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Abstract: With the rapid progress of remote sensing (RS) observation technologies, cross-modal
RS image-sound retrieval has attracted some attention in recent years. However, these methods
perform cross-modal image-sound retrieval by leveraging high-dimensional real-valued features,
which can require more storage than low-dimensional binary features (i.e., hash codes). Moreover,
these methods cannot directly encode relative semantic similarity relationships. To tackle these issues,
we propose a new, deep, cross-modal RS image-sound hashing approach, called deep triplet-based
hashing (DTBH), to integrate hash code learning and relative semantic similarity relationship learning
into an end-to-end network. Specially, the proposed DTBH method designs a triplet selection strategy
to select effective triplets. Moreover, in order to encode relative semantic similarity relationships, we
propose the objective function, which makes sure that that the anchor images are more similar to
the positive sounds than the negative sounds. In addition, a triplet regularized loss term leverages
approximate l1-norm of hash-like codes and hash codes and can effectively reduce the information
loss between hash-like codes and hash codes. Extensive experimental results showed that the DTBH
method could achieve a superior performance to other state-of-the-art cross-modal image-sound
retrieval methods. For a sound query RS image task, the proposed approach achieved a mean average
precision (mAP) of up to 60.13% on the UCM dataset, 87.49% on the Sydney dataset, and 22.72%
on the RSICD dataset. For RS image query sound task, the proposed approach achieved a mAP of
64.27% on the UCM dataset, 92.45% on the Sydney dataset, and 23.46% on the RSICD dataset. Future
work will focus on how to consider the balance property of hash codes to improve image-sound
retrieval performance.
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1. Introduction

With the development of remote sensing (RS) observation technologies, the amount of RS data is
increasing rapidly [1,2]. Nowadays, RS data retrieval has attracted wide attention in the RS research
field [3,4]. It can retrieve useful information in large scale RS data and has wide application prospects
in disaster rescue scenarios [5,6]. Generally speaking, RS data retrieval can be roughly divided into
uni-modal RS retrieval methods and cross-modal RS retrieval methods. Uni-modal RS retrieval
methods [7–13] aim to search the RS data with a similar concept to queried RS data where all RS data
come from the same modality. For example, Ye et al. [13] developed a flexible multiple-feature hashing
learning framework, which maps multiple features of the RS image to the low-dimensional binary
feature. Demir et al. [4] developed a hashing-based search approach to perform RS image retrieval
in large RS data archives. Li et al. [5] presented a novel partial randomness strategy for hash codes
learning in large-scale RS image retrieval. Cross-modal RS retrieval methods [14] aim to search the RS
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data with a similar concept to queried RS data, where queried RS data and the RS data of the searching
dataset belong to different modalities. Compared with uni-modal RS retrieval, cross-modal RS retrieval
is full of challenges and difficulties due to the heterogeneity gap of cross-modal samples. On the
other hand, the research of cross-modal retrieval mainly focuses on image-text research [2,15–17]
and image-sound research [18–23]. Nevertheless, only a few cross-modal RS retrieval methods have
been studied in recent years. For example, Li et al. [24] introduced a cross-source large-scale remote
sensing image retrieval approach, which leverages deep hashing convolutional neural networks
to perform image retrieval. Guo et al. [14] proposed a novel cross-modal RS image-voice retrieval
approach, which integrates deep feature learning and multi-modal learning into a unified framework
for speech-to-image retrieval.

Among cross-modal RS retrieval, cross-modal RS image-sound retrieval has attracted more and
more attention in recent years. The goal of cross-modal RS image-sound retrieval is to leverage
RS images (respectively, RS sounds) to retrieve relevant RS sounds (respectively, RS images). For
example, Zhang et al. [18] proposes a correlation-based similarity reinforcement approach for images
and sounds. Song et al. [20] leverages kernel canonical correlation analysis (KCCA) and multi-view
hidden conditional random fields (MV-HCRF) to learn nonlinear projections.However, these methods
learn the relationship between sounds and images by using shallow projects, which cannot capture
complex semantic information of sounds and images [24]. To tackle this issue, some deep image-voice
retrieval methods [14,25] are proposed to utilize deep neural networks to capture complex semantic
information of sounds and images. Nevertheless, there are several challenges for existing image-sound
retrieval methods. Figure 1 shows the difference between existing image-sound retrieval methods and
the proposed DTBH approach. First, these methods perform cross-modal image-sound retrieval by
leveraging high-dimensional, real-valued features, which cost more storage than low-dimensional
binary features (i.e., hash codes). Second, these methods learn the relationship between sounds and
images by using pairwise labels, which capture the intra-class variations and inter-class variations,
respectively, and cannot directly encode relative semantic similarity relationships.
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Figure 1. The comparison of (a) exiting image-sound retrieval methods [14,25] and (b) the proposed
DTBH approach.

In fact, queried RS images (respectively, sounds) are better matched with relevant RS sounds
(respectively, RS images) if more relative similarity relationships of RS images (respectively, sounds)
are understood by humans [26]. Clearly, the above issues can be tackled if we teach relative
semantic similarity relationships and low-dimensional binary features simultaneously. Inspired
by this idea, a deep cross-modal RS triplet-based hashing method was developed to perform relative
semantic similarity relationship learning and hash codes learning simultaneously for an image–sound
retrieval application.

In this paper, we propose a new deep cross-modal RS image-sound hashing approach, called
deep triplet-based hashing (DTBH), to integrate hash code learning and relative semantic similarity
relationship learning into an end-to-end network, as shown in Figure 2. The whole framework contains
the RS image branch, the positive RS sound branch, and the negative RS sound branch. To reduce
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storage costs, our proposed method exploits deep nonlinear mapping to project RS images and sounds
into the common Hamming space. Then, we implement cross-modal image-sound retrieval by using
hash codes, which speeds up low storage. To learn relative semantic similarity relationships, we utilize
triplet labels to supervise hash code learning. Compared with pairwise labels, triplet labels can capture
higher-level similarities in various situations, rather than only the similar/dissimilar situations, as in
the circumstance of pairs. Furthermore, a triplet selection strategy was also designed to capture the
intra-class and inter-class variations, which is helpful for learning hash codes. In addition, we designed
a new objective function, which consists of the triplet similarity loss function, the triplet regularized
loss function, and deep feature triplet loss function. The deep feature triplet loss function ensures
that the anchor deep features are more similar to the positive deep features than to the negative deep
features. The triplet regularized loss function makes hash-like codes more and more similar to hash
codes by reducing the information loss. Extensive experimental results show that DTBH method can
achieve superior performance to other cross-modal image-sound retrieval methods.

3

3

Anchor input

0

 

56× 56×256

2000×36
2000×64

1000×64

500×128

 

112×112×128

 

28× 28×512
 

14× 14×512

250×128

1000

k

1000

1000

0

2000×64

1000×64

500×128

Positive input

250×128

1000

0

2000×36

2000×64

1000×64

500×128

Fc

250×128

1000

0

2000×64

1000×64

500×128

Fc

250×128

1000

Triplet Selection Strategy

Negative input
Share weight

Fch

PullPull

PushPush Push

Pull

Push
Push

Deep features 

triplet loss

Triplet 

similarity loss

Triplet 

regularization loss

 

224×224×64

An airplane is taxiing 

on the runway .

There is a piece of 

farmland .

Pull Pull

Push Push

Relative semantic 

similarity learning

Figure 2. The proposed framework of deep triplet-based hashing (DTBH). The whole framework
contains the remote sensing (RS) image branch, a positive RS sound branch, and a negative RS sound
branch. The positive RS sound branch and the negative RS sound branch are shared weights. The
overall objective function consists of the triplet similarity loss function, the triplet regularized loss
function, and the deep feature triplet loss function.

The contributions can be summarized in the following four aspects:

1. A new deep cross-modal triplet-based hashing framework is proposed to leverage triplet similarity
of deep features and triplet labels to tackle the issue of insufficient utilization of relative semantic
similarity relationships for RS image-sound similarity learning. To the best of our knowledge, it is
the first work to use hash codes to perform cross-modal RS image-sound retrieval.
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2. A new triplet selection strategy was developed to select effective triplets, which is helpful for
capturing the intra-class and inter-class variations for hash codes learning.

3. The objective function was designed to learn deep features’ similarities and reduce the information
loss between hash-like codes and hash codes.

4. Extensive experimental results of three RS image-sound datasets showed that the proposed DTBH
method can achieve superior performance to other state-of-the-art cross-modal image-sound
retrieval methods.

The remainder is organized into the following four parts. Section 2 presents the detailed procedure
of the proposed DTBH method. Section 3 elaborates the experimental results. Section 4 presents the
conclusions of the proposed DTBH method.

2. The Proposed Method

In this part, Section 2.1 clarifies the problem definition. The details of multimodal architecture are
presented in Section 2.2. Section 2.3 introduces the triplet selection strategy. Section 2.4 elucidates the
objective function of the proposed DTBH method.

2.1. Problem Definition

Let T = {Ia
m, Sp

m, Sn
m}M

m=1 be M triplet units. I = {Im}M
m=1 denotes the set of the RS anchor

images; S p = {Sp
m}M

m=1 denotes the set of the RS positive sounds; and Sn = {Sn
m}M

m=1 denotes the set
of the RS negative sounds, where {Ia

m, Sp
m, Sn

m} denotes that the RS anchor image Ia
m is more similar

to the RS positive sound Sp
m than the RS negative sound Sn

m. Ia
m, and Sp

m contains similar concepts.
And Ia

m and Sn
m contain dissimilar concepts. The aim of the proposed DTBH method is to learn a

hash function that can project samples into hash codes while maintaining the similarity of matched
RS images and sounds. More specially, Hd(Ia

m, Sp
m) need be smaller than Hd(Ia

m, Sn
m), where Hd(·, ·)

denotes the Hamming distance [27]. The definitions of some symbols are shown in Table 1.

Table 1. Definition of some symbols.

Symbol Definition

T the triplet units
I the set of the RS anchor images
S p the set of the RS positive sounds
Sn the set of the RS negative sounds
Ia
m the m-th RS anchor image

Sp
m the m-th RS positive sound

Sn
m the m-th RS negative sound

Hd(·, ·) the Hamming distance

2.2. Multimodal Architecture

The proposed deep triplet-based hashing approach for RS cross-modal image-sound retrieval is
shown in Figure 2. The whole approach consists of RS image modality and RS sound modality.

RS Image Modality: The configuration of the RS image modality is demonstrated in Figure 2.
We leverage the convolution architecture of VGG16 [14] as the convolution architecture of the RS
image branch. Then, the following layers of the RS image modality consist of two fully connected
layers. The first fully connected layer is deep features layer, which consists of 1000 units and utilizes a
sigmoid function as the activation function [28–30]. The second fully connected layer is a hash layer,
which consists of K units and leverages tanh function as the activation function [31]. The second fully
connected layer can generate K-bits hash-like codes, which can be utilized to produce K-bits hash
codes by the quantization function [32]. Then hash codes ba

m of the RS anchor image Ia
m can be given by

ha
m = Ha(Ia

m) = sign(qa
m) = sign(Γ( fa(Ia

m), Wa)), (1)
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where sign(.) denotes the element-wise sign function; i.e., sign(x) = 1 if x > 0; otherwise,
sign(x) = −1. ha

i represents K-bits hash codes. qa
m represents K-bits hash-like codes, which are the

outputs of the hash layer. Γ represents the tanh function. Fa(Ia
m) represents deep features, which are

the outputs of the deep features layer. Wa represents the weights of the second fully connected layer.
RS Sound Modality: Similar to [33,34], Mel-frequency cepstral coefficients (MFCC) are utilized

to delegate the RS voices, because MFCC uses cepstrum feature extraction [35,36], which is more in line
with the principle of human hearing. So it is the most common and effective voice feature extraction
algorithm [37,38]. We use a sixteen millisecond window size with five millisecond shift to compute
MFCC. Furthermore, the size of MFCC is compulsively extracted as the length g, truncated more than
the length g, and padded zero less than the length g. The configuration of the RS sound modality
is demonstrated in Figure 2. The RS sound modality contains two identical subnetworks. And the
convolution architecture of the subnetwork shares weight parameters. The first convolution layer of
the subnetwork utilizes the filters with the width of one frame across the whole frequency axis. Then,
the following layer of the subnetwork contains three 1D convolutions with max-pooling. The filters of
three convolutions exploit 32, 32, and 64, respectively. The respective widths of three convolutions use
11, 17, and 19, respectively. All max-pooling operations utilize two strides. The last two layers of the
subnetwork consist of two fully connected layers, which do not share weight parameters. The first
fully connected layer is the deep features layer, which consists of 1000 units and utilizes the sigmoid
function as the activation function. The second fully connected layer is hash layer, which consists of K
units and leverages the tanh function as the activation function. The second fully connected layer can
generate K-bits hash-like codes, which can be utilized to produce K-bits hash codes by the quantization
function. For the RS positive sound, hash codes bp

m of the RS positive sound Sp
m can be given by

hp
m = Hp(Ip

m) = sign(qp
m) = sign(Γ( fp(S

p
m), Wp)), (2)

where hp
m represents k-bits hash codes of the RS positive sound Sp

m. qp
m represents k-bits hash-like

codes, which is the output of the hash layer. Fp(S
p
m) represents deep features, which is the output of

the deep features layer for the RS positive sound as input. Wp represents the weights of the second
fully connected layer for the RS positive sound as input. For the RS negative sound, hash codes bn

m of
the RS positive sound Sn

m can be given by

hn
m = Hn(In

m) = sign(qn
m) = sign(Γ( fn(Sn

m), Wn)), (3)

where hn
m represents K-bits hash codes of the RS positive sound Sn

m. qn
m represents K-bits hash-like

codes, which is the output of the hash layer. Fn(Sn
m) represents deep features, which is the output of

the deep features layer for the RS negative sound as input. Wn represents the weights of the second
fully connected layer for the RS negative sound as input.

2.3. Triplet Selection Strategy

Previous cross-modal RS retrieval approaches [14,39] did not consider the construction of samples.
And these approaches cannot achieve superior cross-modal retrieval performance. To improve
cross-modal retrieval performance, we designed a novel triplet selection strategy that randomly
selects one hard negative sound for positive image-sound pair in a negative sound set. The triplet
selection strategy can be formulated as

I =
M⋃

m=1

⋃
Ia
m∈I

⋃
Sp

m∈S p

τ(Sn
m), (4)

where I = {Im}M
m=1 represents the RS anchor images; S p = {Sp

m}M
m=1 represents the RS positive

sounds. τ(Sn
m) represents the random function, which randomly choose one negative sound from

the hard negative sounds set Sn = {Sn
m : ε− || fa(Ia

m)− fn(Sn
m)||22 + || fa(Ia

m)− fp(S
p
m)||22 > 0}. || · ||2
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and ε represents the l2-norm vector and the margin parameter, respectively. fa(Im) represents deep
features for the image Im. fp(S

p
m) represents deep features for the positive sound Sp

m. fn(Sn
m) represents

deep features for the negative sound Sn
m. Triplet selection strategy is helpful to grasping the relative

relationship between samples and contributes to learning effective hash codes.

2.4. Objective Function

Compared with cross-modal retrieval approaches using pairwise loss [14,39], the proposed DTBH
method leverages the triple loss to learn the relative similarity relationship between RS images and
sounds, because the relative similarity relationship established by the triple loss can be more reasonable
than the absolute similarity relationship exploited by the pairwise loss. The pairwise loss captures
the intra-class variations and inter-class variations, respectively. But the triple loss can capture the
intra-class variations and inter-class variations simultaneously. The goal of the proposed DTBH
method is to learn a hash function that can project samples into hash codes while maintaining the
similarity of matched RS images and sounds. For this goal, the anchor image Ia

m and the positive sound
Sp

m are as close as possible, while the anchor image Ia
m and the negative sound Sn

m are as far apart as
possible. Inspired by [40], the triplet similarity loss function can be defined as

=T =
M

∑
m=1

max(0, ε− Hd(ha
m, hn

m) + Hd(ha
m, hp

m)), (5)

where=T represents the triplet similarity loss, which ensures that the anchor images are more similar to
the positive sounds than the negative sounds. Hd(·, ·) represents the Hamming distance; ha

m represents
the hash code of the anchor image Im. hn

m represents the hash code of the negative sound Sn
m. hp

m
represents the hash code of the positive image Sp

m. ε represents the margin parameter. max(·) represents
the maximum function.

Directly optimizing Equation (5), it is difficult to calculate derivatives in network training process.
To solve this problem, the new relaxation strategy is adopted to replace the Hamming distance of
discrete hash codes with l2-norm of hash-like codes [41]. Then, the triplet similarity loss function is
redefined as

=T =
M

∑
m=1

max(0, ε− ||qa
m − qn

m||22 + ||qa
m − qp

m||22), (6)

where ε represents the margin parameter. || · ||2 represents the l2-norm vector. And qa
m represents the

hash-like code of the anchor image Ia
m, which is defined as qa

m = Γ(Fa(Ia
m), Wa), where Γ represents the

tanh function. Fa(Ia
m) represents deep features, which are the outputs of the deep features layer. Wa

represents the weights of the second fully connected layer for the anchor image Ia
m. And qp

m represents
the hash-like code of the anchor image Sp

m, which is defined as qp
m = Γ(Fp(S

p
m), Wp), where Fa(S

p
m)

represents deep features for the positive sound Sp
m. Wp represents the weights of the second fully

connected layer for the positive sound Sp
m. And qn

m represents the hash-like code of the positive sound
Sp

m, which is defined as qn
m = Γ(Fn(Sn

m), Wn), where Fa(Sn
m) represents deep features for the negative

sound Sn
m. Wp represents the weights of the second fully connected layer for the negative sound Sn

m.
Nevertheless, the new relaxation strategy above will lead to the information loss between hash-like

codes and hash codes. It is necessary to design a regularized term between hash-like codes and hash
codes to reduce the information loss. Motivated by iterative quantization (ITQ) [42], a new triplet
regularized loss was developed to reduce the information loss. The triplet regularized loss is given as

=R =
M

∑
m=1

(||qa
m − ha

m||22 + ||q
p
m − hp

m||22 + ||qn
m − hn

m||22), (7)

where =R represents the triplet regularized loss, which makes hash-like codes more and more similar
to hash codes by reducing the information loss. || · ||2 represents l2-norm vector.
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The above Equation (7) utilizes l2-norm to reduce the information loss. Compared with l2-norm,
l1-norm requires less computation and encourages sparsity for hash code learning [43,44]. Then,
Equation (7) can be reformulated as

=R =
M

∑
m=1

(||qa
m − ha

m||21 + ||q
p
m − hp

m||21 + ||qn
m − hn

m||21), (8)

where || · ||1 represents the l1-norm vector. Furthermore, Theorem1 reveals that the minimization of
l1-norm between hash-like codes and hash codes is the upper bound of the l2-norm between hash-like
codes and hash codes. The detailed proof of Theorem1 is presented below.

Theorem 1 (Upper Bound). Equation (8) is an upper bound Equation (7).

||qa
m − ha

m||22 + ||q
p
m − hp

m||22 + ||qn
m − hn

m||22 ≤ ||qa
m − ha

m||21 + ||q
p
m − hp

m||21 + ||qn
m − hn

m||21. (9)

Proof. The binary codes ha
m, hp

m, and hn
m are relaxed into continuous real values qa

m, qp
m, and qn

m,
respectively. Hence, ha

m and qa
m contain the same sign, hp

m and qp
m contain the same sign, hn

m, and qn
m

contains the same sign. The relationship between ha
m and qa

m can be given as

|qa
m − ha

m| = |qa
m| − |ha

m|, (10)

The relationship between hp
m and qp

m can be given as

|qp
m − hp

m| = |q
p
m| − |h

p
m|, (11)

and the relationship between hn
m and qn

m can be given as

|qn
m − hn

m| = |qn
m| − |qn

m|. (12)

According to Equations (10)–(12), we can drive that

||qa
m − ha

m||22 + ||q
p
m − hp

m||22 + ||qn
m − hn

m||22 = |||qa
m| − |ha

m|||22
+|||qp

m| − |h
p
m|||22 + |||qn

m| − |hn
m|||22,

(13)

with

|||qa
m| − |ha

m|||22 + |||q
p
m| − |h

p
m|||22 + |||qn

m| − |hn
m|||22 ≤ |||qa

m|
−|ha

m|||21 + |||q
p
m| − |h

p
m|||21 + |||qn

m| − |hn
m|||21.

(14)

Overall,

||qa
m − ha

m||22 + ||q
p
m − hp

m||22 + ||qn
m − hn

m||22 ≤ ||qa
m − ha

m||21 + ||q
p
m − hp

m||21 + ||qn
m − hn

m||21. (15)

However, =R makes it difficult to calculate derivatives for the network architecture of the DTBH
approach. Inspired by [45], the smooth surrogate of the absolute function |x| = log cosh x is exploited
in the network architecture of the DTBH approach. Equation (8) can be written as

=R =
M

∑
m=1

K

∑
k=1

((log cosh |ha
m(k) − qa

m(k)|)
2 + (log cosh |hn

m(k) − qn
m(k)|)

2 + (log cosh |hp
m(k) − qp

m(k)|)
2), (16)

where ha
m(k) denotes the k-th position of hash codes ha

m(k) for RS image Ia
m; qa

m(k) denotes the k-th
position of hash-like codes qa

m(k) for RS image Ia
m. K represents the length of hash codes. | · | represents

the absolute value operation. hn
m(k) and qn

m(k) represent the k-th position of hn
m(k) and the k-th position
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of qn
m(k) for RS negative sound Sn

m, respectively. hp
m(k) and qp

m(k) represents the k-th position of hp
m(k)

and the k-th position of qp
m(k) for RS positive sound Sp

m, respectively.
To further enhance the relationship between hash codes of RS images and hash codes of RS

sounds, the similarity of deep features is taught in the network architecture of the DTBH approach,
because the similarity of deep features will promote the learning of similarity relations between RS
images and RS sounds. Then, deep features’ triplet loss can be given as

=D =
M

∑
m=1

max(0, ε− || fa(Ia
m)− fn(Sn

m)||22 + || fa(Ia
m)− fp(S

p
m)||22), (17)

where =D denotes deep feature triplet loss, which can preserve the similarity of deep features. || · ||2
represents the l2-norm vector. ε represents the margin parameter. fa(Ia

m) represents deep features
of the image Ia

m. fp(S
p
m) represents deep features for the positive sound Sp

m. fn(Sn
m) represents deep

features for the negative sound Sn
m.

By considering Equations (6), (16) and (17), the overall objective function = of the DTBH approach
can be defined as

= = =T + α=R + β=D

=
M

∑
m=1

max(0, ε− ||qa
m − qn

m||22 + ||qa
m − qp

m||22)

+ α
M

∑
m=1

K

∑
k=1

((log cosh |ha
m(k) − qa

m(k)|)
2 + (log cosh |hn

m(k) − qn
m(k)|)

2 + (log cosh |hp
m(k) − qp

m(k)|)
2)

+ β
M

∑
m=1

max(0, ε− || fa(Ia
m)− fn(Sn

m)||22 + || fa(Ia
m)− fp(S

p
m)||22),

(18)

where α and β denote the trade-off parameters. = denotes the overall objective function, which consists
of the triplet similarity loss function =T , the triplet-regularized loss =R, and deep feature triplet loss
=D. The objective function was optimized by Adam [46]. The detailed algorithmic procedure of DTBH
is shown in Algorithm 1. The triplet similarity loss function =T ensures that the RS anchor images are
more similar to the RS positive sounds than to the RS negative sounds. The triplet regularized loss =R
makes hash-like codes more and more similar to hash codes by reducing the information loss. Deep
features triplet loss =D can preserve the similarity of deep features.

Algorithm 1 Optimization algorithm for learning DTBH.

Input:

M triplet units T = {Ia
m, Sp

m, Sn
m}M

m=1
Output:

The parameters W of the DTBH approach;
Initialization:

Utilize glorot_uniform distribution to initialize W.
Repeat:

1: Utilize triplet selection strategy to select triplet units Ia
m, Sp

m, Sn
m,

2: Use e millisecond window size with f millisecond shift to compute MFCC for the RS sounds,
3: Compute fa(Ia

m), fn(Sn
m, fp(S

p
m), qa

m, qn
m and qp

m by forward propagation;
4: Compute hash codes ha

m, hn
m and hp

m by using Equations (1)–(3);
5: Utilize fa(Ia

m), fn(Sn
m, fp(S

p
m), qa

m, qn
m, qp

m, ha
m, hn

m and hp
m to compute = according to Equation (18);

6: Update W by exploiting Adam;
Until:

a fixed number of iterations or a stopping criteria is satisfied
Return: W
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3. Experiments

In this section, Section 3.1 describes three RS image-sound datasets and evaluation protocols.
Section 3.2 introduces the detailed implementation of the proposed DTBH method. Section 3.3 presents
evaluation of different factors for the proposed DTBH method. Section 3.4 describes the experimental
results. Section 3.5 discusses the parameter analysis of the proposed DTBH method.

3.1. Dataset and Evaluation Protocols

To prove the validity of the proposed DTBH method, three RS image-voice datasets were exploited
to compare the DTBH method with other cross-modal image-voice methods. (1) UCM dataset [47]
contains 2100 RS image-sound pairs. Note that the dataset consists of 2100 RS images of 30 classes;
each RS image has one corresponding sound. We leveraged the triplet selection strategy to construct
6300 triplet units. (2) The Sydney dataset [47] consists of 613 RS image-sound pairs. Note that the
dataset consists of 613 RS images of seven classes; each RS image has one corresponding sound. Triplet
selection strategy is leveraged to construct 1839 triplet units. (3) RSICD dataset [48] consists of 10,921
RS image-sound pairs. Note that the dataset consists of 10,921 RS images of 30 classes; each RS image
has one corresponding sound. We exploited the triplet selection strategy to construct 32,763 triplet
units. Following [14], we randomly selected 80% RS image-sound triplets as the training data and the
other 20% RS image-sound triplets as the testing data for these three datasets. In the testing process,
we use testing RS images (resp. sounds) as the query data and testing RS sounds (resp. RS images) as
the gallery data. Some example images and sounds from three RS image-sound datasets are shown in
Figure 3. Moreover, to evaluate the validity of the proposed DTBH method, the DTBH method was
compared with SIFT+M, DBLP [39], convolutional neural network and spectrogram (CNN+SPEC) [22],
and deep visual-audio network (DVAN) [14]. Note that the DTBH method uses 64 bit hash codes;
the method SIFT+M projects SIFT features of images and MFCC features of voices into a common
feature space by exploiting deep neural networks.These methods—DBLP [39], CNN+SPEC [22],
and DVAN [14]—were implemented in this study. Following [14], similar images and sounds can
be considered as the ground-truth neighbors. These evaluating metrics—mean average precision
(mAP) and the precision in top m of the ranking list (precision@m)—were exploited for assessing the
experimental results [49–52]. Precision represents the proportion of the correct number of samples to
the total number of samples in the ranking list [53]. If the real-values of these metrics are bigger, the
retrieval results of the method are better [54].

Two airplane of the 

same kind are 

stopped at the 

airport .

A regular baseball 

diamond compose of 

manicured lawns and 

sand.

Many houses 

arranged neatly 

with a main street 

go across this area .

An industrial area with 

some white buildings 

densely arranged while 

some roads go through.

many buildings 

and several green 

trees are around a 

playground .

many green trees and 

several buildings are 

near a viaduct with 

three circles.

(a) Sydney (b) UCM (c) RSICD

Figure 3. Some example images and sounds from three RS image-sound datasets. (a) Sydney dataset.
(b) UCM dataset. (c) RSICD dataset.

3.2. Implementation Details

The proposed DTBH method was carried out by the open-source KERAS library. The experiments
were implemented on workstation with GeForce GTX Titan X GPU, Inter Core i7-5930K, with a
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3.50 GHZ CPU and 64 GB RAM. For MFCC, the parameter g was fixed as 2000. The overall objective
function = can be optimized by Adam [46] with the learning rate 10−3. The initial weights of the
DTBH approach exploited the glorot_uniform distribution. The batch size of the DTBH approach was
fixed as 64. The parameter α was fixed as 1. The parameter β was fixed as 0.01. To produce {16, 24,
36, 48, 64}-bit binary codes, K values were make to be from 8 to 64, respectively. The proposed DTBH
approach can be trained for 5000 epoches, or to keep training until the loss does not diminish [55].

3.3. Evaluation of Different Factors

To evaluate the effectiveness of the proposed DTBH method, we analyzed three important factors:
deep feature similarity, triplet selection strategy and triplet regularized term.

The experiments were implemented four ways: Firstly, we used the proposed DTBH method
without leveraging the triplet selection strategy (i.e., DTBH-S). Secondly, we used the proposed
DTBH method without exploiting the triplet regularized term (i.e., DTBH-R). Thirdly, we utilized
the proposed DTBH method without considering deep feature similarity (i.e., DTBH-D). Finally, we
leveraged the proposed DTBH method without using the deep feature similarity, triplet selection
strategy, and triplet regularized term (i.e., DTBH-T).

Table 2 shows contrasting results of DTBH-S, DTBH-R, DTBH-D, DTBH-T, and DTBH on the
UCM dataset with different hash codes. Figure 4 shows the comparative results of DTBH-T, DTBH-D,
DTBH-R, DTBH-S, and DTBH for different hash bits on the UCM dataset by using RS images to retrieve
sounds. Meanwhile, Figure 5 shows the comparative results of DTBH-T, DTBH-D, DTBH-R, DTBH-S,
and DTBH for different hash bits on the UCM dataset using the sounds generated from RS images.
Here, “S→I” represents the case where the query datasets are RS sounds and the gallery datasets
are RS images. “I→S” represents the case where the query datasets are RS images and the gallery
datasets are RS sounds. It is clearly seen from Figures 4 and 5, and Table 2 that the proposed DTBH
method can achieve superior performance to DTBH-P, DTBH-D, DTBH-Q, and DTBH-I on the MAP
with different bits hash codes. For S→I, the proposed DTBH method improved the MAP with 32 bits
from DTBH-T (43.25%), DTBH-D (46.65%), DTBH-R (54.61%), and DTBH-S (55.28%) to 58.36%. For
I→S, the proposed DTBH method improved the MAP with 32 bits from DTBH-T (48.09%), DTBH-D
(52.38%), DTBH-R (60.93%), and DTBH-S (61.38%) to 63.45%. This is because the proposed DTBH
method utilizes the deep feature similarity, triplet selection strategy, and triplet regularized term to
achieve superior retrieval performance.

Table 2. Comparison of DTBH-S, DTBH-R, DTBH-D, DTBH-T, and DTBH on the UCM dataset with
mean average precision (mAP) in different hash bits.

Method 16 Bits 32 Bits 48 Bits 64 Bits

S→ I

DTBH-T 42.29 43.25 44.52 45.36
DTBH-D 44.40 46.65 47.71 48.88
DTBH-R 53.53 54.61 55.58 56.91
DTBH-S 54.43 55.28 56.37 57.76
DTBH 57.17 58.36 59.46 60.13

I→ S

DTBH-T 47.28 48.09 48.98 49.86
DTBH-D 50.32 51.56 52.38 53.24
DTBH-R 57.15 59.04 60.93 61.84
DTBH-S 58.61 60.45 61.38 62.42
DTBH 60.85 62.35 63.45 64.27
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Figure 4. The comparative results of DTBH-T, DTBH-D, DTBH-R, DTBH-R, and DTBH for different
hash bits on the UCM dataset by using RS images to retrieve sounds. The horizontal axis represents
hash codes with different bits, and the vertical axis represents mean average precision.

To assess the impacts of different convolution architectures for the proposed DTBH method, we
evaluate several variants of SDIH. These variants contain DTBH+AlexNet, DTBH+GoogleNet, and
DTBH+VGG16. The differences in these variants are the head of the image network. DTBH+VGG16
uses the convolution part of VGG-16 network as the head of the image network. DTBH+AlexNet
utilizes the convolution part of AlexNet network as the head of the image network. DTBH+GoogleNet
utilizes the convolution part of GoogleNet network as the head of the image network. Table 3 shows
the contrasting results of DTBH+AlexNet, DTBH+GoogleNet, and DTBH+VGG16 on UCM dataset
with mean average precision (mAP) in different hash bits. It can be observed from Table 3 that
the cross-modal hashing algorithm using VGG-16 network can achieve better performance than the
identical algorithm using the GoogleNet network and AlexNet network.
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Figure 5. The comparative results of DTBH-T, DTBH-D, DTBH-R, DTBH-R, and DTBH for different
hash bits on the UCM dataset by using sounds to retrieve RS images. The horizontal axis represents
hash codes with different bits, and the vertical axis represents mean average precision.
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Table 3. Comparison of DTBH+AlexNet, DTBH+GoogleNet, and DTBH+VGG16 on the UCM dataset
with mean average precision (mAP) in different hash bits.

Method 16 Bits 32 Bits 48 Bits 64 Bits

S→ I
DTBH+AlexNet 54.69 56.41 57.16 58.51

DTBH+GoogleNet 55.83 57.17 57.94 59.22
DTBH+VGG16 57.17 58.36 59.46 60.13

I→ S
DTBH+AlexNet 57.87 59.25 60.47 62.15

DTBH+GoogleNet 59.44 60.83 62.27 63.36
DTBH+VGG16 60.85 62.35 63.45 64.27

3.4. Results

(1) Results on UCM: Table 4 shows the performance comparison between the proposed DTBH
method and other compared methods on UCM dataset by using sound to retrieve RS image. Table 5
shows the performance comparison between the proposed DTBH method and other compared methods
on UCM dataset by using RS images to retrieve sounds. Figure 6 shows precision curves with different
samples retrieved by using sounds to retrieve RS images on UCM dataset. Figure 7 shows precision
curves with different samples retrieved by using RS images to retrieve sounds on UCM dataset. We
can obviously see that: (1) Although these methods have yielded good results, the proposed DTBH
method can achieve the highest value in terms of mean average precision, the highest precision for the
top sample retrieved, the highest precision for the top five samples retrieved, and the highest precision
for the top 10 samples retrieved. Figure 8 shows the top eight retrieval results of the proposed DTBH
approach on UCM dataset by utilizing RS images to retrieve voices. Figure 9 shows the top eight
retrieval results of the proposed DTBH approach on UCM dataset by utilizing voices to retrieve RS
images. (2) It can be clearly seen from Figures 6 and 7 that the proposed DTBH method can outperform
the other methods at all returned neighbors. (3) For I→S, the proposed DTBH method improved the
MAP from SIFT+M (8.55%), DBLP (25.48%), CNN+SPEC (26.25%), DVAN (36.79%), DTBH-D (53.24%),
and DTBH-R (61.84%) to 64.27%. Furthermore, for S→I, the proposed DTBH method improved the
MAP from SIFT+M (6.66%), DBLP (19.33%), CNN+SPEC (21.79%), DVAN (32.28%), DTBH-D (48.88%),
and DTBH-R (56.91%) to 60.13%. This is because the proposed DTBH method not only leverages
triplet selection strategy to mine effective triplets, but also exploits deep feature similarity and a triplet
regularized term to learn the similarity of hash codes.

(2) Results on Sydney: Table 6 shows the performance comparison between the proposed DTBH
method and other methods on the Sydney dataset by using sounds to retrieve RS images. Table 7 shows
the performance comparison between the proposed DTBH method and other methods on Sydney
dataset by using RS images to retrieve sounds. Precision curves with different samples retrieved by
using sounds to retrieve RS images and precision curves with different samples retrieved by using RS
images to retrieve sounds are shown in Figures 10 and 11, respectively. Similar experimental results
can be clearly seen on UCM dataset. For example, for I→S, the proposed DTBH method improved the
MAP from SIFT+M (31.67%), DBLP (44.38%), CNN+SPEC (46.67%), DVAN (71.77%), DTBH-D(81.23%),
and DTBH-R(89.64%) to 92.45%. Furthermore, for S→I, the proposed DTBH method improved the
MAP from SIFT+M (26.5%), DBLP (34.87%), CNN+SPEC (35.72%), DVAN (63.88%), DTBH-D(76.53%),
and DTBH-R(85.46%) to 87.49%. The proposed DTBH method achieves the highest precision in all
the evaluation metrics, which demonstrates the effectiveness of cross-modal similarity learning by
utilizing deep feature similarity, triplet selection strategy, and triplet regularized term simultaneously.
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Table 4. The performance comparison between the proposed DTBH method and other methods on the
UCM dataset by using sound to retrieve RS image.

Task Method MAP Precision@1 Precision@5 Precision@10

S→ I

SIFT+M 6.66 3.58 4.41 4.68

DBLP [39] 19.33 17.12 17.62 16.31

CNN+SPEC [22] 21.79 19.42 19.86 19.23

DVAN [14] 32.28 32.37 33.91 34.34

DTBH-D 48.88 58.56 54.29 50.35

DTBH-R 56.91 65.48 61.54 57.32

DTBH 60.13 70.26 66.63 61.73

Table 5. The performance comparison between the proposed DTBH method and other methods on the
UCM dataset by using RS images to retrieve sounds.

Task Method MAP Precision@1 Precision@5 Precision@10

I→ S

SIFT+M 8.55 4.56 4.65 4.56

DBLP [39] 25.48 24.18 23.87 23.24

CNN+SPEC [22] 26.25 29.5 25.52 23.65

DVAN [14] 36.79 32.37 33.29 33.74

DTBH-D 53.24 63.44 59.63 55.54

DTBH-R 61.84 70.82 66.93 62.49

DTBH 64.27 73.10 69.69 65.63
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Figure 6. The precision curves with different samples retrieved by using sounds to retrieve RS images
on UCM dataset.
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Figure 7. The precision curves with different samples retrieved by using RS images to retrieve sounds
on UCM dataset.

Query Image Top-8 Retrieved Results of the proposed DTBH approach
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Figure 8. The top eight retrieval results of the proposed DTBH approach on the UCM dataset by
utilizing RS images to retrieve voices. The wrong retrieval results are marked with red font.
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Table 6. The performance comparison between the proposed DTBH method and other methods on the
Sydney dataset by using sounds to retrieve RS images.

Task Method MAP Precision@1 Precision@5 Precision@10

S→ I

SIFT+M 26.50 34.48 24.48 23.28

DBLP [39] 34.87 21.63 26.78 30.94

CNN+SPEC [22] 35.72 17.24 27.76 31.21

DVAN [14] 63.88 67.24 63.34 67.07

DTBH-D 76.53 81.36 79.28 77.82

DTBH-R 85.46 89.86 87.07 85.38

DTBH 87.49 92.18 90.36 88.82

Query Sound Top-8 Retrieved Results of the proposed DTBH approach

Many tennis courts 

arranged in line with 

some plants beside

It is a straight 

runway with some 

mark lines on it .

This is a dense 

forest with lots of 

dark green trees .

Figure 9. The top eight retrieval results of the proposed DTBH approach on the UCM dataset by
utilizing voices to retrieve RS images. The wrong retrieval results are marked with red font.
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Figure 10. The precision curves with different samples retrieved by using sounds to retrieve RS images
from the Sydney dataset.
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Table 7. The performance comparison between the proposed DTBH method and other methods on the
Sydney dataset by using RS images to retrieve sounds.

Task Method MAP Precision@1 Precision@5 Precision@10

I→ S

SIFT+M 31.67 11.21 35.00 37.59

DBLP [39] 44.38 56.51 52.65 49.68

CNN+SPEC [22] 46.67 58.62 55.00 51.64

DVAN [14] 71.77 75.86 73.62 72.93

DTBH-D 81.23 88.51 86.79 84.47

DTBH-R 89.64 95.60 93.48 92.54

DTBH 92.45 97.41 95.63 93.78
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Figure 11. The precision curves with different samples retrieved by using RS images to retrieve sounds
from the Sydney dataset.

(3) Results on RSICD dataset: RSICD image-voice dataset consists of 10,921 RS image-sound
pairs—making it more complex and challenging than the other two datasets. Table 8 shows the
performance comparison between the proposed DTBH method and other methods on the RSICD
dataset by using sounds to retrieve RS images. Table 9 shows the performance comparison between the
proposed DTBH method and compared methods on the RSICD dataset by using RS image to retrieve
sound. Figure 12 shows precision curves with different samples retrieved by using sounds to retrieve
RS images. Figure 13 shows precision curves with different samples retrieved by using RS images to
retrieve sounds from the RSICD dataset. The proposed DTBH method achieved highest Precision@1,
Precision@5, Precision@10, and MAP results, which further demonstrates the effectiveness of the
DTBH method.
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Table 8. The performance comparison between the proposed DTBH method and other methods on the
RSICD dataset by using sounds to retrieve RS images.

Task Method MAP Precision@1 Precision@5 Precision@10

S→ I

SIFT+M 4.85 3.66 3.60 3.54

DBLP [39] 8.14 6.21 6.08 6.76

CNN+SPEC [22] 9.96 7.13 7.00 7.44

DVAN [14] 15.71 16.18 15.10 14.76

DTBH-D 18.86 19.58 18.64 17.74

DTBH-R 21.41 22.03 21.39 20.68

DTBH 22.72 23.30 22.48 21.17

Table 9. The performance comparison between the proposed DTBH method and other methods on the
RSICD dataset by using RS images to retrieve sounds.

Task Method MAP Precision@1 Precision@5 Precision@10

I→ S

SIFT+M 5.04 6.22 5.34 4.50

DBLP [39] 12.70 15.32 15.21 14.22

CNN+SPEC [22] 13.24 16.82 16.62 15.69

DVAN [14] 16.29 22.49 22.56 21.7

DTBH-D 19.39 24.82 24.29 23.65

DTBH-R 22.52 26.81 26.28 25.49

DTBH 23.46 27.58 26.84 26.37
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Figure 12. The precision curves with different samples retrieved by using sounds to retrieve RS images
from the RSICD dataset.
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Figure 13. The precision curves with different samples retrieved by using RS images to retrieve sounds
form the RSICD dataset.

3.5. Parameter Discussion

To implement parameter discussion for the proposed DTBH method, we performed experiments
regarding the two parameters α and β of Equation (18) on the UCM dataset. First, we set the parameter
α to 1. The parameter β changed form 0 to 10. Figure 14 shows MAP variations with the parameter
β for different hash bits on the UCM dataset by utilizing voices to retrieve RS images. It can be seen
from Figure 14 that the proposed DTBH approach can achieve the best MAP when the parameter
β = 0.01. Second, the parameter β is fixed to 0.01. The parameter α changes form 0 to 10. Figure 15
shows MAP variations with the parameter α for different hash bits on the UCM dataset by utilizing
sound to retrieve RS images. It is observed from Figure 15 that the proposed DTBH approach can
achieve the best MAP when the parameter α = 1. Hence, the parameter α and the parameter β were set
to 1 and 0.01, respectively.
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Figure 14. MAP varies with the parameter β for different hash bits on the UCM dataset by utilizing
sound to retrieve RS images. The horizontal axis represents the parameter β, and the vertical axis
represents mean average precision.
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Figure 15. MAP varies with the parameter α for different hash bits on the UCM dataset by utilizing
sound to retrieve RS images. The horizontal axis represents the parameter α, and the vertical axis
represents mean average precision.

4. Conclusions

In this paper, we proposed a novel deep triplet-based hashing (DTBH) approach, which leverages
deep feature similarity and the triplet selection strategy to guide hash codes learning in RS cross-modal
image-sound retrieval. Specially, compared with high-dimensional real-valued features, hash codes
can reduce storage costs. Firstly, we proposed a new triplet selection strategy, which can select effective
triplets to capture the intra-class and inter-class variations for hash codes learning. Secondly, we
proposed a novel objective function, which consists of the triplet similarity loss function, the triplet
regularized loss function, and the deep feature triplet loss function. The triplet similarity loss function
makes sure that that the anchor images are more similar to the positive sounds than the negative
sounds. The deep feature triplet loss function ensures that the anchor deep features are more similar to
the positive deep features than to the negative deep features. The triplet regularized loss function can
reduce the information loss between hash-like codes and hash codes. Finally, for sound query RS image
task, the proposed approach can achieve a mean average precision up to 60.13% on the UCM dataset,
87.49% on the Sydney dataset, and 22.72% on the RSICD dataset. For RS image query sound task, the
proposed approach can achieve a mean average precision up to 64.27% on the UCM dataset, 92.45% on
the Sydney dataset, and 23.46% on the RSICD dataset. Moreover, extensive experimental results on
UCM, Sydney, and RSICD datasets show that the DTBH method can achieve better performance than
other state-of-the-art cross-modal image-sound retrieval methods. Future work can be divided into
two main aspects. First, we plan to exploit DTBH in other applications, such as cross-modal biometric
matching, to demonstrate its extensive effectiveness. Second, we will focus on how to combine the
balanced property of hash codes to improve image–sound retrieval performance.
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