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Abstract: An accurate inversion of the fraction of absorbed photosynthetically active radiation
(FPAR) based on remote sensing data is particularly important for understanding global climate
change. At present, there are relatively few studies focusing on the inversion of FPAR using Chinese
autonomous satellites. This work intends to investigate the inversion of the FPAR obtained from
the FengYun-3C (FY-3C) data of domestic satellites by using the PROSAIL model and the look-up
table (LUT) algorithm for different vegetation types from various places in China. After analyzing
the applicability of existing models using FY-3C data and MOD09GA data, an inversion strategy for
FY-3C data is implemented. This strategy is applied to areas with various types of vegetation, such as
grasslands, croplands, shrubs, broadleaf forests, and needleleaf forests, and produces FPAR products,
which are cross-validated against the FPAR products from the Moderate Resolution Imaging Spectro
Radiometer (MODIS), Geoland Version 1 (GEOV1), and Global Land Surface Satellite (GLASS).
Accordingly, the results show that the FPAR retrieved from the FY-3C data has good spatial and
temporal consistency and correlation with the three FPAR products. However, this technique does
not favor all types of vegetation equally; the FY-FPAR is relatively more suitable for the inversion of
grasslands and croplands during the lush period than for others. Therefore, the inversion strategy
provides the potential to generate large-area and long-term sequence FPAR products from FY-3C data.

Keywords: PROSAIL model; look-up table (LUT); cross-validation; FengYun-3C (FY-3C) data; fraction
of absorbed photosynthetically active radiation (FPAR)

1. Introduction

Recently, remote sensing has been used to continuously monitor and manage the ecological
changes of plants in time and space [1,2]. Compared with basic measurement methods, remote sensing
has the characteristics of real-time, dynamic, and large-scale and can obtain a large area of soil and crop
information. Remote sensing is widely used in crop area, growth, yield estimation, and soil moisture
monitoring [3–7]. The Fraction of Absorbed Photosynthetically Active Radiation (FPAR) is the ratio of
Photosynthetically Active Radiation (PAR) absorbed by the green part of the vegetation canopy to the
total PAR at the top of the canopy [8,9]. The methods for estimating FPAR based on remote sensing
mainly include the empirical statistical model and physical model. The empirical statistical model is
widely used due to its simplicity, minimal parameters, and high computational efficiency. However,
this model is less feasible than a more complex physical model, which involves more parameters
inferred from the perspective of energy balance.
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There are several global FPAR data sets, such as the Moderate Resolution Imaging Spectro
Radiometer (MODIS), the Multi–angle Imaging Spectro Radiometer (MISR) FPAR, the Carbon Cycle
and Change in Land Observational Products from an Ensemble of Satellites (CYCLOPES) FPAR, the
Joint Research Center (JRC) FPAR, the Geoland Version1 (GEOV01) FPAR, the Global Land Surface
Satellite (GLASS) FPAR, and so on [9–11]. For example, Myneni et al. [12–14] formed a MODIS global
Leaf Area Index (LAI)/FPAR product (MOD15) based on a three-dimensional radiated transfer model
and the Look-Up Table (LUT) algorithm from MODIS data. Baret et al. [15] generated a GEOV01 global
FPAR product based on a neural network from spot/vegetation data. Gobron et al. [16] generated
JRC-FPAR based on the continuous vegetation canopy model and the 6S model combined the Medium
Resolution Imaging Spectrometer (MERIS) Global Vegetation Index (MGVI). Baret and Hagolle [17]
generated a CYCLOPES-FPAR product based on the PROSAIL model and an artificial neural network
algorithm. Roujean et al. [18] used numerical experiments (based on the SAIL model) to generate
the full spatial resolution of the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) onboard
Meteosat Second Generation (MSG) instrument every day and provide FPAR products synthesized in
10 days, covering four specific geographical areas (Europe, South America, and Africa, including North
Africa and South Africa). Zaichun Zhu et al. [19] formed the Global Inventory Modeling and Mapping
Stadies (GIMMS)’s global series of FPAR products based on the AVHRR sensor and the neural network
of existing LAI/FPAR products. Xiao et al. [20] produced GLASS/FPAR products based on a general
regression neural network (GRNN) algorithm from the MODIS/AVHRR surface reflectance data.

At present, there are relatively few studies focused on the inversion of FPAR using Chinese
autonomous satellites. Chen et al. [21] used China Environmental and Disaster Monitoring and
Forecasting Small Satellite Constellation (HJ-1) CCD data to invert the corn FPAR based on the
empirical statistical model of Normalized Difference Vegetation Index (NDVI)-FPAR in Yucheng
Shandong Province. Li et al. [22] conducted research based on HJ-1 CCD data to establish a statistical
model to invert FPAR, and the results of FPAR agree well with those of MODIS FPAR. However,
serialized FPAR products based on Chinese satellite data have not been developed for long time or
large space scales. In addition, the Chinese Fengyun satellite, with a medium-resolution imaging
spectrometer, has been providing data for five bands with a 250 m spatial resolution since 2008, thereby
facilitating the research on the quantitative remote sensing of vegetation. From the perspective of
energy balance, this work aims to investigate the inversion of the FPAR, which is obtained from the
FengYun-3C (FY-3C) medium resolution imaging spectrometer data of domestic satellites by using
the PROSAIL model and the LUT algorithm for different vegetation types from various study areas
(Figure 1).
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2. Materials and Methods

2.1. Satellite Data and Preprocessing

2.1.1. FY-3C Data

The FY-3C meteorological satellite belongs to the second generation of the Chinese polar orbiting
meteorological service satellite series. FY-3C provides global and local metrological, geophysical,
and multispectral information [23]. It also helps researchers to conduct global remote sensing for the
monitoring of land surface characteristics, such as vegetation, ecology, surface cover classification,
and snow cover [24]. These data can be downloaded from the FengYun Satellite Data Center
(http://satellite.nsmc.org.cn). In this study, five bands have been used (Table 1).

Table 1. The 250 m resolution channel specification of MERIS.

Channel Center
Wavelength (µm) Band Width (µm) Band Range (µm)

Radiation
Sensitivity (%)

1 0.47 0.05 0.45~0.50 0.30
2 0.55 0.05 0.53~0.58 0.30
3 0.65 0.05 0.63~0.68 0.30
4 0.86 0.05 0.84~0.89 0.30
5 11.25 2.5 10.00~12.50 0.40

During the pre-processing of the data, various corrections and processing adjustments were made.
These include geometric and radiometric correction, data exception processing, atmospheric correction,
and cloud detection processing. The spectral response function of the FY-3C MERIS sensor used in
data processing is shown in Figure 2.
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2.1.2. FPAR Products

In this paper, the FPAR products of MODIS, GEOV1, and GLASS were used for the cross-validation
of FPAR inversion, and their specific characteristics are shown in Table 2. The data preprocessing
of FPAR products includes extracting sub-data sets, projections and transformations, splicing and
cropping, and band operations (FPAR* scaling factors) to obtain a valid range of FPARs.

• MODIS FPAR products: MOD15A2H products are available on the Level-1 and Atmosphere
Archive & Distribution System Distributed Active Archive Center at Goddard Space Flight Center
(LAADS DAAC) (https://ladsweb.modaps.eosdis.nasa.gov/).

• GEOV1 FPAR products: These products result in two outputs with a spatial resolution of 300 m
and 1 km. The former was based on the PRoject for On-Board Autonomy–Vegetation (PROBA-V)
sensor, with a time coverage from 2014 to the present. The latter was based on the SPOT Vegetation
(SPOT-VGT) and PROBA-V sensor, with a time coverage from 1999 to the present. For this work, the

http://satellite.nsmc.org.cn
https://ladsweb.modaps.eosdis.nasa.gov/
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former FPAR product with a better spatial resolution (300 m) was selected. Data for GEOV1 FPAR
are available on the Copernicus Global Land Service (CGLS, https://land.copernicus.eu/global/).

• GLASS FPAR products: GLASS09A01 products were released by the Center for Global Change
Data Processing and Analysis at Beijing Normal University. Data for the GLASS FPAR products
were taken from the National Earth System Science Data Sharing Service Platform (http://www.
geodata.cn/thematicView/GLASS.html).

Table 2. The mean characters of fraction of absorbed photosynthetically active radiation
(FPAR) products.

Product Sensor Time Range Spatial
Resolution

Time
Resolution

Main Algorithm Valid
Range

Scale
Factor

MOD15A2H Terra 2002.7–Present 500 m 8 d 3D-RTmodel\LUT 0–100 0.01
GEOV1-FPAR PROBA-V 2014.1–Present 300 m 10 d Neural Networks 0–235 1/250
GLASS09A01 \ 2000–2014 1 km 8 d Neural Networks 0–250 0.004

2.1.3. Supplementary Data

Land cover data: The MCD12Q1 data, which are obtained from the MODIS data by combining
Terra and Aqua, have a spatial resolution of 500 m and provide five global land cover classification
systems. These systems are the International Geosphere-Biosphere Programme (IGBP) classification
system, the IGBP revision from the University of Maryland (UMDD) classification system, and other
services for estimating LAI/FPAR, net primary productivity (NPP) and plant function type (PFT),
respectively. The IGBP system has been selected and applied for data classification in this study.

Surface reflectance data (MOD09 data): This article used the MOD09GA product (based on Terra
satellite product data), which has a spatial resolution of 500 m and provides a global daily ground-based
basic reflectivity. These data are accessible from the LAADS DAAC (https://ladsweb.modaps.eosdis.
nasa.gov/).

The FPAR product of the Heihe research area [25]: This product was provided by the Cold and
Arid Regions Science Data Center at Lanzhou (http://westdc.westgis.ac.cn). The data are based on the
canopy Bidirectional Reflectance Distribution Function (BRDF) model and the LUT algorithm, with a
spatial resolution of 1 km and a temporal resolution of 8 days.

2.2. Methods

2.2.1. Simulating FPAR Based on the PROSAIL Model

The PROSAIL model, which consists of the SAIL canopy bidirectional reflection model and the
PROSPECT leaf optical property model, is a widely used model in vegetation parameter inversion [26].
The PROSPECT model is a radiation-transfer model based on a plate model modified by Allen (1969)
for simulating the directional hemispherical reflectance and transmissivity of various green monocots
and dicots and senescent leaves, expressing leaf optical properties of 400–2500 nm. On the other hand,
the SAIL model applies to the SUIT model to simulate the reflectivity of the leaf canopy’s direction
under certain observational conditions by inputting the LAI, the leaf angle distribution, and other
parameters [27,28].

As a secondary parameter of the PROSAIL model, FPAR needs to be converted into direct input
parameters (such as LAI) or calculated between radiation transmissions. From the perspective of
energy balance, the expression of FPAR is

FPAR =
(
PAR↓AC − PAR↑AC + PAR↑BC − PAR↓BC

)
/PAR↓AC. (1)

Equation (1) can also be converted to:

FPAR = 1− a− tPAR + tPARaS, (2)

https://land.copernicus.eu/global/
http://www.geodata.cn/thematicView/GLASS.html
http://www.geodata.cn/thematicView/GLASS.html
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
http://westdc.westgis.ac.cn
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where a is the visible albedo at the top of the canopy and aS is the soil albedo, tPAR = PAR↓BC/PAR↓AC,
which is the transmittance of PAR emitted from the bottom of the canopy. This algorithm ignores
tPARaS − a and results in the following FPAR expression (Equation (3)) [28]:

FPAR = 1− tPAR. (3)

The PAR incident on the surface canopy of the blade includes direct radiation and scattering, so
the transmittance corresponding to the PAR incident on the soil portion is further expressed as

tPAR = tdir
PAR −

(
tdir
PAR − tdi f

PAR

)
/ fskyl, (4)

where tdir
PAR and tdi f

PAR, respectively, refer to the transmittance of direct incident PAR and scattered
incident PAR and fskyl refers to the sky light scale factor. The transmittance of the canopy is related
to various parameters, including sensor parameters and plant parameters. If the absorptivity of the
leaves is a, the transmittance of the direct incident PAR can be approximated by the exponential model
(Equation (5)) from Campbell and Norman (1998). If the scattered radiation comes from all directions,
the transmittance of the scattered incident PAR can be obtained by integrating the transmittance of the
direct incident PAR in each incident direction (Equation (6)) [29].

tdir
PAR = e−

√
a×K(θ)×Ω×LAI (5)

tdi f
PAR = 2

∫ Π/2

0
tdir
PAR sinθ cosθdθ, (6)

where Ω is the clumping index (CI), angle θ is the solar zenith angle, and K(θ) is the extinction
coefficient of the canopy for PAR. The clumping index is determined by the spatial distribution pattern
of the leaves, and the global clumping index of different vegetation types is shown in Table 3 (for
shrubs, broadleaf forests, and needleleaf forests).

Table 3. Clumping index based on different vegetation types.

Vegetation Types Clumping Index Vegetation Types Clumping Index

Evergreen Broadleaf Forest 0.63 Shrub 0.71
Deciduous Broadleaf Forest 0.69 Herb 0.74
Evergreen Needleleaf Forest 0.62 Shrub 0.75
Deciduous Needleleaf Forest 0.68 Cropland 0.73

Mixed Forest 0.69 Others 0.87

Another algorithm for simulating FPAR is based on LAI (alternate algorithm). LAI is a direct
input parameter in the PROSAIL model, which can be directly obtained from the model inversion.
As the secondary parameter of the PROSAIL model, FPAR is retrieved by using the relationship of
LAI/FPAR (Equation (7)), which is also used in the Monsi and Sacki models [30]. This process ensures
that LAI and FPAR maintain good consistency to some extent:

FPAR = 1− e−K×LAI, (7)

where K is the extinction coefficient. Among the appropriate factors, the LAI and the solar zenith angle
have a certain influence on the extinction coefficient (K), which is mostly between 0.3 and 1.5 for the
plant community under investigation; the value of K is about 0.3–0.5 for grasslands and mostly above
0.7 for herbs and shrubs [30].
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2.2.2. The Inversion of FPAR Based on the Look-Up Table

The LUT algorithm is simple, easy to operate, and has good precision. This algorithm is widely
used in the radiation transfer model. In this paper, the canopy reflectance data obtained from the
simulation of the model is compared with the reflectance of the pre-processed satellite data, and a
look-up table for the reflectivity of different channels (blue, green, red, and near infrared) is established.
Finally, the residual optimization parameter matrix (Equation (8)) was computed to obtain the simulated
reflectance value with the smallest error, which was used to invert the model parameters:

E = min

√
< R jk

i − r jk
j >

2, (8)

where R is the surface reflectance from the FY-3C date and r is the canopy reflectance estimated from
the PROSAIL model.

3. The Inversion Strategy of FPAR

The Heihe area was selected in this experiment, and, for this area, the FY-3C MERSI data and
MODIS surface reflectance data (MOD09GA) were used to extract the required data. In order to obtain
two inverted FPAR products, namely FY-FPAR and MOD09-FPAR, from two different satellites sources,
the same PROSAIL model and the LUT algorithm were applied.

3.1. Applicability Analysis

A comparison of the FPAR inversion results and FPAR products in the Heihe research area
was conducted to determine the effects of the differences in remote sensing data sources, applied
models, and algorithms. This comparison also helps to prove the validity of the method and adjust the
inversion strategy according to the characteristics of the FY-3C data. The two inverted FPAR results,
MOD09-FPAR and FY-FPAR (which were obtained from MOD09GA and FY-3C MERSI, respectively,
by using the same PROSAIL model and LUT algorithm), and the MODIS FPAR product (referred to
as MOD15-FPAR) were compared against each other relative to the Heihe FPAR product (known as
HeiHe-FPAR), published by the Cold and Arid Region Science Data Center (Figure 3).

As shown in Figure 3a,b, based on the same PROSAIL model and LUT algorithm, the difference
in remote sensing data leads to inconsistent results. The FPAR from the FY-3C data was clearly high,
especially in low-value areas. As shown in Figure 3a,c, based on the same MOD09 data, different
algorithms lead to different results. Based on the correlation analysis, the FPAR results of Figure 3a–c
correlated with the Heihe-FPAR of Figure 3d, and the scatter plots are shown in Figure 4.
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On the other hand, the degree of agreement between MOD09-FPAR and Heihe-FPAR (R = 0.8922) is
significantly greater than that between FY-FPAR and Heihe-FPAR (R = 0.5746), as shown in Figure 4a,b.
In other words, the correlation between FY-FPAR and Heihe-FPAR is relatively low because the
difference in the band range between the FY-3C MERSI data and the MOD09GA data (which is not a
complete coincident), and the correlation of the reflectance of the different channels with blue, green,
red, and near infrared, is about 0.6 (as shown in Table 4).

Table 4. Band range and correlation statistics of FY and MODIS surface reflectance data.

FY Band Range MODIS Band Range Correlation (R)

Blue (b1) 0.420~0.505 Blue (b3) 0.459–0.479 0.6650
Green (b2) 0.506~0.609 Green (b4) 0.545–0.565 0.6767
Red (b3) 0.610~0.819 Red (b1) 0.620–0.670 0.7562

Near Infrared (b4) 0.820~0.920 Near Infrared (b2) 0.841–0.876 0.5946

Therefore, since the feasibility of the applied model and algorithm has already been proven, the
inversion of FPAR from FY-3C data needs to be combined with the characteristics of the Fengyun
satellite to optimize the inversion strategy.

3.2. The Strategy of Inversion

3.2.1. Spectral Convolution

The PROSAIL model was the first model used in the inversion of FPAR from FY-3C MERSI data.
The simulated reflectivity was then convoluted in order to meet the characteristics of the FY-3C data.
Thus, the final reflectance data was obtained by convolving the simulated spectral curve with the
MERSI sensor’s spectral response function (as shown in Figure 2) with the blue, green, red, and near
infrared bands using the reference formula [31]:

ρ∗i =

∫
i p∗(λ)R(λ)E0(λ)dλ∫

i R(λ)E0(λ)dλ
, (9)

where ρ∗i is the reflectivity on the specified band i, which is obtained by convolving the simulated
spectral curve through the sensor spectral response function; R; p∗ refers to the simulated reflectivity;
R(λ) is the spectral response function corresponding to the i-th channel; and E0(λ) refers to the outer
layer of the atmosphere, known as the Solar irradiance (solar constant). The solar constant is the
1366.1 Wm-2 [32].

3.2.2. Vegetation Division

The PROSAIL model involves many parameters that require sensitivity analysis to set a reasonable
range. The study finds that the reflectance spectrum of sparse vegetation is mainly affected by soil
reflectivity, while the reflectance spectrum of dense vegetation is mainly affected by the biochemical
composition of vegetation. Therefore, we classified the study region into two classes for the inversion
of FPAR based on the value of the normalized difference vegetation index (NDVI) (Table 5).

Table 5. Decision rules used for classifying the area. Normalized difference vegetation index (NDVI).

NDVI Vegetation Types

NDVI ≤ 0 No vegetation area
0 < NDVI ≤ 0.4 Sparse vegetation area
0.4 < NDVI ≤ 1 Dense vegetation area
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For the partitioning indicator NDVI of the vegetation partition, the effective value was [−1,1].
When NDVI ≤ 0, there was no vegetation in the area; then, we had a sparse and lush subdivision in the
interval of NDVI in [0,1]. The threshold set in this paper was 0.4, based on our prior knowledge of
the relevant references and experimental statistics we have conducted. Hence, the application of the
partition operation for different land types depended on the actual prevailing situation.

3.2.3. Parameterization of Different Vegetation Types

The parameters of different vegetation types are quite different: The closer to the parameter
range of the PROSAIL model setting to the true value, the higher the inversion precision will be.
Consequently, the different parameter range settings of different vegetation types will be different
according to the features of those vegetation types. In this paper, we considered five typical vegetation
types: grassland, cropland, shrub, broadleaf forest, and needleleaf forest. Relevant studies have shown
that the distribution of broadleaf forests and needleleaf forests is different from that of other types and
has higher LAI values (4.0 to 6.0), while for other vegetation types, the LAI value is usually less than
2.0. In this work, typical research areas for grassland, cropland, shrub, broadleaf forest, and needleleaf
forest were selected: the Hulunber, Yucheng, Shapotou, Dinghushan, and Changbai Mountains in
China (Figure 1).

Therefore, combined with the vegetation division and prior knowledge of previous studies, the
PROSAIL model parameter settings for different vegetation types are shown in Table 6. The left
and right boundaries and the step sizes of the parameters had two parts—sparse areas and dense
areas—and were divided by “/”. Among these parameters, tts, tto, and psi were obtained from the
angle information of FY-3C MERSI (the value of the angle data was the average value of each pixel in
the study area), and other parameters were set according to prior knowledge and constant adjustment
to obtain reasonable values or ranges.

Table 6. Inputs to the PROSAIL model for different vegetation types.

Parameter Grassland Cropland Shrub Broadleaf
Forest

Needleleaf
Forest

N 1–1.8 (0.2)/
1.5–2.5 (0.2)

1–2 (0.2)/
1.5–2.5 (0.2) 1–1.8 (0.2) 2.15 1–2 (0.2)/

1.5–2.5 (0.2)

Cab 10–50 (5)/
30–70 (5)

20–50 (5)/
40–70 (5) 10–30 (5) 30–60 (5)/

40–80 (5)
30–50 (5)/
40–70 (5)

Car 8 8 8 8 8
Cbrown 0 0 0 0 0

Cw 0.0176 0.075 0.005 0.015 0.015
Cm 0.014 0.0075 0.00161 0.009 0.01

LAI 0–2 (0.1)/
1.6–7 (0.4)

0.2–2 (0.1)/
1–7 (0.2) 0–1 (0.05)/

0–4 (0.1)
1–4 (0.05)/
2–7 (0.2)

1–4 (0.1)/
1.6–7 (0.2)

LIDF 18/38 50/60 20 58 45/50
Hspot 0 0.1 0 0 0
psoil 0–1 (0.2) 0.2–2 (0.2) 0–1 (0.2) 0–1 (0.2) 0–1 (0.2)

1 tts/tto/psi: Obtained from the angle data of FY-3C MERSI data. 2 References [33–35] for grassland; [21,36,37] for
cropland; [38] for shrub; [39–42] for broadleaf forest; [43,44] for needleleaf forest.

4. Results and Analysis

In this article, one image with less cloud and better quality in each month has been selected to
perform batch inversion of the long-term FPAR from the 2014 annual FY-3C MERSI data. Based on the
parameterization of the PROSAIL model (Table 6), the parameter ranges of grassland, cropland, shrub,
broadleaf forest, and needleleaf forest have been taken as the inputs into the PROSAIL model to simulate
FPAR, and a look-up table has been constructed to invert FPAR. The inversion results are referred to as
FYgrass-FPAR\FYcropland-FPAR\FYshrub-FPAR\FYbroadleaf-FPAR\FYneedleleaf-FPAR for different
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vegetation types, and the date of the image is roughly regarded as the FPAR value of the current month.
Finally, the MODIS/GEOV1/GLASS FPAR products were selected to analyze the accuracy of the FPAR
inversion results using cross-validation.

4.1. The Inversion Results of FPAR

The annual FY-FPARs for the five research areas of grassland, cropland, shrub, broadleaf forest,
and needleleaf forest were inverted successfully based on the inversion strategy from the FY-3C data.

The seasonal variation of FYgrass-FPAR in the HulunBer grassland study area was distinct
(Figure 5a). The FPAR values for the whole year showed a general trend of rising first and
then decreasing. In addition, there was a large degree of spatial loss in January–February and
November–December. This loss was due to the low temperatures in these months, and the inversion of
FPAR was affected by snow or other atmospheric factors.

The seasonal variation of FYcropland-FPAR in the Shangqiu cropland study area was clearer
(Figure 5b). The high value period of FPAR was in July and August, located in the west of the Shangqiu
Research Area, while the low value period of FPAR was in February, June, and October. This annual
distribution seemed to indicate a resurgence that met the growth curve of the two seasonal crops.

The seasonal variation of FYshrub-FPAR in the Shapotou shrub study area was noticeable
(Figure 5c), and the annual FPAR was generally low. In this area, the high value period of FPAR ran
from June to September, the vegetation coverage was high, and the FPAR values were lower at other
times, most of which were lower than 0.2 (and lower than 0.1 in January and February). The seasonal
variation of the shrub FPAR was consistent with the law of vegetation growth, but this shrub had the
characteristics of shrub vegetation itself, and there was a difference in the distribution of FPAR.

The seasonal variation of FYbroadleaf-FPAR in the Dinghushan broadleaf forest study area was
unclear (Figure 5d). Its overall FPAR was higher than 0.6 in 2014. In this area, the FPAR was higher from
September to December, with most FPAR values greater than 0.8. This was because the Dinghushan
broadleaf forest study area belonged to a deciduous broadleaf forest; moreover, defoliation occurred in
autumn and winter after September, thereby covering the exposed land and increasing the FPAR value.

The seasonal variation of FYneedleleaf-FPAR in the Changbai Mountain needleleaf forest study
area was relatively obvious (Figure 5e). The FPAR values for 2014 showed a trend of first increasing
and then declining. The FPARs of June–August were higher; most of them were greater than 0.7.
However, the FPAR of October–December and January–March were relatively low (similar to the
grassland), in line with the seasonal growth of vegetation.
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4.2. Cross-Validation

The cross-validation of this paper selected the FPAR products of MODIS, GEOV1, and GLASS
(referred to as MODIS-FPAR, GEOV1-FPAR, and GLASS-FPAR), as well as FY-FPAR, to verify the
accuracy of the same spatial range at the same time and to analyze the spatial consistency, time
consistency, and relevance.

4.2.1. Spatial Consistency

Spatial consistency was verified by comparing the spatial distribution of FY-FPAR with that of
MODIS-FPAR, GEOV1-FPAR, and GLASS-FPAR. A FY-FPAR was randomly selected to display the
spatial distribution comparison map (Figure 5). The results show that FY-FPAR maintained a good
spatial consistency with MODIS-FPAR, GEOV1-FPAR, and GLASS-FPAR.

The difference frequency was used to analyze the differences between FY-FPAR and MODIS-FPAR
and GEOV1-FPAR, and GLASS-FPAR. Using the FY-FPAR data as the statistical data source, we
calculated the difference between the FY-FPAR and the three FPAR products for the MODIS-FPAR,
GEOV1-FPAR, and GLASS-FPAR in the study area. The difference results were calculated to obtain the
frequency distribution. The difference frequency of the grassland, cropland, shrub, broadleaf forest,
and needleleaf forest is shown in Figure 6.
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Figure 6. The difference frequency distribution between FY-FPAR and FPAR products (2014). (a–c)
are the difference frequency between FY-FPAR and MODIS-FPAR; FY-FPAR and GEOV1-FPAR; and
FY-FPAR and GLASS-FPAR, respectively.

Figure 6 exhibits that the difference frequencies of the grassland, cropland, shrub, broadleaf
forest, and needleleaf forest between FY-FPAR, MODIS-FPAR, and GEOV1-FPAR. GLASS-FPAR was
concentrated around 0 (in the ±0.4 interval), which is a reasonable range. The peak of the difference
frequency was almost at 0, and the spatial consistency was relatively good.

4.2.2. Temporal Consistency

Compared to the time series data of the FY-FPAR, MODIS-FPAR, GEOV1-FPAR, and GLASS-FPAR
of various vegetation types in 2014 (Figure 7), FY-FPAR and the other three products all showed good
consistency over their time series.
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Figure 7. FPAR time series change chart of the study area (2014); (a–e) are the grassland, cropland,
shrub, broadleaf forest, and needleleaf forest study areas, respectively.

Overall, the annual FY-FPAR of the grassland, cropland, shrub, broadleaf forest, and needleleaf
forest maintained a high consistency with the corresponding MODIS-FPAR, GEOV1-FPAR, and
GLASS-FPAR in the time-series (GLASS-FPAR only included the data from June to November).
The FPAR time-series curves of the five vegetation types remained smooth and continuous. Among
these curves, the FY-FPARs of the grassland, shrub, and needleleaf forest, with the other three FPAR
products, showed a general increase in their trends at the beginning, which dropped off after reaching
its maximum around July and August. This change can be clearly explained in terms of the seasonal
growth regulation of vegetation, which was consistent with the characteristics of a higher FY-FPAR in
summer and a lower FY-FPAR in winter. The change of the broadleaf forest FY-FPAR alongside the
other three FPAR products in the time-series was not clear and remained relatively stable. The FY-FPAR
of the cropland was more special in the time-series, showing a trend of increasing first and then falling,
before going up and then falling, including two peaks in April and July and three troughs in February,
June, and October, which are associated with the seasonal growth regulation of double seasonal crops
and highlight the information on crop rotation. In addition, the FPAR time-series curve of the shrub
area was significantly different from that of other vegetation types, and its FY-FPAR was generally
higher than its GEOV1-FPAR and GLASS-FPAR, which were closer to the MODIS-FPAR. It was inferred
that the pixels of the reflectance data before inversion contained mixed pixels of shrubs and croplands
and shrubs and grasses, which gave the FY-FPAR a certain degree of variation.

4.2.3. Correlation Analysis

In this paper, the correlation coefficient (R) and root mean square error (RMSE) were used as the
correlation indicators between FY-FPAR and other FPAR products. The normal range of the correlation
coefficient (R) is from 0 to 1. The closer it was to 1, the greater the correlation between the two sets of
data. The RMSE is widely used as a way to measure the deviation between two sets of data. The closer
the RMSE is to 0, the better the relationships between the data. The correlation statistics of FY-FPAR
and MODIS-FPAR, GEOV1-FPAR, and GLASS-FPAR are exhibited in Table 7.

Overall, the annual FY-FPAR of the grassland, cropland, shrub, broadleaf forest, and needleleaf
forest areas had a high correlation with that of the other three FPAR products in 2014, and higher
correlations were concentrated in the period when vegetation was lusher. Especially for grassland
and cropland, the correlation coefficient (R) of the FY-FPAR and FPAR products in the lush period of
the grassland (June–October) was as follows: with MODIS-FPAR: R = 0.5549/RMSE = 0.1103; with
GEOV1-FPAR: R = 0.6102/RMSE = 0.1157; with GLASS-FPAR: R = 0.5827/RMSE = 0.1205. The correlation
coefficient (R) of the FY-FPAR and FPAR products in the lush period of cropland (January, February,
April, July, and November) was as follows: with MODIS-FPAR: R = 0.6012/RMSE = 0.1151; with
GEOV1-FPAR: R = 0.5913/RMSE = 0.131; with GLASS-FPAR: R = 0.495/RMSE = 0.1377. This was much
higher than the annual correlation coefficient (R) of the respective vegetation type. This occurred because
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the vegetation in the sparse period of vegetation had more exposed land, and the reflection spectrum
of the vegetation was mainly affected by the soil’s reflectivity, which affected the inversion accuracy.

Table 7. Correlation between FY-FPAR and MODIS/GEOV1/GLASS-FPAR products.

Data Type Correlation Coefficient (R)
(FY-FPAR and FPAR products)

Root Mean Square Error (RMSE)
(FY-FPAR and FPAR products)

MODIS GEOV1 GLASS MODIS GEOV1 GLASS

Mean of
the lush
period

Grassland
(June–October)

0.5549 0.6102 0.5827 0.1103 0.1157 0.1205

Cropland
(January,

February, April,
July, November)

0.6012 0.5913 0.495 1 0.1154 0.131 0.1377

Annual
average

Grassland 0.4419 0.5101 0.5498 0.0868 0.0816 0.1137
Cropland 0.5452 0.4883 0.3940 0.1026 0.1146 0.1085

Shrub 0.3444 0.3261 0.2665 0.0342 0.0633 0.0618
Broadleaf Forest 0.4544 0.2954 0.3073 0.1003 0.1034 0.0851

Needleleaf
Forest

0.4735 0.4142 0.401 0.0836 0.0863 0.0886

1 0.495 is the R value for the months of July and November.

The correlation coefficient (R) of FY-FPAR and MODIS-FPAR was as follows: cropland (lush period)
> cropland (Annual) > grassland (lush period) > needleleaf forest > broadleaf forest > grassland
(Annual) > shrub. The correlation coefficient (R) of FY-FPAR and GEOV1-FPAR was grassland
(lush period) > cropland (lush period) > grassland > needleleaf forest > shrub > broadleaf forest.
The correlation coefficient (R) of FY-FPAR and GLASS-FPAR was grassland > needleleaf forest >

cropland > broadleaf forest > shrub.
In summary, the inversion accuracy of FY-FPAR for cropland and grassland areas during the

lush vegetation period was relatively high; the inversion accuracy was good for broadleaf forest and
needleleaf forest, and the inversion accuracy for shrubs was relatively low, as shown in Table 7. Thus,
the annual FPAR of the shrubs was low, indicating that the inversion strategy based on FY-3C data was
more suitable for the inversion of the FPAR of high-value areas. In addition, due to the difference in
the surface reflectance data used by FY-FPAR and other FPAR products during inversion (as shown in
Table 4), the FY-FPAR was relatively suitable for cropland and grassland during the lush period and in
the broadleaf forest and needleleaf forest. The inversion of shrub FPAR also needed to consider the
factors affecting bare soil.

4.3. Error Analysis

The inversions of the FPARs from the FY-3C data and the MODIS, GEOV1, GLASS FPAR products
had good consistency in time and space, but there remained a certain range of errors. The reasons for
these errors are summarized as follows:

• The difference in surface reflectance. The inversion directly used the top-of-reflectance from
the FY-3C MERSI data. The MODIS-FPAR products were based on MOD09 surface reflectance
products. The GEOV1-FPAR products were based on spot/vegetation surface reflectance products.
In addition, the spectral ranges of their red, green, blue, and near red bands were not the same, and
their reflectivity was also inconsistent, suggesting that the difference in reflectance data affected
the inversion results of FPAR.

• Spatial misalignment. Each product had geometric accuracy and pixel location errors, where the
geographic location of the FY-3C MERSI data had a non-uniform geometric error of 2–10 pixels
(causing a mismatch), which could also contribute to the inconsistency among the data.
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• FY-3C image pre-processing was not perfect. De-clouding during data pre-processing was not
very good for thin cloud removal and cloud-snow differentiation. Cloud-snow reflectance data
brought into the model could cause large errors.

Limitations of the physical model. Each product had a different model and different algorithms.
Although there was strict physical theory support, these differences may have caused errors for the
same area.

5. Discussion

The initial objective of the study was to obtain an accurate FPAR using remote sensing data.
We considered two strategies for obtaining FPAR parameters using remote sensing. One strategy
was based on the empirical statistical model, which is simple in calculation and has few parameters,
but remains highly dependent on geographical location, topography, and vegetation type. The other
strategy was to use a physical model. This model is more feasible than the first model when considering
the energy balance in radiation transmission, although it has more variables; thus, this latter model was
adopted for this study. The inversion of FPAR using domestic satellites combined with physical models
is rare, and no long-term or large-scale serial FPAR products have been formed based on Chinese
satellite data. Unlike the HJ-1 data used by Chen, Ma, and Li et al., this study uses FY-3C MERSI
data and experiments on five different vegetation types in different terrains in China that are more
representative [21,22,45]. This research had certain reference values for the promotion and application
of Chinese satellites and the generation of Chinese satellite FPAR products. Based on the FY-3C MERSI
data, this study introduced the PROSAIL model and LUT algorithm and proposed an FPAR inversion
strategy. The cross-validation confirmed that the proposed method had high accuracy, but there were
still limitations in the study, which offer some directions for future research.

In this study, the classification of vegetation types during the early stages of FPAR inversion was
based on MODIS land cover products (MCD12Q1). The time resolution of MCD12Q1 was 1 year, and
its spatial resolution was 500 m. There were classification errors for the seasonal variation of FPARs for
different vegetation types; these errors produced mixed pixels in the inversion accuracy, which made
the inversion results lack objectivity. Later studies could extract time-series land cover classification
data from FY-3C MERSI data, so the classification data could also have seasonal variation characteristics.

Due to a ubiquitous ill-posed problem, the inversion of quantitative remote sensing always uses a
small number of parameters to infer complicated ground parameters, which are known to be much
less than unknown. This study used prior knowledge to alleviate this ill-posed problem as much as
possible, but our prior knowledge was limited and there were still many uncertainties in the inversion
of FPAR. For model parameter settings of different vegetation types, relying on prior knowledge
is feasible, but it is more precise to base such settings on actual measurements. In addition, it was
reasonable to use NDVI to divide vegetation into different densities, but the threshold setting needs to
be further explored according to different vegetation types.

In the cross-validation of FY-FPAR and MODIS-FPAR, GEOV1-FPAR, and GLASS-FPAR, the
spatial consistency, time consistency, and correlation analyses were applied to objectively evaluate the
inversion accuracy of FY-FPAR and also the error analysis (Section 4.3). However, using only the data
of 2014, which were limited in time and frequency to account for seasonal variations, may have caused
limitations in quantitative analysis. Subsequent studies can consider adding FY-3C MERSI data for
many years to compare the seasonal variation between FY-FPAR and other FPAR products. Thus, a
comparison of monthly FPARs, using the multi-year average of the month, will reduce the noise of the
time-series curve. In addition, for human and material conditions, it is possible to more accurately
evaluate the inversion accuracy by considering a comparison of the measured data of the FPAR.

Lastly, the inversion of FPAR in this paper was based on the inversion of FPAR for five types of
vegetation: grassland, cropland, shrub, broadleaf forest, and needleleaf forest. To form FPAR products,
different vegetation types needed to be spliced and fused. An overall analysis and evaluation was then
conducted to prepare time-series FPAR products from FY-3C data.
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6. Conclusions

In this paper, an inversion strategy of FPAR for FY-3C MERSI data was proposed and applied to
five types vegetation, including grassland, cropland, shrub, broadleaf forest, and needleleaf forest,
from various parts of the country. The FPAR product data of MODIS, GEOV1, and GLASS were
selected for cross-validation and correlation analyses.

The results were as follows:

• The FY-FPAR of the five different vegetation types in the grassland, cropland, shrub, broadleaf
forest, and needleleaf forest indicated a good correlation with MODIS-FPAR, GEOV1-FPAR,
and GLAS-FPA.

• In terms of spatial distribution, the difference frequency between FY-FPAR and the other three
FPAR products was concentrated around 0 (+0.4 interval), which is an acceptable dynamic range.
The time-series curve was close to the FPAR products and maintained good consistency.

• FY-FPAR was relatively more suitable for the inversion of grasslands and croplands during the
lush period than to broadleaf forests and needleleaf forests, whereas, the inversion of shrub FPAR
had to consider the influence of the underlying surface.

• The inversion strategy of FPAR based on the PROSAIL model provided a basis for generating
large-scale and long-range FPAR products for the FY-3C MERSI data.
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