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Abstract: Given the increasing anthropogenic pressures on lagoons, estuaries, and lakes and
considering the highly dynamic behavior of these systems, methods for the continuous and
spatially distributed retrieval of water quality are becoming vital for their correct monitoring and
management. Water temperature is certainly one of the most important drivers that influence
the overall state of coastal systems. Traditionally, lake, estuarine, and lagoon temperatures are
observed through point measurements carried out during field campaigns or through a network of
sensors. However, sporadic measuring campaigns or probe networks rarely attain a density sufficient
for process understanding, model development/validation, or integrated assessment. Here, we
develop and apply an integrated approach for water temperature monitoring in a shallow lagoon
which incorporates satellite and in-situ data into a mathematical model. Specifically, we use remote
sensing information to constrain large-scale patterns of water temperature and high-frequency in
situ observations to provide proper time constraints. A coupled hydrodynamic circulation-heat
transport model is then used to propagate the state of the system forward in time between subsequent
remote sensing observations. Exploiting the satellite data high spatial resolution and the in situ
measurements high temporal resolution, the model may act a physical interpolator filling the gap
intrinsically characterizing the two monitoring techniques.

Keywords: water temperature; coastal lagoons; satellite retrievals

1. Introduction

Lakes, estuaries, and lagoons around the world are degrading because of increasing human
pressure, particularly due to water and sediments pollution and climate-change-related effects [1–3].
Among the coastal tidal systems, lagoons are probably the most threatened [4,5]. Lagoons occur along
about 13 percent of the world’s shorelines [6] and play a fundamental role as morphological and
biodiversity hotspots, providing valuable ecosystem services as for example refuge and nesting for
a wide variety of wildlife, including mammals, marine birds, and migratory waterfowl. Lagoons
play a primary role also in carbon cycle processes since they are characterized by rates of primary
productivity comparable to that of rain forests, and consequently, they sequestrate a large amount
of organic carbon in their typical morphological and biological entities such as marshes, mangroves,
and seagrass meadows [7]. Beside their evident ecological importance, coastal lagoons are often the
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location of important urban centers, with relevant socioeconomic interests, leading to anthropogenic
interference and rapid morphological and ecological modifications with concomitant losses of
ecosystem goods and services. One emblematic and worldly famous example of the ecological,
socioeconomical, and historical importance of world’s lagoons is the Venice Lagoon (Italy), which is the
site selected for this research. Transformed over the long history of the Venetian Republic, the Venice
Lagoon is now an example of the coexistence of the natural and the built environments, with evident
tensions arising from sustainable and unsustainable uses of natural resources. As for other coastal
systems, the monitoring of the dynamic processes that characterize the Venice Lagoon is of key
importance for its correct management.

Water temperature is one of the main factors governing the biological processes occurring in
aquatic ecosystems, such as open oceans and coastal waters as well as lakes and rivers. Temperature
influences dissolved oxygen concentrations because affects its solubility, and as temperature increases,
dissolved oxygen decreases [8,9]. However, the link between temperature and oxygen is far more
complex since it is modulated by other abiotic factors as, for example, salinity, radiation, and wind
action, as well as biotic factors. Moreover, a dependence on climatic conditions must also been
accounted for. For warm climates, it has been recently shown that, in shallow water systems,
photosynthetic organisms are stimulated by higher water temperature, producing more oxygen
and supporting the metabolic demand of marine organisms [10]. In temperate climates, observations
support the coexistence of two dynamics for shallow waters: a seasonal dynamics, characterized by
high oxygen concentration during the colder part of the year and lower concentrations in the warmer,
and a second diel dynamics, with maximum oxygen concentrations during the most irradiated
hours of the day [11]. Temperature and oxygen dynamics are also affected by water circulation and
stratification, with possible hypoxic events in areas with low water turnover [12–14]. The synergic
action of water temperature, dissolved oxygen, and other environmental drivers as for example
salinity, nutrients availability, and turbidity directly affect phytoplankton communities [15] and
plant communities [16,17], with complex feedback mechanisms of vital importance for the state of
lagoons and shallow coastal systems in general. As an example, we just mention the importance
of a healthy population of seagrass or the proliferation of microalgae for the control of turbidity in
shallow lagoons [16,18,19]. Furthermore, enclosed or semi-enclosed water bodies, such as lakes and
lagoons, rapidly respond to variations in energy exchanges with the atmosphere, providing prompt
signals related to climate change [1,20,21].

Traditionally, coastal and lagoon water properties and their dynamics are observed through point
measurements carried out during field campaigns. Giving the increasing anthropogenic pressures on
lagoons and coastal areas, in the last decades, methods for the continuous and spatially distributed
monitoring of lagoon water quality (i.e., temperature or chlorophyll-a concentration) have become
more common thanks to networks of sensors and probes. For example, besides the traditional gauges
measuring water level (https://www.comune.venezia.it/it/content/centro-previsioni-e-segnalazioni-
maree), the Venice Lagoon is continuously monitored through a network of 10 multi-parametric
sensors since early 2000. Data collected from probes are often used to calibrate/validate hydrodynamic
numerical models that describe the space/temporal evolution of a transported quantity. However,
probe networks rarely attain a density sufficient for process understanding, model calibration and
testing, or integrated assessment. This is arguably the most stringent limitation of state-of-the-art
models of hydrodynamic flow and transport in shallow water environments, which are currently
initialized and evaluated by making use of sparse and insufficient point observations. In this study,
we show how the ideal observational tool, both for scientific and monitoring purposes, must integrate
satellite data, in situ water quality data, and mathematical-physical models to provide a coherent
space–time description of the dynamics of water quality and of the associated ecosystem properties.

Unfortunately, the majority of satellite sensors that collect thermal infrared data have too low
a spatial resolution for applications to coastal systems characterized by high geomorphological
diversity as lagoons and estuaries. For this application, we use Landsat ETM+ that provides thermal
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infrared data at 60 m spatial resolution. A set of two images collected seven days apart is selected
from the archive (using USGS Earth Explorer website), data are calibrated with in situ measurements
collected by a network of probes and used to produce the spatially distributed water temperatures.
A numerical model of lagoon hydrodynamics and heat transport is then used as a physics-based
interpolator to complete temperature data both in time and in space. Practically, the model is
constrained using, as initial conditions (ICs), the temperatures retrieved from the first one of the
two images and, as boundary conditions (BCs), other field measurements such as water levels at the
seaward boundary of the domain and meteorological forcings acting at the atmosphere-water interface
(e.g., wind speed and direction, solar radiation, air temperature, and humidity, etc.). The temperature
dynamics is then simulated for seven days, and the temperatures retrieved using the second satellite
image are then compared with the simulation results. Our results show how the combined use of point
observations and of satellite images allow us to effectively constrain a model of temperature dynamics
that, once calibrated, can overcome the intrinsic spatial and temporal limitations of those monitoring
techniques providing a whole-system scale description of the process.

2. Materials and Methods

2.1. Study Site

The Venice Lagoon is the largest tidal basin in the Mediterranean Sea, covering an area of about
550 km2 (Figure 1). The mean depth characterizing the water basin is about 1.2 m, with a typical
tidal range of 1.0 m and a main tidal period of 12 h. Beside its historical relevance, the Lagoon also
represents a unique and dynamic ecosystem, hosting very peculiar habitats for multitude of animals
and plant species.

Figure 1. Map of the Venice lagoon showing the position of the multi-parametric probes, managed by
Provveditorato per le Opere Pubbliche del Triveneto, that provided the water temperature time series (red
dots) and the position of the measuring stations managed by the Institute for Environmental Protection
and Research (ISPRA) that provided the meteorological data (green squares). In particular, M1 stands
for Piattaforma CNR, M2 for stands Lido Meteo, and M3 stands for Chioggia Diga Sud.

Climate change and related sea level rise, subsidence of the bottom, and the anthropic pressure
on the environments are threatening the Lagoon’s ecosystem, affecting its eco-bio-morphodynamic
evolution [22]. The main environmental issues are the progressive reduction of the main morphological
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structures of the lagoonal environment, i.e., salt marshes and tidal flats, and the lagoon water quality.
In the last 100 years, a reduction of about 40% of the salt marshes area and a 30% increase of the mean
water depth has been observed, reinforcing the erosional trends by increasing the mean fetch and
depth of the flows [23–25]. The modified hydrodynamics and the increased erosion and resuspension
of sediments significantly affect also the water quality, spreading the pollutants accumulated in the
Lagoon’s sediments. The main sources of pollution are the high nutrient load from water inflow,
associated with agricultural activities and residential waste, and the industrial waste produced by the
activities in the industrial estate of Marghera. The damages on the ecosystem caused by pollutants are
worsened by the high residence time of water, which in the inner parts of the Lagoon can be of some
tens of days [14].

To protect the city from increasingly stronger and more frequent flooding high tides [26,27],
the MoSE (MOdulo Sperimentale Elettromeccanico) system is currently under construction. It is made
up of a line of flap-gates built into each one of the three inlet canal beds that will emerge when needed
to isolate the lagoon from the Adriatic Sea. Despite the importance of this infrastructure and the large
amount of efforts put into its design, there is still a lack of knowledge about the impact of the MoSE
system on the lagoon water quality. A reliable system to forecast the water quality dynamics during
the closure of the gates has not been developed yet, especially considering a possible more frequent
closure of the gates as sea level continues to rise [28].

With this study, we propose a multidisciplinary approach that integrates satellite data, in situ
water quality data, and mathematical-physical models for studying and monitoring the Venice lagoon
and that can be applied to other lagoons and coastal areas in order to couple biological, ecological,
morphological and hydrodynamic processes and to understand the short- and long-term evolution of
these environments and how we can preserve them.

2.2. Numerical Model

The numerical model consists of four modules: a hydrodynamic module, a wind-wave module,
a Sediment Transport And Bed Evolution Module (STABEM) [29], and a temperature module.
The coupling of the first two modules provides the Wind Wave Tidal Model (WWTM) [30,31].

Using a semi-implicit staggered finite element method based on Galerkin’s approach,
the hydrodynamic module solves the two-dimensional shallow water equations, opportunely modified in
order to deal with flooding and drying processes typical of very shallow and irregular domains,
providing the evolution of water levels and depth-averaged velocities in space and in time.
For a detailed description of the equations and of the numerical scheme adopted, see Defina [32] and
D’Alpaos and Defina [33].

The wind wave module solves the wave action conservation equation following the parametrization
proposed by Holthuijsen et al. [34], that uses the zero-order moment of the wave action spectrum in the
frequency domain. The wind wave module exploits the water levels provided by the hydrodynamic
module to compute the spatial and temporal distribution of the wave period using empirical correlation
functions relating the mean peak wave period to local wind speed and water depth [31,35].

The WWTM reconstructs the spatial and temporal variability of the wind field over the
computational domain when wind data from different measuring stations are available, using a suitable
interpolation technique developed by Brocchini et al. [36].

The WWTM capability of reproducing the hydrodynamics and wind wave dynamics has been
widely tested by comparing model’s results to field data collected not only in the Venice lagoon [31]
but also in other lagoons such as lagoons located along the Virginia coast [37] and in the Cádiz Bay in
Spain [38].

STABEM describes sediment resuspention and transport by simultaneously solving the advection
diffusion equation and Exner’s equation, working on the same computational grid of WWTM.
Following Soulsby [39], the model computes the total bottom shear stress as a nonlinear combination of
wind-wave and tidal currents actions, leading to shear stresses values generally greater than the sum of
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the two contributions. The model adopts a stochastic approach similar to that proposed by Grass [40]
to describe the sediment resuspension process, assuming the erosion rate to depend on the probability
that the total bottom shear stress (τb) exceeds the critical shear stress (τc) for erosion, both treated as
random variables characterized by a log-normal distribution. This stochastic approach significantly
increases the capability of the model to describe the sediment resuspention process at near threshold
conditions (i.e., values of τb ≈ τc) for sediment entrainment, typical of periodical resuspention events
occurring in shallow tidal basins [29,41].

STABEM accounts for the presence of both cohesive and non-cohesive sediments describing the
bed composition as a mixture of two sizes sediment classes: non-cohesive sand and cohesive mud.
The local mud content, which varies in time and space, determines the transition between non-cohesive
and cohesive behavior of the mixture.

Temperature Module

The temperature module, developed to be coupled with WWTM and STABEM, is based on the
solution of the heat advection and diffusion equation:

∂TwY
∂t

+∇ · (qTw)−∇ · (YD · ∇Tw) =
HNET

ρwatcPwat
(1)

where Tw (◦C) is the water temperature, assumed uniform within the water column based on
the hypothesis of well-mixed conditions supported by field observation carried out in the Venice
lagoon [42], q = (qx, qy) (m3 s−1 m−1) is the flow rate per unit width, Y [m] is the equivalent water
depth Defina (i.e., the volume of water per unit area as defined by [32]), D is the two dimensional
diffusion tensor, HNET (W m−2) is the net vertical energy flux, ρwat (kg m−3)], and cPwat (J kg−1) are
the water density and the specific heat, respectively. Flow rates and water levels are provided by the
hydrodynamic module, whereas the wind-wave module can provide information on the free surface
roughness. Diffusivity is assumed equal to the eddy viscosity computed by the hydrodynamic model.

The suspended sediment concentration (SSC) is assumed to be in thermal equilibrium with water
and unable to affect the water thermal properties.

HNET consists of the sum of the following energy fluxes at the atmosphere–water interface
(AWI): (i) short-wave radiation Hsho, (ii) long-wave radiation Hlon, (iii) sensible heat flux Hsen, and
(iv) latent heat flux Hlat. The net energy flux should also account for the conduction heat exchange
at the soil–water interface (SWI), of which the calculation requires also the modeling of the bed
sediment temperature. However, recent studies proved that, given the quite turbid conditions typically
characterizing the Venice lagoon, the energy flux at the SWI is negligible when modeling the water
temperature dynamics at the daily timescale [42]. Therefore, this contribution to the net energy flux
affecting the water column temperature dynamics has been neglected in the present study.

The short-wave radiation flux Hsho corresponds to the solar irradiance not reflected by the water
surface and partially absorbed by the water column according to Beer’s law integrated over the water
column [43]:

Hsho = (1− a)Rsun [1− exp (−ηY)] (2)

where a is the water surface albedo, Rsun (W m−2) is the solar radiation measured at the surface,
and η (m−1) is the extinction coefficient representing the irradiance absorption per unit depth. The
coefficient η should be time variant as a function of the water column turbidity (i.e., η increases
with turbidity); however, for the sake of simplicity, η is assumed to be constant in the present study
as we selected for our analysis a period characterized by the absence of storms and related intense
resuspension events in order to avoid cloud coverage undermining the analysis of the available satellite
images. Furthermore, we recently demonstrated (i) that, on average, the solar radiation absorption
by the water column in the Venice lagoon is better described by values of η > 4 [42], meaning that
the water column absorbs most of the solar radiation and (ii) that most of the energy not absorbed
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by the water column under clear water conditions (described by small values of η) is returned to the
water column via conduction at the SWI and that, then, the assumption of high values of η to model
the water column temperature dynamics provides the best results when the conductive heat exchange
at the SWI is neglected [19].

The long-wave radiation flux Hlon is the difference between the infrared radiation emitted by the
atmosphere and the infrared radiation emitted by the water body. Following Bignami et al. [44], Hlon is
computed as follows:

Hlon = σT4
air(0.653 + 0.00535 · eVair)(1− 0.1762 · N2)− εσT4

w (3)

where σ (W m−2 K−4) is the Stefan–Boltzman constant, Tair (K) is the air temperature, eVair (mbar) is
the vapor pressure at Tair, N is the fraction of sky covered by clouds, and ε is the water emissivity.
The first term on the right-hand side is the long-wave radiation emitted by the atmosphere and fully
absorbed by the water column, while the second term is the long-wave radiation emitted by the water
body according to its temperature.

The sensible heat flux, Hsen, and the latent heat flux, Hlat, represent the energy transfer at the AWI
due to conduction/convection and to evaporation, respectively. The temperature module estimates
Hsen and Hlat using a “bulk” algorithm, a common approach in numerical models based upon the
Monin–Obukhov Similarity Theory:

Hsen = ρaircPairCsenVwind(Tw − Tair) (4)

Hlat = ρairLvClatVwind(qS − qair) (5)

where ρair (kg m−3) and cPair (J kg−1) are air density and specific heat respectively, Lv (J kg−1) is
the latent heat of vaporization, and qS and qair are the specific humidity at the sea surface and at the
measuring height respectively. The transfer coefficients are estimated as follows:

Csen = k2
(

ln
zV
z0
−ΨV

( zV
L

))−1 (
ln

zT
z0T
−ΨT

( zT
L

))−1
(6)

Clat = k2
(

ln
zV
z0
−ΨV

( zV
L

))−1 (
ln

zQ

z0Q
−ΨQ

( zQ

L

))−1
(7)

where k is the Von Kármán constant (assumed equal to 0.4); zV , zT , and zQ (m) are the measuring
heights while z0, z0T , and z0Q (m) are parameters called roughness lengths that characterize the neutral
transfer properties for wind, temperaturem and humidity, respectively; and L (m) is the Obukhov
length. ΨV , ΨT , and ΨV are empirical functions describing the stability dependence of the mean
profile [45–47]. Using the Monin–Obukhov Similarity Theory, the roughness lengths, the Obukhov
length, and the energy fluxes are computed iteratively [48,49]; in particular, in our code, we use the
algorithm COARE 3.0 [50] to estimate the sensible and latent heat fluxes. The algorithm has already
been tested to estimate the energy fluxes in a lagoon located along the Mediterranean french coast,
providing satisfactory results [51].

The temperature module computes the roughness length z0 as follows [48]:

z0 = α
u∗
g

+ 0.11
ν

u∗
(8)

where α is the Charnock parameter, u∗ is the friction velocity over the water surface, and ν is the
kinematic viscosity of water. According with Yelland and Taylor [52], α increases monotonically for
6 < Vwind < 26 m s−1; the algorithm COARE accounts for this behavior linearly increasing α from
0.011 at Vwind = 10 m s−1 to 0.018 at Vwind = 18 m s−1 [50].
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2.3. In Situ Measuring Stations

The meteorological data necessary to compute energy fluxes at the AWI were provided by
the mareographic network of the Venice lagoon and the northern Adriatic coast, managed by the
Institute for Environmental Protection and Research (Istituto Superiore per la Protezione e la Ricerca
Ambientale—ISPRA). The real time gauge network collects water level; however, several measuring
stations are equipped with additional sensors for measuring meteorological variables.

In detail, the data we use to constrain our temperature model at the AWI are air temperature Tair
(◦C), solar radiation Rsun (W m−2), and relative humidity Hrel (%) measured at the Lido Meteo station;
wind speed Vwind (m s−1) and direction Dwind (GN) measured at the Chioggia Diga Sud station; and
atmospheric pressure patm (mbar) measured at the Piattaforma CNR station. Meteorological variables
are assumed spatially uniform over the entire lagoon.

The fraction of covered sky, N, which is a proxy for cloudiness, is another parameter affecting
the energy fluxes at the AWI and in particular Hlon. Since cloudiness data are typically unavailable,
in our simulation, we considered a constant cloudiness, corresponding to a clear sky condition (N = 0),
in line with the abovementioned choice of analyzing a period mostly characterized by clear weather.

Sea water temperature (Tsea) and water levels measured at the Piattaforma CNR station are then
used as boundary conditions (BCs) for the model and imposed at the seaward boundary of the
computational domain.

Water temperature (Tw) time series provided by the network of 10 multi-parametric probes,
managed by Provveditorato per le Opere Pubbliche del Triveneto, are used to evaluate the capability of the
model to describe the local temperature dynamics.

The locations of all the in situ measuring stations providing the data described above are shown
in Figure 1. Figure 2 summarizes the time series used as BC for the numerical model.

Figure 2. Time series of (a) wind direction, Dwind, and speed, Vwind; (b) solar radiation measured at the
surface, Rsun; (c) water level, Y; (d) air temperature, Tair, and sea water temperature, Tsea; (e) relative
humidity, Hrel , used as boundary conditions. (f) Remote sensed water temperature spatial distribution
used as initial condition.
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2.4. Temperature Spatial Distribution from Satellite Images

Satellite data are selected based on four main requirements: (1) high spatial resolution (i.e., in the
order of 50/100 m) of the thermal infrared bands; (2) very good weather conditions in order to limit
the interference of clouds and haze; (3) availability of at least one couple of images collected less than
10 days apart; and (4) satellite data overlap with available time series of field data (i.e., tidal levels,
water temperature collected with probes, wind speed and direction, solar radiation, and relative
humidity). The first image provides the water temperature spatial distribution at the beginning of
the numerical simulation, while the subsequent images are used for comparison with numerical
results. The requirement of very good weather conditions is strictly necessary for the first image
in order to correctly initialize the system, while, in general, a partial lack of data due to clouds
cover can be accepted in images used for model validation. Nonetheless, in the present analysis, we
required very good weather conditions also for the second image in order to fully exploit information
provided by satellite data and to perform the most complete and robust comparison with the computed
spatial distribution of the water temperature at the end of the simulated period. We underline that
a clear-sky image used for validating the simulation results allows a comprehensive evaluation of
all the differences that may occur between the image and the simulation outcomes at the basin scale,
providing information on areas that are not monitored by the probes network.

Several images freely available in the USGS Earth Explorer database were considered (e.g.,
from different Landsat missions and ASTER). Two ETM+ cloud-free images were found to be suitable
for our analysis, one collected on 2 May 2008 and the second collected on 9 May 2008.

The ETM+ (Enhanced Thematic Mapper Plus), launched on 15 April 1999 on board of the
Landsat 7 payload, includes one single-band sampling part of the thermal infrared (TIR) portion
of the electromagnetic spectrum, spanning the 10.40–12.50 µm wavelength range, with a spatial
resolution at the ground of only 60 m. Four years after the launch, on 31 May 2003, the Scan Line
Corrector (SLC) in the ETM+ instrument failed. Therefore, since that date, the sensor was no longer
able to scan the ground correctly, resulting in some areas that are not detected during the acquisition.
It is estimated that, in one ETM+ scene, about 22% of the data is missing.

The interference of the atmosphere on satellite TIR data is mainly due to the absorption of the
radiation by water vapor, CO2, and O3, while the scattering effect is negligible because of the long TIR
wavelengths. Taking into account the atmospheric transmittance τλ for band λ, the spectral radiance
measured at sensor, Lat−sensor

λ , is calculated as follows [53,54]:

Lat−sensor
λ =

[
ελBλ (T) + (1− ελ) L↓λ

]
τλ + L↑λ (9)

where Bλ is the spectral radiance of a black-body, T is the true surface temperature, ελ is the emissivity
of the considered target, L↓λ is the down-welling atmospheric radiance and the L↑λ is the radiance
emitted toward the sensor (which is, in case of ETM+, nadir looking).

Inverting Equation (9) in order to obtain the spectral radiance and integrating over the thermal
bandpass, we obtain the following:

B (T) =
Lat−sensor − L↑

ετ
− 1− ε

ε
L↓ (10)

which, in order to calculate the temperature in Celsius, can be directly used in

T =
k2

ln
(

k1
B(T) + 1

) − 273.15 (11)

with, for ETM+, k1 = 666.09 (W m−2 sr−1 µm−1) and k2 = 1282.71 (K).
L↓, L↑, and τ have been calculated using the Atmospheric Correction Parameter Calculator

tool made available online by NASA (https://atmcorr.gsfc.nasa.gov/; Barsi et al. [55]) that uses the

https://atmcorr.gsfc.nasa.gov/
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radiative transfer code MODTRAN. The expected accuracy of the correction is within ±2–3 (K) [55].
As for the emissivity, we used the constant value ε = 0.98 for the entire water body of the lagoon.
Pixels that do not belong to the water body were masked according to the computational domain of
the hydrodynamic model. Moreover, we created a 120 m wide buffer along the coast line in order to
mask also the pixels that fall at the water/land edge (with mixed signal) that may present unrealistic
water temperature values. Finally, in order to fill the gaps in the ETM+ data due to the malfunctioning
of the SLC, we applied a Multilevel B-Spline Approximation [56].

All the symbols used in the present study are summarized in Table 1.

Table 1. List of symbols used for variables and constants: formulas are not explicitly discussed in
Section 2.

Symbol Description Value Unit

a water surface albedo 0.04
cPair air specific heat 1005 [J kg−1]

cPwat water specific heat 4186 [J kg−1]
Clat bulk transfer coefficient
Csen bulk transfer coefficient

e0
saturation vapor 6.11 [mbar]pressure at 0.0 ◦C

D two dimensional diffusion tensor
eV vapor pressure [mbar]
eVS saturation vapor pressure [mbar]
Hlat latent heat flux [W m−2]
Hlon net long wave heat flux [W m−2]
HNET net heat flux [W m−2]
Hsen sensible heat flux [W m−2]
Hsho short wave heat flux [W m−2]
k Prandtl constant 0.4
L Obukhov length [m]
Lv latent heat of evaporation [J kg−1]
N fraction of covered sky
q = (qx, qy) flow rate per unit width [m3 s−1 m−1]
qair air specific humidity

qS
saturated air specific
humidity at Tw

Rsun incident solar radiation [W m−2]
t time [s]

T0
temperature in K 273.15 [K]corresponding to 0 ◦C

Tair air temperature [◦C]
Tw water temperature [◦C]
Hrel relative humidity (%)
Vwind wind speed [m s−1]
Y equivalent water depth [m]
u∗ friction velocity [m s−1]
z0 roughness length for Vwind [m]
z0Q roughness length for Hrel [m]
z0T roughness length for Tair [m]
zQ measuring height for Hrel [m]
zT measuring height for Tair [m]
zV measuring height for Vwind [m]
α Charnock parameter
ε water surface emissivity 0.98
λ extinction coefficient [m−1]
ρair air density 1.225 [kg m−3]
ρwat water density 1027 [kg m−3]
σ Stefan Boltzman constant 5.5576 · 10−8 [W m−2 K−4]

Lat−sensor
λ measured spectral radiance [W sr−1 m−3]

ελ emissivity
Bλ spectral radiance of a black body [W sr−1 m−3]
τλ atmospheric transmittance
L↓λ down-welling atmospheric radiance [W sr−1 m−3]

L↑λ radiance emitted toward the sensor [W sr−1 m−3]

Lv = 2.501 · 106 − 2370 · (Tair)
eVS = e0 · exp (17.502 · T/(T + 240.97)) ·

(
1.0007 + 3.46 · 10−6 · patm

)
eV = eVS · Hrel/100

q = 0.622 · ev (patm − 0.378 · ev)
−1
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3. Results

3.1. Temperature Spatial Distribution from Remote Sensing and Probes

The comparison between the water temperature retrieved from satellite data and recorded using
the network of probes imply some considerations. As already specified, ETM+ collects TIR data at
60 m spatial resolution; hence, the first assumption we made is that the data collected by any single
probe are representative of an area of at least 60 m× 60 m and, hence, that we can directly compare it
to the temperature value of the pixel containing the station. We further consider that the temperature
recorded by each probe is representative of the entire water column, thus assuming well-mixed
conditions within the water column. Such an assumption is supported by water temperature profiles
that we recently collected in the Venice lagoon [42] and by other water temperature measurements
collected in previous studies [57]. Another important consideration is that satellite data represent the
“skin temperature”, i.e., the temperature of the water surface, rather than the bulk water temperature.
The difference between skin and bulk temperature has been estimated for ocean [58] and lake [59]
conditions and has been found to be less than ±1K.

Figure 3a,b show the differences between the temperatures measured at each station and those
retrieved from remote sensing and highlight how the difference among the two datasets is site
dependent, probably because of local environmental conditions. As for the skin/bulk temperature
difference, for example, it may vary due to different wind speeds at different locations. We must also
consider that a single set of parameters (L↓λ, L↑λ, and τlambda) computed using the radiative transfer
code was used for the entire lagoon, neglecting the spatial variability of the atmospheric conditions
that may affect the retrievals at different locations. Finally, the above assumptions about the difference
in scale between measurements performed by probes and retrievals coming from satellite data may
also depend on local conditions. As an example, we notice that the temperatures retrieved from ETM+
data for probe 4 are higher than those recorded by the probe for both the 2nd and the 9th of May 2008
and we speculate that this is due to the proximity of this probe to the city of Venice, with possible
presence of local urban water discharges. In general, we consider as outliers (i.e., values that are more
than three scaled median absolute deviations away from the median) the measurements coming from
probes 1, 4, 7, and 10 for May the 2nd (Figure 3b), and the measurements coming from probes 4 and 9
for May the 9th (Figure 3e). Figure 3b,e show that the standard deviations greatly improve once the
outliers are removed from the dataset.

Based on the mean standard deviation calculated for each image, we apply a correction
to the temperatures retrieved from satellite data. Figure 3c,f shows a comparison between the
temperatures measured by the probes and temperatures retrieved from satellite data after the correction.
The temperature difference has been sensibly reduced, greatly improving the correlation between the
temperature recorded by probes and those retrieved from satellite data.
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Figure 3. Correction of retrieved water temperature for May the 2nd (a–c) and for May the 9th
(d–f). (a,d) and (b,e) show the temperature differences between retrievals from satellite data and
measurements collected by the probes with all data and after the deletion of the outliers, respectively.
The blue line highlights the mean difference, whereas the red dotted lines highlight the standard
deviation. Original and corrected temperature data are summarized in (c,f).

3.2. Model Results

With the aim of developing and testing an integrated approach for water temperature monitoring,
we perform a one-week-long model simulation for temperature dynamics in the Venice Lagoon using
spatially distributed data from the two selected satellite images (see Section 2.4) and high-frequency
point observations (see Section 2.3).

Data from the first satellite image are used to initialize the water temperature spatial distribution
within the computational domain; accordingly, the simulation starts at the acquisition time of the first
collected image (2 May 2008, 10:30) and ends at the acquisition time of the second image (9 May 2008,
10:30). We compare model results with time series of water temperature collected by the monitoring
station along the simulated week and the spatial distribution of the water temperature, at the end of
the simulation, with the water temperature map retrieved processing the second satellite image.

The meteorological variables driving the energy fluxes dynamics are assumed spatially uniform
over the entire lagoon; hence, the spatial variability of the computed energy fluxes, due only to Tw and
Y, is limited. For this reason, in Figure 4, we show only the energy fluxes at the AWI computed by the
model at the VE-2 station as they can be considered representative of the entire lagoon. In particular,
Figure 4a shows the energy fluxes dynamics while Figure 4b shows the relative contribution of each
flux Hi to the total vertical energy exchanged: ∑i |Hi|. The energy flux and its contribution are positive
when directed toward the water column, i.e., when the flux is warming the water.
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Figure 4. (a) Energy fluxes, Hi, and net energy flux, HNET = ∑i Hi, at the AWI computed at the VE-2
Station and (b) relative contribution of each flux to the total energy exchanged at the AWI, ∑i |Hi|.
Positive values indicate that the flux is warming the water column.

The comparison between in situ observations and computed water temperature at Station VE-2
and VE-3 is shown in Figures 5 and 6, respectively. The two measuring stations are selected among the
ten available in situ ones since they are representative of two peculiar locations within the water basin:
the VE-2 station is located in the inner part of the Lagoon and quite close to the divide between two
subbasins (namely the Lido Treporti and the Lido San Nicolò subbasins, i.e., the two main branches
of the Lido inlet), where the advective transport is reasonably low, whereas the VE-3 Station is quite
close to the Malamocco inlet, directly exposed to ebb and flood tidal currents (the location of the
measuring stations are shown in Figure 1). Figures 5a and 6a show the observed and computed
time evolution of Tw and of the cumulative vertical energy exchange, E(t) =

∫ t
0 HNET dt (J m−2)

provided to the water column. In both cases, model results are in good agreement with the local
temperature data, highlighting the capability of the model to correctly describe the water temperature
dynamics. To highlight the main factors that drive temperature fluctuations within the lagoon,
Figures 5b and 6b show the difference between water temperature computed at the measuring station
and water temperature imposed as BC at the sea boundary of the numerical domain as well as the water
level at the measuring station (see the Discussion section for an in-depth assessment of the matter).
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Figure 5. Station VE-2: (a) comparison between observed (Tw Obs, blue circles) and modeled (Tw Mod,
blue line) water temperature and the computed cumulative energy flux, E =

∫ t
0 HNET dt (orange line);

(b) difference between modeled water temperature at the measuring station and the measured sea
water temperature at Piattaforma CNR Station, ∆T = Tw − Tsea (red line) and the modeled water level
(light blue line).

Figure 6. Station VE-3: (a) comparison between observed (Tw Obs, blue circles) and modeled (Tw Mod,
blue line) water temperature and the computed cumulative energy flux, E =

∫ t
0 HNET dt (orange line);

(b) difference between modeled water temperature at the measuring station and the measured sea
water temperature at Piattaforma CNR Station, ∆T = Tw − Tsea (red line) and the modeled water level
(light blue line).
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The effectiveness of the model in reproducing the water temperature dynamics is also confirmed
by the comparison of the spatially distributed temperature field at the end of a 7-day-long
simulation, as shown in Figure 7. The difference between modeled and observed water temperature,
∆Tw = TMod

w − TObs
w , computed on each element of the computational grid (see Figure 7c), is lower

than ±1 ◦C on about the 65% of the entire wet surface of the lagoon, and only on the 17% of the wet
surface, ∆Tw exceeds values of ±2 ◦C. The mean value of |∆Tw|, weighted on the area of the elements,
is 1.27± 2.15 ◦C.

Figure 7. Comparison between observed and modeled water temperature spatial distribution at the
end of the 7-day-long simulation (9 May 2008, 10:30). (a) shows the observed water temperature
retrieved from the satellite image’s analysis; (b) shows the modeled water temperature; (c) shows the
difference, computed on each element of the numerical grid, between modeled and observed water
temperature, ∆Tw = TMod

w − TObs
w . Positive values of ∆Tw indicate a model’s overestimation of the

water temperature, while negative values show an underestimation.
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4. Discussion

As described in the above sections, thermal infrared data detected by Landsat ETM+ satellite are
shown to be able to provide meaningful and detailed representations of the spatial distribution of skin
water temperature for complex coastal environments as the lagoon of Venice. The 60 m resolution
of such temperature maps allows capturing significant spatial patterns of water temperature that
characterize different parts of the lagoon (e.g., the area in front of the industrial estate of Marghera
affected by the thermal plums due to production activities as well as the areas in front of the inlets
affected by tidal currents). The skin temperature obtained from satellite data is a reliable proxy for
bulk temperature, particularly for shallow and well-mixed water bodies; we have shown that simple
corrections based on available in situ observations can greatly increase the agreement between skin
and bulk temperature.

Considering that water temperature fields from remotely sensed data are rather infrequent (weekly
or less frequent), a two-dimensional numerical model solving for hydro- and water temperature
dynamics has been developed and used to describe the continuous-time spatial distribution of the
water temperature within the entire Venice lagoon.

Model results have been, at first, compared with time series of water temperature recorded at
10 in situ measuring stations, displaying a quite good agreement with data. The numerical model
correctly describes the temperature dynamics both in the inner areas of the water basin (Figure 5),
which are mildly affected by heat transport associated with tidal currents, and close to the sea inlets
(Figure 6), where advective transport plays a crucial role. It clearly emerges that, in the inner lagoon
areas, the water temperature Tw and the cumulative energy flux E at the AWI show the same diurnal
modulation; here, advective heat fluxes induced by 6-h period tidal currents are negligible and the
water temperature is mostly driven by the net energy flux at the AWI that follows the day and night
cycle. Close to the inlets, while the cumulative energy flux E still displays a diurnal modulation,
the water temperature Tw is characterized by a semi-diurnal modulation clearly related with the tidal
oscillation. Regardless of E, Tw decreases during the flood phase because of the colder water entering
the lagoon from the sea (through the Malamocco inlet in the case of the VE-3 station), while it increases
during the ebb phase because of warmer waters coming from the inner part of the lagoon.

Both the observed Tw time series and the meteorological data shown in Figure 2 suggest that
a moderately intense storm event with wind speed up to 13 m/s occurred on May 4th and, especially,
on May 5th. A drop in both water and air temperature was observed, as well as lower values of solar
radiation compared to the rest of the investigated period. The model accounts for the storm event
correctly by estimating a much lower net energy flux, HNET , on May 4th and 5th as a consequence of
lower values of Hsho and higher heat loss promoted by the relatively high wind speed, which directly
affects both Hsen and Hlat (Figure 4). We highlight that the variability of temperature fields driven by
the storm event that occurred in the middle of the simulated period would have not been detected if
exclusively satellite data were used, thus highlighting the usefulness of the proposed model-based
approach for the continuous time temperature estimation.

Focusing on the energy fluxes at the AWI (Figure 4), we observe that Hsho provides the most
important contribution to the energy balance of the water column during the daytime. Conversely,
the solar radiation is null overnight, when the remaining energy fluxes, particularly Hlat and Hlon,
provide a relevant contribution in cooling the water column. Considering that, in late spring, Tair is
usually higher than Tw, the contribution of Hsen to the total energy exchange is negative; reasonably,
an opposite behavior is expected in winter when, on average, Tair is lower than Tw.

The successful comparison between the water temperature map obtained from the 9 May 2008
satellite image and that computed at the end of the model simulation (see Figure 7) further confirms
the reliability of the model. The absolute difference between modeled and observed water temperature,
∆Tw, is lower than 1 ◦C in most of the water basin, especially on the tidal flats dominating the present
landscape of the Venice lagoon. The model overestimates the satellite-derived water temperature
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by more than 1 ◦C in limited areas, which represent less than 9% of the wet surface of the lagoon.
Overestimation of more than 2 ◦C affects only a negligible portion (about 0.7%) of the basin.

The observed overestimation of the water temperature can be ascribed to model limitations in
computing the net vertical energy flux HNET and/or in describing the transport/diffusion process
properly. Specifically, the assumption that the heat exchange at the SWI provides a negligible
contribution to the total energy balance can be less realistic in the shallower areas. Accounting
for this heat flux component in computing HNET could certainly improve the model accuracy but at the
cost of an additional, not negligible, computational cost. Such an observation was further supported by
an additional run we performed considering a much hotter period starting from a reliable description
of the initial state of the system provided by a satellite image captured the 22 August 2011 (results
not shown). The comparison of model results with point data are in line with those discussed herein
(May 2008) over most of the lagoon with a slightly increased tendency in overestimating the water
temperature in the innermost areas that seems to suggest a more relevant role potentially exerted by
the heat fluxes at the SWI during the summer period.

Moreover, the simulation performed and discussed herein assumes a uniform spatial distribution
of the meteorological forcings, accounting for their possible spatial variability that could further
improve the estimation of the energy fluxes and, in turn, the description of the water temperature
dynamics. To this point, it has to be noted that the numerical model already accounts for the spatial
variability of the wind field adopting the interpolation technique of the available wind data proposed
by Brocchini et al. [36], a method that could be applied also to the other meteorological data. However,
only few measuring stations collecting meteorological data are available within the Venice lagoon and
their distribution is not such to satisfactorily reconstruct their spatial variability.

The model seems to underestimate the water temperature in proximity of the border of the
computational domain and on elements surrounded by dry areas, with negative values of ∆Tw lower
than −1 ◦C and −2 ◦C observed in about the 25% and the 16% of the wet surface of the lagoon,
respectively. These differences, however, are more likely to be ascribed to misleading information
inherent in the remotely sensed data than to model limitations. In fact, as already discussed in
Section 2.4 and despite the buffer region used to mask satellite temperature maps along the coastline,
the temperature retrieved from satellite images in these border areas (or in areas that are almost dry
at the acquisition time) may be still influenced by the soil temperature of the neighboring surfaces.
Moreover, the water temperature of areas close to human settlements (e.g., Venice, Murano, and
Marghera) could be affected by the discharge of warm water as the byproduct of anthropic activities
and not accounted for in the simulation.

In this regard, it is interesting to observe that the remotely sensed water temperature in front
of the industrial estate of Marghera is higher than the modeled water temperature. Since the
performed simulation does not account for any local heat source caused by the industrial activities,
these temperature differences can be attributed to the use of the water resource for cooling purposes
by the production facilities, as noticed in other studies [60]. This observation highlights how
a combined use of modeling results and spatial distributed temperature data can provide useful
insights about the impact of the thermal pollution due to industrial activities and can evaluate the
effects due to possible anthropic uses of the water resource (e.g., hydrothermic systems to be used for
cooling/warming purposes of buildings in Venice in order to overcome the architectural impact of the
common conditioners).

Finally, it is important to point out that a higher accuracy in the estimation of the water
temperature from satellite may further improve the results obtained with our method. Improved
accuracy may be obtained using data from sensors that have at least two bands in the thermal portion
of the spectrum, as for example AVHRR and MODIS. In these cases, split-window methods may
be applied (i.e., [61]). Sensors that provide three or more bands in the TIR spectral range are also
available (as for example ASTER), possibly providing the retrieval of surface temperature with even
higher accuracies. The two main limitations in the use of these sensors for calibrating/validating
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hydrodynamic circulation-heat transport models of small and medium size tidal basins are (1) their
limited spatial resolution (as for AVHRR and MODIS) and (2) the unavailability of images collected
over the same target at short time intervals (as for ASTER). Landsat satellites have the advantage of
both high spatial resolution and acquisition frequency; however, they provide just one thermal band.
Therefore, an estimation of the parameters characterizing the atmosphere during the acquisition is
needed in order to correct the signal of one single thermal band for atmospheric interference. In this
study, we applied the Atmospheric Correction Parameter Calculator tool [55], which is applied to
the entire image without taking into account the variability of water vapor and other atmospheric
parameters that influence the retrieval of the correct sea surface temperature. We believe that such
a variability is responsible for the variable difference between the temperature recorded at the probes
and that calculated from satellite data. A pixel-by-pixel atmospheric correction method may reduce
such effect [62]; however, high spatial resolution ancillary data are needed in order to correctly
calculate (or simulate) the spatial variability of the atmospheric parameters. Such ancillary data may
be retrieved from other sources, as suggested in the method proposed by Galve et al. [62] that uses the
National Centers of Environmental Prediction (NCEP) profiles. Such an approach may improve the
results obtained with our study; however, we speculate that, in our case, the efficacy of the method
is limited by the very low spatial resolution of the NCEP profiles that are provided on a 1◦ × 1◦

longitude/latitude grid every 6 h. Based on all these considerations, we believe that the post-correction
of the temperatures retrieved from satellite using the measurements performed by the ten probes
spread across the Venice lagoon is the most accurate method for our case study. The future availability
of sensors with two or more bands in the TIR domain and high spatial and temporal resolution may
improve the situation.

5. Conclusions

The present study shows that the use of temperature data provided by satellite observations and
in situ point measurements of water and meteorological parameters, combined with a spatially explicit
and physics-based numerical model for hydro- and temperature dynamics, represents a powerful tool
to investigate and describe the water temperature dynamics in shallow coastal environments.

Remotely sensed data and point observations are crucial for monitoring purposes since they
provide different, complementary information: infrequent in time but spatially distributed the first
ones, and continuous in time but sparse in space the second ones. In the integrated approach developed
and tested with reference to the Venice Lagoon, data from these different sources have been used
jointly to constrain a physics-based numerical model. The water temperatures computed by the model
compare satisfactorily with both in situ measured time series and spatially distributed satellite data.
The mean difference between modeled and computed water temperature at the end of a 7-day-long
simulation is 1.27± 2.15 ◦C, with differences lower than 1 ◦ C on about the 65% of the lagoon. Proven
its reliability, the model can overcome the intrinsic limitations of different monitoring techniques by
acting as a physical interpolator able to complete temperature information both in time and in space.

This tool can find applications in investigating scenarios related to anthropic possible uses of
the water resource for warming/cooling purposes. Moreover, knowing the crucial role exerted by
water temperature in many physical and biological processes, our results point out that the combined
use of in situ point measures, remote sensing, and numerical modeling can be highly effective in
understanding and estimating the eco-bio-morphodynamics evolution of shallow water coastal systems
and in planning suitable managements procedures.
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