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Abstract: Fine land cover classification in an open pit mining area (LCCOM) is essential in analyzing
the terrestrial environment. However, researchers have been focusing on obtaining coarse LCCOM
while using high spatial resolution remote sensing data and machine learning algorithms. Although
support vector machines (SVM) have been successfully used in the remote sensing community,
achieving a high classification accuracy of fine LCCOM using SVM remains difficult because of two
factors. One is the lack of significant features for efficiently describing unique terrestrial characteristics
of open pit mining areas and another is the lack of an optimized strategy to obtain suitable SVM
parameters. This study attempted to address these two issues. Firstly, a novel carbonate index that
was based on WorldView-3 was proposed and introduced into the used feature set. Additionally, three
optimization methods—genetic algorithm (GA), k-fold cross validation (CV), and particle swarm
optimization (PSO)—were used for obtaining the optimization parameters of SVM. The results show
that the carbonate index was effective for distinguishing the dumping ground from other open pit
mining lands. Furthermore, the three optimization methods could significantly increase the overall
classification accuracy (OA) of the fine LCCOM by 8.40%. CV significantly outperformed GA and
PSO, and GA performed slightly better than PSO. CV was more suitable for most of the fine land
cover types of crop land, and PSO for road and open pit mining lands. The results of an independent
test set revealed that the optimized SVM models achieved significant improvements, with an average
of 8.29%. Overall, the proposed strategy was effective for fine LCCOM.

Keywords: open pit mining; land degradation; support vector machine (SVM); worldView-3;
remote sensing

1. Introduction

Land degradation has been increasingly recognized as one of the most destructive impacts on the
terrestrial environmental during the last century [1,2]. Some researchers have revealed the important
effect of open pit mining on local land degradation [1–5]. Accordingly, land covers in complex open pit
mining landscapes are being increasingly used as key datasets for global and local land degradation
and development studies [6–12].

Currently, high resolution satellite imagery and machine learning algorithms (MLAs) have been
applied to land cover classification in open pit mining areas [6,9,12–14]. MLAs can generally accept
various features sets [10], which have proven to be valuable in open pit mining areas classification.
Several algorithms with excellent performance have been widely used, for example, support vector
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machine (SVM) [15,16], artificial neural network (ANN) [17], and random forest (RF) [15]. These
three algorithms were non-parametric learning methods and no assumptions need to be made for the
form of the target function. Therefore, they are becoming increasingly popular in remotely sensed
classification [18].

Some researches show that SVM can successfully achieve higher classification accuracy than
traditional methods [9,19–24]. Nevertheless, two challenges for SVM remain to be addressed in the
remote sensing field [15,16]: (1) to select the kernel function and parameter [25]; and, (2) to optimally
obtain key parameters, including kernels and penalty parameter C [22,26–28]. Our previous research
show that it is challenging to achieve higher accuracy for fine land cover classification in an open
pit mining area (LCCOM), because of four specific features: significant three-dimensional terrain,
strong temporal-spatial variability of surface cover, spectral-spatial homogeneity of mining areas [7],
and different phenological stages [9]. From this viewpoint, it is difficult to use the original SVM to
improve the classification accuracy of fine LCCOM. Thus, several optimum methods have been used
to determine the optimized key parameters of SVM, including several evolutionary algorithms and
swarm intelligence algorithms [29,30], such as the genetic algorithm method (GA), cross-validation
method (CV), and particle swarm optimization method (PSO).

It was revealed in our previous research that it is essential to obtain beneficial features from new
remote sensing sensors to improve the classification accuracy in open pit mining areas [6,7,9]. WorldView-3
(WV-3) has higher spatial and spectral resolution [31], which might be further advantageous in
vegetation, hydrocarbons [31], and lithology mapping. Thus, we believe that WV-3 has high potential
in improving the accuracy of fine LCCOM [6], but is has not still been confirmed.

The objectives of this study are as follows: (1) to validate the ability of WV-3 in achieving higher
classification accuracy of fine LCCOM; and, (2) to determine an optimized SVM method for improving
the classification accuracy of fine LCCOM.

2. Materials and Methods

2.1. Study Area

An open pit mining district with an area of 65.16 km2 located in central China
(114◦13′53.375”–114◦20′35.538”E and 30◦15′39.957”–30◦18′48.352”N) was selected as the study area.
Mineral resources relevant activities are very strong in the study area. The mine disturbance here
with open pit mining has a history of nearly 70 years, and most of the mines are active nowadays,
especially the Wulongquan mine. More detailed information regarding the study area can be found in
the literature [6,7,9]. In this study, 23 sites representing different land cover types were selected as the
field investigation points, as shown in Figure 1.
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Figure 1. Study area and WV-3 fused true color image. RGB = band 5, 3, 2. 
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WV-3 can provide a dataset of higher spatial and spectral resolution from panchromatic, 
multispectral imagery to short-wave infrared imagery (SWIR) (as listed in Table 1). The use of WV-3 
imagery has been found to provide better performance on mapping surface geology targets than 
conventional sensors [32,33]. The 2A level WV-3 data that were used in this study were acquired on 
4 August 2015 with the total cloud cover of 1%. 

Table 1. Main specification of worldview-3 [34]. 

Sensor Bands Band Name Wavelength Range (nm) Sensor Resolution (m) 
 Panchromatic 450–800 0.31 

Visible and near infrared (VNIR) 

Coastal Blue 400–450 

1.24 
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Yellow 585–625 

Red 630–690 
Red Edge 705–745 
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Commercial delivery at 7.5 m resolution 

SWIR-2 1550–1590 
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SWIR-5 2145–2185 
SWIR-6 2185–2225 
SWIR-7 2235–2285 
SWIR-8 2285–2365 

3. Methods 

The overall flowchart of the methodology can be divided into six phases, as presented in Figure 
2. The high resolution features of WV-3 images and optimized SVM algorithm were used in this study 

Figure 1. Study area and WV-3 fused true color image. RGB = band 5, 3, 2.

2.2. Remote Sensing Data Resources

WV-3 can provide a dataset of higher spatial and spectral resolution from panchromatic,
multispectral imagery to short-wave infrared imagery (SWIR) (as listed in Table 1). The use of
WV-3 imagery has been found to provide better performance on mapping surface geology targets than
conventional sensors [32,33]. The 2A level WV-3 data that were used in this study were acquired on
4 August 2015 with the total cloud cover of 1%.

Table 1. Main specification of worldview-3 [34].

Sensor Bands Band Name Wavelength Range (nm) Sensor Resolution (m)

Panchromatic 450–800 0.31

Visible and near infrared (VNIR)

Coastal Blue 400–450

1.24

Blue 450–510
Green 510–580
Yellow 585–625

Red 630–690
Red Edge 705–745

NIR-1 77–895
NIR-2 860–1040

Short-wave infrared (SWIR)

SWIR-1 1195–1225

Commercial delivery at
7.5 m resolution

SWIR-2 1550–1590
SWIR-3 1640–1680
SWIR-4 1710–1750
SWIR-5 2145–2185
SWIR-6 2185–2225
SWIR-7 2235–2285
SWIR-8 2285–2365

3. Methods

The overall flowchart of the methodology can be divided into six phases, as presented in Figure 2.
The high resolution features of WV-3 images and optimized SVM algorithm were used in this study to
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improve the classification accuracy of the fine LCCOM. Besides, an independent test set was used to
examine the classification models for LCCOM.
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3.1. Data Processing

Geometric registration between different bands of the used WV-3 level 2A products can meet the
requirement of image fusion. According to our previous study [34], the panchromatic and multispectral
data were fused based on the Gram-chmidt method because it provides higher fidelity of spatial and
spectral characteristics, which is suitable for studying open pit mining areas.

3.2. Developing Features Based on WV-3

A total of 70 features divided into six types were used in this study (as listed in Table 2).
(1) Various spectral bands: eight VNIR spectral bands of the fused image and eight SWIR

spectral bands.
(2) Vegetation index: one is the normalized difference vegetation index [35], which was calculated

while using the first near-infrared band (NIR-1) of WV-3; the other is the soil-adjusted vegetation
index [36], which was expected to improve the identification ability for bare soil and sparse vegetation
in open pit areas. The formula for SAVI is as follows:

SAVI = [(NIR − red)/(NIR + red + L)] × (1 + L), (1)

According to statistic values, the value of L was determined with 0.5. Furthermore, the NIR-1 of
WV-2 was used.
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(3) Carbonate index (CI): a strong absorption feature at around 2.3 µm [37] characterizes carbonates.
It is advantageous in distinguishing non-lithology cover types in mining areas, such as dumping
grounds. Accordingly, the CI was developed based on WV-3 characteristics, as follows, in this study:

CI = SWIR-5/SWIR-3, (2)

In formula (2), SWIR-5 and SWIR-3 are the fifth and third bands in the SWIR range, respectively.
(4) Principal component bands: the principal component analysis [38] was carried out to eliminate

the redundancies for the eight fused multispectral bands in this study. The top three bands with a
cumulative contribution rate of 99.34% were used.

(5) Filter images: it is helpful to improve the classification accuracy in LCCOM for applying
Gaussian low-pass filters to optical images [9]. Thus, the eight fused multi-spectral bands were
calculated and a kernel size of 3 × 3 was used.

(6) Texture measures: five features belonging to gray level co-occurrence matrix texture [39]
measures were calculated with a processing window size of 9 × 9.

Table 2. Details of the feature set used in this study.

Image Features Feature Names Number

Various spectral bands VNIR_(1, 2, . . . , 8), SWIR_(1, 2, . . . , 8) 16

Vegetation indices Normalized difference vegetation index,
Soil-adjusted vegetation index 2

Carbonate Index CI 1
Principal component bands P1, P2, P3 3

Filter images Gaussian low-pass filter _VNIR_(1, 2, . . . , 8) 8
Texture measures (Cor, Con, Asm, Hom, Ent)_VNIR_(1, 2, . . . , 8) 40

Total 70

VNIR_(1, 2, . . . , 8): fused bands of eight VNIR bands; SWIR_(1, 2, . . . , 8): eight shortwave infrared bands;
CI: carbonate Index; Cor, Con, Asm, Hom, Ent: correlation, contrast, angular second moment, homogeneity, entropy.

3.3. Land Cover Classification Schemes

As previously reported [6,9], there were seven first-level classes in the study area, i.e., open pit
mining land, crop land, forest land, water, road, urban and rural residential land, and bare land.
Fine classes (for details, see Table 3) should be considered in land cover classification schemes for
open pit mining areas due to the big intra-class spectral and topographic differences in the first-level
classes. Two new fine types were particularly added in this study (Table 3). One is green dry land with
land-water resources for crops mainly from natural precipitation and with high coverage. The other
is black roof, usually referring to residential land in industrial parks. All of the procedures, such as
training and test set construction, SVM algorithm optimization, classification model developing and
prediction, and accuracy assessment were carried out on the fine land cover classes based on the open
pit mining area in this study.

Table 3. Land cover classification schemes used in this study (revised from [9]).

Fine Land Cover Types Description

Opencast pit Having mine pit lakes and spiral roads.

Ore processing site Characterized by linear mineral processing facilities and highly
reflective rubble.

Dumping ground Located around stopes and may be gray in true color images.

Paddy field Having adequate water supply and used for cultivation of rice, lotus,
and other aquatic crops.
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Table 3. Cont.

Fine Land Cover Types Description

Vegetable and fruit greenhouse Having white plastic film sides and roofs, and high surface albedo
with regular rectangular shapes.

Green dry land On the land water resources for crops mainly from natural
precipitation and with high coverage.

Gray dry land On the land water resources for crops mainly from natural
precipitation and with low coverage.

Fallow land No crops growing at the present stage.

Woodland
Includes timber stands, economic forests, and shelterbelts that have
high chlorophyll content and are dark red in the false color image
(R—NIR-1, G—Red, B—Green).

Shrub forest Having multiple stems and shorter height, generally less than 2 m tall,
and is bright red in false color images.

Forest under stress

Under the influence of surface mining development, around
surface-mined land, having large amounts of deposited mineral dust,
poor growth, and is grayish in true color images (R—Red, G—Green,
B—Blue).

Nursery and orchard Having a rectangular shape like cropland dotted by vegetation cover
and exposed soil and is black in true color images.

Pond and stream Including many fish ponds with regular rectangular shapes.

Mine pit pond Lakes created during and after mining, typically with irregular shapes.

Dark road Usually referring to asphalt highways.

Bright road Usually referring to cement roads.

Light gray road Usually referring to dirt roads.

Bright roof Usually referring to urban and town areas.

Red roof Usually referring to rural land.

Dark roof Usually referring to residential land in industrial parks

Blue roof Usually referring to land used for industrial parks.

Bare surface Referring to exposed land with little vegetation.

3.4. Training Set and Test Sets

Based on our training data polygons [9], a revised version of polygons was obtained (Table 4)
based on WV-3 images and the above-mentioned updated fine land cover classification scheme. Almost
all of the open pit mining land was delineated in a similar manner, and the others were randomly
determined across the study area. We employed a stratified random sampling method in this study.
The result is that each class included 1000 samples, in which 900 samples were considered as the
training set, while the other 100 were considered as the test set (Table 4). This study used spatially
dependent training and test sets for fine LCCOM, with reference to the literature [6,9].

Table 4. Description of the Training Set and Test Set Used in This Study.

Fine Land Cover Types Number of DPs Area of DPs (km2) Number of Pixels in DPs (103) Fraction (%�)

Open pit 17 2.22 24,635 0.04
Ore processing site 36 0.92 10,256 0.10
Dumping ground 38 0.79 8724 0.11

Paddy 36 0.10 1085 0.92
greenhouse 13 0.05 565 1.77

Green dry land 66 0.18 2021 0.49
Gray dry land 30 0.06 626 1.60

Fallow land 42 0.09 1013 0.99
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Table 4. Cont.

Fine Land Cover Types Number of DPs Area of DPs (km2) Number of Pixels in DPs (103) Fraction (%�)

Woodland 71 0.75 8298 0.12
Shrubbery 43 0.12 1295 0.77

Coerced forest 28 0.11 1228 0.81
Nursery 41 0.21 2386 0.42

Pond and stream 99 0.47 5253 0.19
Mine pit pond 12 0.06 659 1.52

Dark road 9 0.04 399 2.50
Bright road 5 0.00 32 31.63

Light gray road 63 0.06 704 1.42
Bright roof 61 0.08 932 1.07

Red roof 128 0.02 198 5.06
Dark roof 81 0.03 344 2.91
Blue roof 33 0.05 503 1.99

Bare surface 6 0.01 136 7.34

DPs: data polygons; Fraction: number of pixels in the training and test sets divided by the number of pixels in DPs.

An independent test set with the first-level land covers (i.e., crop, forest, water, road, residential,
bare surface, and open pit mining) [9] was used. In this set, there were 700 samples, i.e., 100 samples
for each first-level land class.

3.5. Classification Algorithm and Corresponding Parameter Optimization Methods

The penalty parameter C of SVM is key to improving the remote sensing classification accuracy.
The polynomial kernels and the radial basis function (RBF) kernel were often used in the remote
sensing community [40]. The used kernel parameter G can influence the complexity of the sample
feature subspace distribution [16]. The classification accuracy and generalization ability of SVM will
decline as G increases. When the G value is small, almost all of the training samples are support
vectors. At this time, the training error is small and the test error is close to 1. However, the SVM
generalization ability is poor. As the G value increases, the number of support vectors gradually
decreases and the training error increases. Nevertheless, the SVM generalization ability is gradually
enhanced. With the continued increase, when G reaches a certain threshold, the number of support
vectors will increase again, and both training errors and test errors will also increase. At this point,
SVM will start to deteriorate, regardless of classification ability or generalization ability. In addition,
the penalty parameter C could influence the generalization of SVM. After the sample subspace is
determined, when the C value is small, the complexity of the SVM is small, the penalty for the empirical
error is small, and the empirical risk value is large.

CV is a time-consuming process, as it is often necessary to evaluate each parameter set at many
grid points [26,41]. GAs have been used to obtain SVM kernel parameters, which were integrated into
SVM algorithms to improve the accuracy of SVM classification [26,42]. PSO is selected to determine
the optimum kernel function, which is particularly effective for the radial basis function kernel [43].

In this study, the GA, CV, and PSO algorithms were selected to optimize G and C parameters of
SVM. The CV process was implemented in R software. The GA and PSO algorithms were processed in
MATLAB R2009.

3.5.1. k-fold CV Algorithm

The k-fold CV method has been widely used in the remote sensing community [15,44–46]. More
details regarding the CV could be found in the literature [44]. In this study, a five-fold CV scheme in the
function “best.tune” included in the e1071 package [47] was utilized to achieve the “optimal” parameter
combination. The maximum mean accuracies resulting from the k-fold CV would be considered as the
optimal parameter.
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3.5.2. Genetic Algorithm

GA was considered to be an adaptive optimization method according to the genetic processes of
biological organisms. Further details on GA can be found in the literature [26,48]. GA can simultaneously
identify the optimal SVM kernel parameters without reducing the SVM classification accuracy.

3.5.3. PSO Algorithm

PSO was proposed based on the social behavior of bird flocking, and the detailed principle on PSO
could be found in the literature [49,50]. PSO has the advantages of higher efficiency, uncomplicated
implementation, and significant exploration abilities for parameter optimization in SVM, both globally
and locally [44,51].

3.6. Accuracy Assessment

The classification accuracies of fine LCCOM were evaluated on the basis of the test set.
The overall accuracy (OA) was used to indicate the performance of the optimization classification
models. The F1-measure [51] was used to describe class-specific accuracy. Moreover, the percentage
deviation [52] was calculated on the basis of the three above-mentioned metrics for evaluating
differences in the overall performance and the accuracy of each class among different classification
models. In addition, the McNemar test was used to examine whether the parameter optimization
methods could significantly improve the classification accuracy and whether there is a significant
difference between the three optimization methods.

4. Results

4.1. Results of Parameter Optimization

A group of 48 parameter combinations (i.e., eight and six values for gamma and cost; for details,
see Table 5) was used for the parameter optimization of SVM algorithm-based classification models.
The default values for gamma and cost were 1/n (n is data dimension) and 1. While using CV, GA,
and PSO algorithms, combinations of 2−7 and 27, 2−9 and 27, and 2−5 and 23 for G and C were
obtained, respectively.

Table 5. Parameter of optimization results.

Parameter Ranges
Results

CV GA PSO

G 2−11, 2−9, . . . , 23 2−7 2−9 2−5

C 2−3, 2−1, . . . , 27 27 27 23

4.2. Assessment of Classification Results

Four classifications were performed in this study. Table 6 presents the F1-measure, OA,
and percentage deviation of different SVM models based on default parameters and different
optimization methods. Table 7 presents the results of the McNemar statistical test.

Table 6. Classification accuracy of different methods (%).

Second Level Classes SVM CV GA PSO CV-P GA-P PSO-P

Open pit 45.99 51.58 50.00 52.41 12.15 8.72 13.96
Ore processing site 46.59 51.43 52.46 54.14 10.39 12.60 16.21
Dumping ground 65.95 71.70 69.61 71.22 8.72 5.55 7.99

Paddy 84.38 88.32 87.96 88.78 4.67 4.24 5.21
greenhouse 85.41 94.36 93.19 91.58 10.48 9.11 7.22

Green dry land 61.03 68.32 67.91 65.70 11.94 11.27 7.65
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Table 6. Cont.

Second Level Classes SVM CV GA PSO CV-P GA-P PSO-P

Gray dry land 73.13 87.50 84.36 81.86 19.65 15.36 11.94
Fallow land 69.84 78.67 74.15 73.63 12.64 6.17 5.43
Woodland 80.75 83.96 83.18 83.90 3.98 3.01 3.90
Shrubbery 45.03 52.48 52.31 49.50 16.54 16.17 9.93

Coerced forest 72.12 78.79 79.60 76.10 9.25 10.37 5.52
Nursery 54.08 66.29 61.54 63.44 22.58 13.79 17.31

Pond and stream 95.57 97.54 96.62 97.54 2.06 1.10 2.06
Mine pit pond 96.48 98.51 99.00 98.02 2.10 2.61 1.60

Dark road 80.00 89.86 87.44 90.38 12.33 9.30 12.98
Bright road 94.23 99.00 98.00 97.51 5.06 4.00 3.48

Light gray road 75.12 86.54 80.63 86.70 15.20 7.33 15.42
Bright roof 81.25 88.21 87.31 85.00 8.57 7.46 4.62

Red roof 93.26 95.43 96.94 94.42 2.33 3.95 1.24
Dark roof 63.21 79.26 77.78 78.14 25.39 23.05 23.62
Blue roof 95.88 97.46 98.49 95.92 1.65 2.72 0.04

Bare surface 75.13 87.88 85.43 86.15 16.97 13.71 14.67
OA 74.55 81.77 80.41 80.27 9.68 7.86 7.67

P—percentage deviation.

Table 7. McNemar test results for the mapping of open pit mining areas. fij: the numbers of cases
that were wrongly classified by classifier i but correctly classified by j (i, j = 1, 2); χ2: chi-square; p:
probability value.

Pair of Classifications f12 f21 χ2 p

SVM vs. CV 229 70 84.6 <0.001
SVM vs. GA 178 49 73.3 <0.001
SVM vs. PSO 186 60 64.5 <0.001

CV vs. GA 60 90 6.0 <0.05
CV vs. PSO 46 79 8.7 <0.01
GA vs. PSO 76 79 0.1

4.2.1. OA and Percentage Deviation

The SVM model that was optimized by CV (CV-SVM) achieved the highest OA of 81.77%, followed
by GA-SVM (80.41%), PSO-SVM (80.27%), and SVM (74.55%) (Table 6). Clearly, parameter optimization
greatly improved the performances of SVM models. The OA values increased by 9.68% (CV-SVM),
7.86% (GA-SVM), and 7.67% (PSO-SVM), with an average of 8.40%. Moreover, CV outperformed the
GA and PSO algorithms in this case, with OA value differences of 1.69% and 1.87%.

4.2.2. F1-Measure and Percentage Deviation of Each Land Cover

Regarding the accuracy of each class (i.e., F1-measure), the three optimization methods yielded
different effects. For example, only the following seven land covers complied with the above-mentioned
conclusion (i.e., CV overtook GA and PSO): greenhouse, green dry land, gray dry land, fallow land,
shrub, bright road, and bright roof.

CV provided the highest F1-measure values for greenhouse (94.36%), green dry land (68.32%),
gray dry land (87.50%), fallow land (78.67%), woodland (83.96%), shrub (52.48%), nursery (66.29%),
bright road (99.00%), bright roof (88.21%), dark roof (79.26%), bare surface (87.88%), and dumping
ground (71.70%); GA provided the highest F1-measure values for coerced forest (79.60%), mine pit
pond (99.00%), red roof (96.94%), and blue roof (98.49%); PSO provided the highest F1-measure values
for paddy (88.78%), dark road (90.38%), light gray road (86.70%), open pit (52.41%), and ore processing
site (54.14%). Moreover, CV and PSO were more effective in discriminating pond and stream, with the
highest F1-measure value of 97.54%.
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In general, all the three parameter optimization methods yielded over 90% F1-measures for the
following land covers: greenhouse, pond and stream, mine pit pond, bright road, red roof, blue roof;
over 80% for the following: paddy, gray dry land, woodland, dark road, light gray road, bright roof,
and bare surface; over 70% for the following: fallow land, coerced forest, dark roof, and dumping
ground; over 60% for the following: green dry land and nursery; and, over 50% for the following:
shrub, open pit, and ore processing site.

As for the F1-measure of each class, all three parameter optimization methods showed positive
effects, i.e., the percentage deviation of F1-measure ranged from 0.04% to 25.39%, with an average
of 9.37%. Moreover, all of the parameter optimization methods improved 70% of the 20 land covers
by over 5%: greenhouse (with an average improvement of 8.94%), green dry land (10.29%), gray dry
land (15.65%), fallow land (8.08%), shrub (14.21%), coerced forest (8.38%), nursery (17.89%), dark road
(11.54%), gray road (12.65%), dark roof (24.02%), bare surface (15.12%), open pit (11.61%), ore processing
site (13.07%), and dumping ground (7.42%).

In particular, the CV method provided the highest F1-measure improvements for greenhouse
(10.48%), green dry land (11.94%), gray dry land (19.65%), fallow land (12.64%), woodland (3.98%),
shrub (16.54%), nursery (22.58%), bright road (5.06%), bright roof (8.57%), dark roof (25.39%),
bare surface (16.97%), and dumping ground (8.72%); the GA method provided the highest F1-measure
improvements for coerced forest (10.37%), mine pit pond (2.61%), red roof (3.95%), and blue roof (2.72%);
PSO method provided the highest F1-measure improvements for paddy (5.21%), dark road (12.98%),
gray road (15.42%), open pit (13.96%), and ore processing site (16.21%). CV and PSO were particularly
more sensitive in discriminating pond and stream, with the highest F1-measure improvement of 2.06%.

4.2.3. McNemar Test

The McNemar test was conducted for each pair of the models based on SVM with default
parameters and those optimized parameters while using the three methods. Table 7 shows pairs of
classification models, the numbers of samples that one model wrongly classified and another model that
correctly classified, and the corresponding chi-square and p values. The results indicate that: (1) SVM
models based on CV, GA, and PSO algorithms significantly outperformed those with default parameters
(chi-square values were larger than 3.84 and the p values were smaller than 0.05), i.e., the three parameter
optimization methods significantly improved the classification performance; (2) there were significant
differences between CV and the other two methods, i.e., CV significantly outperformed GA and PSO;
and, (3) GA and PSO methods showed equivalent effects with no statistical significance.

4.3. Assessment of the Independent Test Set

A predicted map with the first-level land covers was obtained based on the classification result of
the study area that derived from CV-SVM (Figure 3). The predicted map was poorer than that drawn
in [9]. There were misclassifications between all of the land covers. In the west part of the study,
the misclassification of crop land as forest land existed. In the whole study area, there were land covers
that were wrongly classified as open pit mining land and road.

The map was then erased by the data polygons that were used to construct the dependent training
and test sets. Finally, a stratified random sampling method was applied to obtain the independent test
set with 700 samples. The land classes of the independent test samples were determined by a visual
interpretation based on the WV-3 imagery.

Table 8 shows all of the models’ OA values for the independent test set and Table 9 depicts
the results of statistical test. The SVM model just achieved an OA of 57.43%. The optimized SVM
models significantly outperformed the SVM, with the improvements of 10.94%, 8.71%, and 5.22%
(average 8.29%). Among the three optimized SVM models, just CV-SVM overtook PSO-SVM, and no
significant differences existed between other pairs of them.
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Table 8. Overall accuracies (OAs) of different methods for the independent test set (%).

SVM CV GA PSO CV-P GA-P PSO-P

OA 57.43 63.71 62.43 60.43 10.94 8.71 5.22

P—percentage deviation.

Table 9. McNemar test results of different models for the independent test set. fij: the numbers of
cases that were wrongly classified by classifier i but correctly classified by j (i, j = 1, 2); χ2: chi-square;
p: probability value.

Pair of Classifications f12 f21 χ2 p

SVM vs. CV 127 60 24.0 <0.001
SVM vs. GA 102 44 23.0 <0.001
SVM vs. PSO 95 51 13.3 <0.001

CV vs. GA 51 60 0.7
CV vs. PSO 39 62 5.2 <0.025
GA vs. PSO 56 70 1.6

5. Discussion

5.1. Effectiveness of The Used Features

The features that were used in this study were like that of previous studies [6,9]. The importance of
each feature was assessed and then compared with those in other related studies [9]. Chen et al. [6] further
confirmed the importance grades of each feature set and determined whether there were significant
differences among them. Overall, the commonly used feature sets, such as spectral information,
principal component bands, filter images, and texture measures, are effective for fine LCCOM.

Nevertheless, there are three significant differences between this study and the aforementioned
two studies, which resulted in different effects on the classification accuracies of different land covers.
(1) This study focused on the fine classification of land covers, which is more difficult than that of
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coarse land covers (neglecting intra-class misclassification) [6,9]. (2) This study utilized more spectral
information, soil adjusted vegetation index, and the proposed CI, but not topographic variables and
the standard deviation filters, which were the top two important feature sets in the previous studies [6].
(3) The WV-3 data that were used in this study were of much higher resolution than that of Ziyuan-3
image in the previous two studies (about seven times), which further increased the classification
difficulty at a fine scale.

Taking open pit and ore processing sites, for example, their low accuracies (about 50%) could be
attributed to the inherent difficulty of classification, misclassifications between each other, and the
lack of topographic variables. Although Li et al. [9] achieved the highest OA of 87.34% for three land
covers of open pit, to a certain degree, it could be attributed to the use of 10% data as the training
set and the effect of spatial auto-correlation [53] between the training and test sets. The proposed CI
could theoretically help to distinguish different open pit mining land classes, providing relatively
higher accuracies for dumping ground. However, it could not differentiate the open pit and ore
processing site. Obviously, the spectral band of WV-3 should be further explored to generate more
effective lithology indices for fine LCCOM. In addition, the integration of lithology indices, topographic
variables, and other features might be effective, and they will be considered in the future.

Similarly, the shrub and nursery exhibited low accuracies, owing to the very high resolution of
WV-3 and misclassifications between each other. The addition of more spectral information and soil
adjusted vegetation index was not enough for distinguishing them. Higher-level features that are
derived from spectral information and more effective spatial features, such as the standard deviation
filters, have potential in improving their accuracies, and we will investigate them in the future.

The highest OA for the independent test set was just 63.71%. It was lower than the feature
subset-based RF, SVM, and ANN models (with OA values of 77.57%, 72.00%, and 64.29%, respectively),
and all feature-based RF and SVM models (with OA values of 74.86% and 68.00%). This revealed that
the topographic features were important.

5.2. Dependency of Test and Training Sets and Sampling Scheme

When compared to [6,9], this study used spatially dependent training and test sets for fine LCCOM,
through which good OA and F1-measures could be obtained for most fine land covers. In general,
independent training and test sets are the prerequisites of reliable accuracy assessment. Although the
acquisition method of training and test sets determines their spatial auto-correlation [53], the effect
was within normal range, as reflected by the statistical data in Table 4. In addition to the white road
(31.63%), the number (or area) fractions of samples in the training and test sets and those in data
polygons for each land cover class had the maximum, minimum, and average values of 7.34%�, 0.04%�,
and 1.53%�, respectively. The used data were only a small portion of data polygons and the spatial
auto-correlation of training and test samples was very small. Therefore, it would not have affected the
reliability of the accuracy assessment.

The classification in this study was different from the subclassification of three open pit mining
lands in [9]. The spatial auto-correlation was very large; however, the large test set ensured the
reliability of the accuracy assessment.

The following conclusions could be drawn regarding the effects of spatial auto-correlation on
each land cover. (1) On the whole, spatial auto-correlation had little effect. For example, the land
covers of gray dry land, gray road, dark roof, and bare surface exhibited higher spatial auto-correlation
(i.e., the above-mentioned higher fraction; 1.60%�, 1.42%�, 2.91%�, and 7.34%�) and their F1-measures
were moderate (73.13%, 75.12%, 63.21%, and 75.13%; obtained from the SVM model with default
parameters). Moreover, high F1-measures could be obtained for some land covers with low spatial
auto-correlation, i.e., wood land (0.12%� and 80.75%) and pond and stream (0.19%� and 95.57%). It was
clear that the separability of these classes was the dominant reason, although there were some other
land covers with high spatial auto-correlation and high F1-measures, such as greenhouse (1.77%� and
85.41%), mine pit pond (1.52%� and 96.48%), bright road (31.63%� and 94.23%), bright roof (1.07%� and



Remote Sens. 2020, 12, 82 13 of 16

81.25%), red roof (5.06%� and 93.26%), and blue roof (1.99%� and 95.88%). (2) The low accuracies of
three surface-mined lands could be partly attributed to the insufficient number of training samples,
which led to the low spatial auto-correlation to some degree. It could be further concluded that
more training samples are necessary and the spatial auto-correlation should be fully and reasonably
exploited for open pit mining lands with relatively low separability.

The results of independent test set in this study were worse than those in [9]. These results might
reflect the true predict ability of the SVM models. More training data were necessary for better
predicted map of the study area, owing to the complexity and difficulty of LCCOM and fine LCCOM.
Small training data were just applicable for model comparison.

5.3. Influence of Parameter Optimization

For SVM-based models, parameter optimization is indispensable and it can significantly affect the
obtained results [16,24]. Furthermore, many previous studies reported that parameter optimization
has positive effects. Similarly, it can be concluded in this study that the three parameter optimization
methods significantly improved the classification accuracy of LCCOM. Moreover, CV significantly
outperformed GA and PSO, and GA slightly overtook PSO. A statistical test was also performed to
determine whether there were significant improvements after parameter optimization and whether
there were significant differences among them. In contrast, most studies only used one of the common
optimization algorithms or focused only on modifying specific algorithms. Few studies have compared
different optimization algorithms. For example, a comprehensive assessment was carried out for
different optimization methods in SVM, such as continuous ant colony optimization, GA, imperialist
competitive algorithm, and PSO [54,55]. The authors concluded that the suitability of the algorithm
depended on the specific application. The limited parameter space [55] and the complexity of LCCOM
in this study might obstruct the performance of more complex algorithms, such as GA and PSO.

Some studies have also reported that the combinatorial optimization of feature selection and
parameter optimization in SVM might be more effective than only optimizing the parameters in
SVM [55,56]. In this study, multiple types of features with highly redundant and correlated information
were utilized.

Different land covers showed different sensitivities regarding the three parameter optimization
methods. For example, CV was more suitable for most of the fine land covers of crop land
(i.e., CV achieved the most substantial accuracy improvements), and PSO for road and open pit mining
lands. Schuster et al. [52] and Li et al. [9] also drew a similar conclusion that easily distinguishable
land covers are less sensitive to the additional operation, which is the parameter optimization in this
study and feature selection in the previous two studies.

6. Conclusions

In this study, SVM models with three parameter optimization methods were investigated for
improving the higher accuracy of fine LCCOM based on WV-3 images. Overall, the accuracy was
significantly improved. In particular, the fine land covers from mining activities could be identified
based on our proposed strategy. This is different from that of our previous study, which focused
only on the coarse land cover classes in open pit mining areas. Some important conclusions can be
drawn. Firstly, the proposed CI based on WV-3 was useful in distinguishing the dumping ground from
other open pit mining lands. Secondly, parameter optimization methods can significantly improve the
classification accuracy of fine LCCOM. CV significantly outperformed GA and PSO, and GA slightly
overtook PSO. Finally, CV was more suitable for most of fine land covers of crop land, and PSO for road
and open pit mining lands. The three optimized SVM models also achieved significant improvements
based on the independent test set. In general, the fine land covers in an open pit area could be classified
with higher accuracy while using WV-3 and SVM algorithms based on parameter optimization. In the
future, combinatorial optimization should be investigated [57], and we will focus on the generalization
ability of the proposed strategy in different mining regions.
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