu, M.N.; Viña, A.; Roloff, G.J.; Liu, W.; Ouyang, Z.; Zhang, H.; Liu, J. Temporal transferability
of wildlife habitat models: Implications for habitat monitoring. J. Biogeogr. 2011, 38, 1510–1523.
doi:10.1111/j.1365-2699.2011.02479.x. [CrossRef]

33. Alabia, I.D.; Dehara, M.; Saitoh, S.I.; Hirawake, T. Seasonal habitat patterns of Japanese common squid
(Todarodes pacificus) inferred from satellite-based species distribution models. Remote Sens. 2016, 8, 921
doi:10.3390/rs8110921. [CrossRef]

34. Naves, J.; Wiegand, T.; Revilla, E.; Delibes, M. Endangered Species Constrained by Natural and
Human Factors: the Case of Brown Bears in Northern Spain. Conserv. Biol. 2003, 17, 1276–1289.
doi:10.1046/j.1523-1739.2003.02144.x. [CrossRef]

35. Bleyhl, B.; Sipko, T.; Trepet, S.; Bragina, E.; Leitão, P.J.; Radeloff, V.C.; Kuemmerle, T. Mapping seasonal
European bison habitat in the Caucasus Mountains to identify potential reintroduction sites. Biol. Conserv.
2015, 191, 83–92. doi:10.1016/j.biocon.2015.06.011. [CrossRef]

36. De Angelo, C.; Paviolo, A.; Wiegand, T.; Kanagaraj, R.; Di Bitetti, M.S. Understanding species persistence for
defining conservation actions: A management landscape for jaguars in the Atlantic Forest. Biol. Conserv.
2013, 159, 422–433. doi:10.1016/j.biocon.2012.12.021. [CrossRef]

37. Romero-Muñoz, A.; Torres, R.; Noss, A.J.; Giordano, A.J.; Quiroga, V.; Thompson, J.J.; Baumann, M.;
Altrichter, M.; McBride, R.; Velilla, M.; et al. Habitat loss and overhunting synergistically drive the
extirpation of jaguars from the Gran Chaco. Divers. Distrib. 2019, 25, 176–190. doi:10.1111/ddi.12843.
[CrossRef]

38. Thailand Meteorological Department. The Climate of Thailand (1981–2010); Technical report; Thailand
Meteorological Department: Bangkok, Thailand, 2015.

39. Nounmusig, W. Analysis of rainfall in the eastern Thailand. Int. J. GEOMATE 2018, 14, 150–155.
doi:10.21660/2018.46.7282. [CrossRef]

40. Vinitpornsawan, S.; Bunchornratana, K.; Pukhrua, A.; Panyawiwatanakul, R. Population Structure of
Wild Elephant in Eastern Forest Complex. In Wildlife Yearbook 15; Wildlife Research Division, Wildlife
Conservation Office, Department of National Parks, Wildlife and Plant Conservation: Bangkok, Thailand
2015; pp. 89–101.

41. Fay, M.P.; Proschan, M.A. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and
multiple interpretations of decision rules. Stat. Surv. 2010, 4, 1–39. doi:10.1214/09-SS051. [CrossRef]

42. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth
Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27.
doi:10.1016/j.rse.2017.06.031. [CrossRef]

43. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2019.

44. Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived
NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510.
doi:10.1016/J.TREE.2005.05.011. [CrossRef] [PubMed]

45. Bohrer, G.; Beck, P.S.A.; Douglas-hamilton, I. Elephant movement closely tracks precipitation-driven
vegetation dynamics in a Kenyan forest- savanna landscape. Mov. Ecol. 2014, 2, 1–12.
doi:10.1186/2051-3933-2-2. [CrossRef] [PubMed]

46. Liu, H.Q.; Huete, A. Feedback based modification of the NDVI to minimize canopy background and
atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. doi:10.1109/36.377946. [CrossRef]

47. Huete, A. A comparison of vegetation indices over a global set of TM images for EOS-MODIS.
Remote Sens. Environ. 1997, 59, 440–451. doi:10.1016/S0034-4257(96)00112-5. [CrossRef]

48. Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst.
Man Cybern. 1973, SMC-3, 610–621. doi:10.1109/TSMC.1973.4309314. [CrossRef]

49. Takeuchi, W.; Darmawan, S.; Shofiyati, R.; Khiem, M.V.; Oo, K.S.; Pimple, U.; Heng, S. Near-Real Time
Meteorological Drought Monitoring and Early Warning System for Croplands in Asia. In Proceedings
of the 36th Asian Conference on Remote Sensing 2015 (ACRS 2015): Fostering Resilient Growth in Asia,
Quezon City, Philippines, 19–23 October 2015; pp. 171–178.

https://doi.org/10.1002/rse2.7
http://dx.doi.org/10.1002/rse2.7
https://doi.org/10.1111/j.1365-2699.2011.02479.x
http://dx.doi.org/10.1111/j.1365-2699.2011.02479.x
https://doi.org/10.3390/rs8110921
http://dx.doi.org/10.3390/rs8110921
https://doi.org/10.1046/j.1523-1739.2003.02144.x
http://dx.doi.org/10.1046/j.1523-1739.2003.02144.x
https://doi.org/10.1016/j.biocon.2015.06.011
http://dx.doi.org/10.1016/j.biocon.2015.06.011
https://doi.org/10.1016/j.biocon.2012.12.021
http://dx.doi.org/10.1016/j.biocon.2012.12.021
https://doi.org/10.1111/ddi.12843
http://dx.doi.org/10.1111/ddi.12843
https://doi.org/10.21660/2018.46.7282
http://dx.doi.org/10.21660/2018.46.7282
https://doi.org/10.1214/09-SS051
http://dx.doi.org/10.1214/09-SS051
https://doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/J.TREE.2005.05.011
http://dx.doi.org/10.1016/j.tree.2005.05.011
http://www.ncbi.nlm.nih.gov/pubmed/16701427
https://doi.org/10.1186/2051-3933-2-2
http://dx.doi.org/10.1186/2051-3933-2-2
http://www.ncbi.nlm.nih.gov/pubmed/25520813
https://doi.org/10.1109/36.377946
http://dx.doi.org/10.1109/TGRS.1995.8746027
https://doi.org/10.1016/S0034-4257(96)00112-5
http://dx.doi.org/10.1016/S0034-4257(96)00112-5
https://doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1109/TSMC.1973.4309314


Remote Sens. 2020, 12, 90 19 of 20

50. Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its
long-term changes. Nature 2016, 540, 418–422. doi:10.1038/nature20584. [CrossRef]

51. U.S. Geological Survey. Hole-filled Shuttle Radar Topography Mission (SRTM) for the globe Version 4,
available from the CGIAR-CSI SRTM 90m Database. Available online: http://srtm.csi.cgiar.org (accessed on
10 February 2019)

52. Elvidge, C.D.; Hsu, F.C.; Baugh, K.E.; Ghosh, T. National trends in satellite-observed lighting 1992–2012.
In Global Urban Monitoring and Assessment through Earth Observation; Weng, Q., Ed.; CRC Press: Boca Raton,
FL, USA, 2014; pp. 97–119.

53. Wu, K.; Wang, X. Aligning pixel values of DMSP and VIIRS nighttime light images to evaluate urban
dynamics. Remote Sens. 2019, 11, 1463. doi:10.3390/rs11121463. [CrossRef]

54. Li, X.; Li, D.; Xu, H.; Wu, C. Intercalibration between DMSP/OLS and VIIRS night-time light images to
evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War. Int. J. Remote Sens.
2017, 38, 5934–5951. doi:10.1080/01431161.2017.1331476. [CrossRef]

55. Kramer-Schadt, S.; Niedballa, J.; Pilgrim, J.D.; Schröder, B.; Lindenborn, J.; Reinfelder, V.; Stillfried, M.;
Heckmann, I.; Scharf, A.K.; Augeri, D.M.; et al. The importance of correcting for sampling bias in MaxEnt
species distribution models. Divers. Distrib. 2013, 19, 1366–1379. doi:10.1111/ddi.12096. [CrossRef]

56. Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’
distributions: what it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069.
doi:10.1111/j.1600-0587.2013.07872.x. [CrossRef]

57. Phillips, S.J.; Dudík, M.; Elith, J.; Graham, C.H.; Lehmann, A.; Leathwick, J.; Ferrier, S. Sample selection bias
and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl.
2009, 19, 181–197. doi:10.1890/07-2153.1. [CrossRef] [PubMed]

58. Elith, J.; Kearney, M.; Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 2010,
1, 330–342. doi:10.1111/j.2041-210X.2010.00036.x. [CrossRef]

59. Fourcade, Y.; Engler, J.O.; Rödder, D.; Secondi, J. Mapping Species Distributions with MAXENT Using a
Geographically Biased Sample of Presence Data: A Performance Assessment of Methods for Correcting
Sampling Bias. PLoS ONE 2014, 9, e97122. doi:10.1371/journal.pone.0097122. [CrossRef]

60. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions.
Ecol. Model. 2006, 190, 231–259, doi:10.1016/j.ecolmodel.2005.03.026. [CrossRef]

61. Elith, J.; Graham, C.H. Do they? How do they? WHY do they differ? On finding reasons for differing
performances of species distribution models. Ecography 2009, 32, 66–77. doi:10.1111/j.1600-0587.2008.05505.x.
[CrossRef]

62. Hijmans, R.J.; Phillips, S.; Leathwick, J.; Maintainer, J.E. Package ‘dismo’. Species Distribution Modeling.
2017. Available online: http://cran.r-project.org/web/packages/dismo/index.html (accessed on 18
November 2019).

63. Sieber, A.; Uvarov, N.V.; Baskin, L.M.; Radeloff, V.C.; Bateman, B.L.; Pankov, A.B.; Kuemmerle, T. Post-Soviet
land-use change effects on large mammals’ habitat in European Russia. Biol. Conserv. 2015, 191, 567–576.
doi:10.1016/j.biocon.2015.07.041. [CrossRef]

64. Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval:
An R package for conducting spatially independent evaluations and estimating optimal model complexity
for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. doi:10.1111/2041-210X.12261.
[CrossRef]

65. Liu, C.; Newell, G.; White, M. On the selection of thresholds for predicting species occurrence with
presence-only data. Ecol. Evol. 2016, 6, 337–348. doi:10.1002/ece3.1878. [CrossRef] [PubMed]

66. Radosavljevic, A.; Anderson, R.P. Making better MaxEnt models of species distributions: complexity,
overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. doi:10.1111/jbi.12227. [CrossRef]

67. Liu, C.; White, M.; Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only
data. J. Biogeogr. 2013, 40, 778–789. doi:10.1111/jbi.12058. [CrossRef]

68. Neupane, D.; Johnson, R.L.; Risch, T.S. How do land-use practices affect human—elephant conflict in nepal?
Wildl. Biol. 2017, 2017, wlb.00313. doi:10.2981/wlb.00313. [CrossRef]

69. Goswami, V.R.; Vasudev, D. Triage of Conservation Needs: The Juxtaposition of Conflict Mitigation and
Connectivity Considerations in Heterogeneous, Human-Dominated Landscapes. Front. Ecol. Evol. 2017, 4.
doi:10.3389/fevo.2016.00144. [CrossRef]

https://doi.org/10.1038/nature20584
http://dx.doi.org/10.1038/nature20584
http://srtm.csi.cgiar.org
https://doi.org/10.3390/rs11121463
http://dx.doi.org/10.3390/rs11121463
https://doi.org/10.1080/01431161.2017.1331476
http://dx.doi.org/10.1080/01431161.2017.1331476
https://doi.org/10.1111/ddi.12096
http://dx.doi.org/10.1111/ddi.12096
https://doi.org/10.1111/j.1600-0587.2013.07872.x
http://dx.doi.org/10.1111/j.1600-0587.2013.07872.x
https://doi.org/10.1890/07-2153.1
http://dx.doi.org/10.1890/07-2153.1
http://www.ncbi.nlm.nih.gov/pubmed/19323182
https://doi.org/10.1111/j.2041-210X.2010.00036.x
http://dx.doi.org/10.1111/j.2041-210X.2010.00036.x
https://doi.org/10.1371/journal.pone.0097122
http://dx.doi.org/10.1371/journal.pone.0097122
https://doi.org/10.1016/j.ecolmodel.2005.03.026
http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1111/j.1600-0587.2008.05505.x
http://dx.doi.org/10.1111/j.1600-0587.2008.05505.x
http://cran.r-project.org/web/packages/dismo/index.html
https://doi.org/10.1016/j.biocon.2015.07.041
http://dx.doi.org/10.1016/j.biocon.2015.07.041
https://doi.org/10.1111/2041-210X.12261
http://dx.doi.org/10.1111/2041-210X.12261
https://doi.org/10.1002/ece3.1878
http://dx.doi.org/10.1002/ece3.1878
http://www.ncbi.nlm.nih.gov/pubmed/26811797
https://doi.org/10.1111/jbi.12227
http://dx.doi.org/10.1111/jbi.12227
https://doi.org/10.1111/jbi.12058
http://dx.doi.org/10.1111/jbi.12058
https://doi.org/10.2981/wlb.00313
http://dx.doi.org/10.2981/wlb.00313
https://doi.org/10.3389/fevo.2016.00144
http://dx.doi.org/10.3389/fevo.2016.00144


Remote Sens. 2020, 12, 90 20 of 20

70. Chen, S.; Yi, Z.F.; Campos-Arceiz, A.; Chen, M.Y.; Webb, E.L. Developing a spatially-explicit, sustainable
and risk-based insurance scheme to mitigate human–wildlife conflict. Biol. Conserv. 2013, 168, 31–39.
doi:10.1016/j.biocon.2013.09.017. [CrossRef]

71. Treves, A.; Wallace, R.B.; Naughton-Treves, L.; Morales, A. Co-Managing Human–Wildlife Conflicts:
A Review. Hum. Dimens. Wildl. 2006, 11, 383–396. doi:10.1080/10871200600984265. [CrossRef]

72. NOAA/National Weather Service. Historical El Nino / La Nina episodes (1950–present). 2019. Available
online: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v (accessed on 24
September 2019).

73. Wato, Y.A.; Heitkönig, I.M.A.; van Wieren, S.E.; Wahungu, G.; Prins, H.H.T.; van Langevelde, F. Prolonged
drought results in starvation of African elephant (Loxodonta africana). Biol. Conserv. 2016, 203, 89–96.
doi:10.1016/J.BIOCON.2016.09.007. [CrossRef]

74. Foley, C.; Pettorelli, N.; Foley, L. Severe drought and calf survival in elephants. Biol. Lett. 2008, 4, 541–544.
doi:10.1098/rsbl.2008.0370. [CrossRef]

75. Kumar, M.A.; Mudappa, D.; Raman, T.R.S. Asian Elephant Elephas Maximus Habitat Use and Ranging in
Fragmented Rainforest and Plantations in the Anamalai Hills, India. Trop. Conserv. Sci. 2010, 3, 143–158.
doi:10.1177/194008291000300203. [CrossRef]

76. Liu, P.; Wen, H.; Lin, L.; Liu, J.; Zhang, L. Habitat evaluation for Asian elephants (Elephas maximus) in
Lincang: Conservation planning for an extremely small population of elephants in China. Biol. Conserv.
2016, 198, 113–121. doi:10.1016/J.BIOCON.2016.04.005. [CrossRef]

77. Evans, L.J.; Asner, G.P.; Goossens, B. Protected area management priorities crucial for the future of Bornean
elephants. Biol. Conserv. 2018, 221, 365–373. doi:10.1016/J.BIOCON.2018.03.015. [CrossRef]

78. Lakshminarayanan, N.; Karanth, K.K.; Goswami, V.R.; Vaidyanathan, S.; Karanth, K.U. Determinants
of dry season habitat use by Asian elephants in the Western Ghats of India. J. Zool. 2016, 298, 169–177.
doi:10.1111/jzo.12298. [CrossRef]

79. Meijer, J.R.; Huijbregts, M.A.J.; Schotten, K.C.G.J.; Schipper, A.M. Global patterns of current and future road
infrastructure. Environ. Res. Lett. 2018, 13. doi:10.1088/1748-9326/aabd42. [CrossRef]
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