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Abstract: An important and effective method for the preliminary mitigation and relief of an
earthquake is the rapid estimation of building damage via high spatial resolution remote sensing
technology. Traditional object detection methods only use artificially designed shallow features on
post-earthquake remote sensing images, which are uncertain and complex background environment
and time-consuming feature selection. The satisfactory results from them are often difficult. Therefore,
this study aims to apply the object detection method You Only Look Once (YOLOv3) based on the
convolutional neural network (CNN) to locate collapsed buildings from post-earthquake remote
sensing images. Moreover, YOLOv3 was improved to obtain more effective detection results.
First, we replaced the Darknet53 CNN in YOLOv3 with the lightweight CNN ShuffleNet v2. Second,
the prediction box center point, XY loss, and prediction box width and height, WH loss, in the
loss function was replaced with the generalized intersection over union (GIoU) loss. Experiments
performed using the improved YOLOv3 model, with high spatial resolution aerial remote sensing
images at resolutions of 0.5 m after the Yushu and Wenchuan earthquakes, show a significant
reduction in the number of parameters, detection speed of up to 29.23 f/s, and target precision
of 90.89%. Compared with the general YOLOv3, the detection speed improved by 5.21 f/s and
its precision improved by 5.24%. Moreover, the improved model had stronger noise immunity
capabilities, which indicates a significant improvement in the model’s generalization. Therefore,
this improved YOLOv3 model is effective for the detection of collapsed buildings in post-earthquake
high-resolution remote sensing images.

Keywords: earthquake; damage information for collapsed buildings; remote sensing image; YOLOv3;
object detection; deep learning

1. Introduction

Acquiring information on building damage immediately after an earthquake is key to rescue
and reconstruction efforts [1]. Although the accuracy and degree of confidence of the acquitted
data via traditional manual field survey methods are relatively high, there are certain shortcomings,
such as large workload, low efficiency, the high cost associated with acquisition, and data unfit for
presentations, that render these methods unable to conform to the requirements for rapid acquisition
of the information of interest [2]. With progress in sensor and space technologies, remote sensing
techniques can acquire detailed spatial and temporal information of the target area, which is widely
used to monitor natural disasters [3,4]. Previous studies have proven that remote sensing data can
extract relatively accurate information on building damage [5].
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For the extraction of information on building damage from remote sensing images, previous studies
have investigated numerous methods, which can currently be divided into multi- and single-temporal
evaluation methods. The multi-temporal evaluation method is mainly based on detecting changes to
evaluate the information on building damage. Gong et al. [6] used high-resolution remote sensing
images from before and after the 2010 Yushu earthquake as examples for the extraction of information
on building damage based on the object-oriented change detection, pixel-based change detection,
and principal component analysis-based change detection methods. The results showed that the
object-oriented change detection method had the highest accuracy for extracting information on
building damage. However, due to effects from data acquisition, such as revisit cycles, shooting
angle, time, and other factors, the application of the multi-temporal evaluation method is difficult in
practice [7]. For the single-temporal evaluation method, data acquired via remote sensing after an
earthquake has less constraints, such that it has become an effective technical means that can be directly
used to extract and evaluate information on building damage [8]. Janalipour et al. [9] used high spatial
resolution remote sensing images as background to manually select and extract features based on
the fuzzy genetic algorithm, establishing a semi-automatic detection system for building damage.
This system has increased robustness and precision compared with machine learning methods, such as
the random forest (RF) and support vector machine (SVM). However, the single-temporal evaluation
method is also characterized by certain problems, such as difficulties associated with feature space
selection. Moreover, due to certain factors, such as background noise and illumination changes in
remote sensing images, classifier performance is seriously affected [10], resulting in problems with
obtaining accurate extractions of information on building damage via traditional detection methods.

In recent years, object detection methods based on deep learning have made significant
breakthroughs for natural images, which can be divided into region- and regression-based methods.
Since the breakthrough of the region-based convolutional neural network (R-CNN) [11] for natural
images, the combination of a region-based extractor and detection network has become a classic
paradigm. In region-based object detection methods, the proposed object box can be generated and
then transmitted to the deep convolutional neural network (CNN) for classification and location
regression in the second stage. Although the accuracy of methods, such as Faster R-CNN [12] and
Mask R-CNN [13] are relatively high, they are unable to conform to the requirements of real-time
applications. Apart from region-based object detection methods, we have regression-based methods,
including You Only Look Once (YOLO) [14], Single Shot Multi-Box Detector (SSD) [15], YOLOv2 [16],
and YOLOv3 [17], among others. These methods use a single CNN to simultaneously predict the
boundary box and classify, and transform the object detection problem into a regression problem.
Therefore, the regression-based object detection method can significantly shorten the time required for
detection, which is feasible in practical applications. As the capability of generalization of features
extracted by the CNN is much higher than traditional artificial features, the CNN can be rapidly
applied to object detection of remote sensing images. Han et al. [18] proposed an improved Faster
R-CNN algorithm, which performed an integration process by sharing the characteristics of the region
proposal and object detection phases. This improved the Faster R-CNN method, which has a higher
accuracy than other CNN-based models for datasets with a spatial resolution of 10 meters (NWPU
(Northwestern Polytechnical University) VHR (very-high-resolution)-10 [19]) labeled by Northwestern
Polytechnical University. Zheng et al. [20] improved the structure of YOLOv3 and tested aircraft high-
and low-quality (due to overexposure and cloud occlusion) remote sensing images. The results showed
that the improved framework yielded 99.72% and 98.34% for the accuracy and recall rate respectively,
which was better than the original YOLOv3 model. Especially for the low-quality remote sensing
images, there was a significant improvement in the accuracy. However, the current object detection
method based on the CNN has rarely been applied to the extraction of information on damaged
buildings affected by earthquakes, and mainly stays at the classification of damaged buildings with
CNN. Duarte et al. [21] combined satellite images with manned and unmanned aerial vehicle (UAV)
aerial images to construct samples of damaged buildings, which improved the quality and quantity
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of the samples, and adopted the CNN framework based on the residual connection and expansion
convolution to improve the classification effect. Ji et al. [22] used the CNN and building vector
boundary to classify buildings from post-earthquake satellite images and identify collapsed buildings.
They proposed solutions to the sample imbalance problem between collapsed and non-collapsed
buildings. However, this method requires a building vector map, which has certain restrictions
for applications.

These studies have shown that the YOLO series of algorithms have a better generalization
capability and faster detection speed than the R-CNN series of algorithms. Therefore, to achieve higher
efficiency and precision when detecting single-collapsed buildings in post-earthquake remote sensing
images, we use the YOLOv3, a CNN-based object detection method. The main aim of this study is to
use the YOLOv3 model to efficiently and accurately detect collapsed buildings in post-earthquake
remote sensing images. We not only investigate ways to use the model to detect collapsed buildings,
but also improve a part of its network structure and loss function to improve the efficiency and accuracy
of detection.

The rest of this paper is organized as follows. Section 2 describes the study area and details of the
model improvements. Section 3 describes the results evaluation indicators and experimental settings.
Section 4 presents the analysis of the experimental results. Section 5 discusses the improved model.
Finally, Section 6 concludes this paper.

2. Materials and Methods

2.1. Dataset

2.1.1. Remote Sensing Data Acquisition

Materials to test the effectiveness of the proposed method, we selected aerial remote sensing images
acquired on the second day after the 7.1 magnitude earthquake that occurred in the Yushu Tibetan
Autonomous Prefecture of the Qinghai Province on 14 April 2010 and aerial remote sensing images
from Beichuan County after the Wenchuan earthquake that occurred on 12 May 2008. These images
included a large number of collapsed and non-collapsed buildings with a data resolution of 0.5 m.
The location of the study area is shown in Figure 1.
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2.1.2. Dataset Production

The acquired remote sensing images cannot be directly input into the deep learning model. They
need to be cut to obtain image blocks of the size specified in the YOLOv3 model. Therefore, image
blocks each of 416 pixels × 416 pixels were first cut out of the large remote sensing images, each
containing a certain number of collapsed and non-collapsed buildings. Subsequently, the LabelImg
software was used to label collapsed buildings in the image block in PASCAL VOC [23] format, as
shown in Figure 2.
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Figure 2. Labeled samples of collapsed buildings. The green rectangles in (a,b) are collapsed buildings.

2.1.3. Dataset Enhancement

Data enhancement for deep learning datasets is usually performed in a way similar to natural
images, and involves rotation, flipping, increasing noise, and color transformation, among other [24].
For image rotation and flipping, the main operations are the rotations by 90, 180, and 270 degrees,
horizontal, and up-and-down flipping. The rotated and flipped images can improve the detection
performance of the model. For image color transformation, because the color of the image obtained
under different sensors and environments will be biased, color transformation is needed to eliminate
the influence of color deviation on model performance. However, there are some differences between
the enhancement methods for remote sensing images and those for natural images. For example, most
objects in natural images typically only rotate at small angles, whereas, in this study, the buildings can
be rotated at any angle. In addition, remote sensing images are often displayed after stretching, such
that the data after stretching and enhancements can yield a more robust model.

After screening, the final selected enhancement methods were image rotation, image flip, color
transformation, and image stretching, as shown in Figure 3. Through enhancement, a total of 2180
sample images were obtained, which were then divided into three groups, namely the training set
for training the model, the verification set for verifying the model during training, and the test set
for evaluating the model. Many collapsed buildings are included in the sample images, the specific
number of which is shown in Table 1.

Table 1. The dataset division.

Number of Sample Images Number of Collapsed Buildings

Training set 1456 8751
Validation set 364 2516

Testing set 360 2234
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Figure 3. Image enhancement methods: (a) original image, (b) 90-degree rotation, (c) 180-degree
rotation, (d) 270-degree rotation, (e) horizontal flip, (f) up-and-down flip, (g) color transformation, and
(h) image stretching.

2.2. Method Flow

The main aim of this study was to use the YOLOv3 model to efficiently and accurately detect
collapsed buildings in post-earthquake remote sensing images. However, to detect only collapsed
buildings, the parameters of the feature extraction layer in the YOLOv3 network are too complex and
redundant, which may lead to over-fitting, i.e., the training accuracy is high, while the test accuracy is
low. Therefore, the network structure of YOLOv3 model was improved to reduce the complexity of
network structure. In addition, based on the improvement of YOLOv3 network structure, the loss
function was also optimized. Finally, the method flow in this paper is shown in Figure 4. The red
dotted line in the figure is the improvement and optimization of the network structure and loss function
of the YOLOv3 model.
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2.3. Improved YOLOv3 Network Structure

The YOLO series algorithms are originally target recognition methods based on regression
proposed by Redmon et al. [14]. By 2018, YOLO had been developed into its third generation, i.e.,
YOLOv3, which has a rapid detection speed and high detection accuracy for small and dense targets.
YOLOv3 uses the multi-scale prediction method to improve the defects of YOLOv2 for small target
recognition, significantly improving the recognition accuracy of small targets while maintaining the
rapid detection speed of YOLOv2. Therefore, YOLOv3 has a high detection accuracy and fast speed.
Figure 5 shows the YOLOv3 network structure. First, YOLOv3 scale the original image to a size of 416
pixels × 416 pixels. After extraction of features with Darknet53, the original image is transformed into
a feature map with a size of 13 × 13. Three feature maps are formed by combining two feature maps
with sizes of 26 × 26 and 52 × 52. In other words, detection is performed on three scales, such that the
feature map is transmitted to the two adjacent scales using twice the up-sampling. On each feature
map, each cell predicts three bounding boxes by means of three anchor boxes, finally selecting the
most suitable bounding box, which is shown in Figure 6. For each bounding box, the network predicts
its center point (XY), width and height (WH), confidence, and category. For an input image, the final
output dimension is 1 × ((13 × 13 + 26 × 26 + 52 × 52) × 3) × (5 + k) = 1 × 10,647 × (5 + k), where k
represents the number of categories.
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In YOLOv3, the Darknet53 convolution network is the feature extractor, which is shown in
Figure 7. Darknet53 is mainly composed of a series of convolution layers at dimensions of 1 × 1 and 3
× 3, with a total of 53 layers (including the last fully connected layer but excluding the residual layer).
Each convolution layer is followed by a batch normalization (BN) [25] layer and LeakyReLU layer.
A number of residual network modules were introduced in Darknet53, i.e., the residual layer shown in
Figure 7, which was derived from ResNet [26]. The purpose of adding the residual layer is to solve the
gradient disappearance or gradient explosion problems in the network, such that we can more easily
control the propagation of the gradient and perform network training.
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Figure 7. Structure of the Darknet53 convolutional network.

In Darknet53, although numerous 1× 1 convolution kernels were introduced and 3× 3 convolution
kernels, with a step size of 2, were used instead of the maximum pooling, the number of parameters
was reduced a lot. However, to detect the single-class objects in this study, the Darknet53 network
still appeared to be slightly complicated and redundant. To reduce the number of parameters in the
YOLOv3 model and improve its detection speed, we replaced the Darknet53 feature extraction network
with the lightweight ShuffleNet v2 [27] network in this study.

ShuffleNet v2 is a lightweight classification network proposed in 2018, which introduced the idea
of depth-wise convolution [28] and group convolution. The shuffling and grouping operations in
ShuffleNet v1 [29] are continually used, which allowed ShuffleNet v2 to perform at a higher precision
while increasing the running speed. In ShuffleNet v2, Ma et al. [27] proposed the following four
conclusions as criteria to improve the running speed:

• Conclusion 1. When the feature channels of the convolution layer for the input and output are
equal, the MAC (memory access cost) is the smallest, whereas the model speed is the fastest.

• Conclusion 2. Excessive grouping convolution will increase the MAC and slow down the model’s
running speed.

• Conclusion 3. Fewer branches in the model results in a more rapid model running speed.
• Conclusion 4. The time consumption of the element-wise operations is much higher than that of

the floating-point operations. Therefore, it is necessary to reduce the element-wise operations as
much as possible.

Based on these four conclusions, the basic unit of ShuffleNet v2 was proposed, which is shown in
Figure 8c–d. Among the units, Figure 8a–b is the basic units of ShuffleNet v1. Based on a comparison
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of Figure 8a,c, it shows as follows: first, Figure 8c added a channel split operation at the beginning,
which had the same number of input and output channels, corresponding to Conclusion 1. Second,
in Figure 8c, the grouping operation in the 1 × 1 convolution layer was cancelled. At the same time,
the channel split operation was added to the front to only divide the number of channels into two
groups, corresponding to Conclusion 2. Third, the operation of the channel shuffle in Figure 8c moved
to the end of the Concat operation, corresponding to Conclusion 3. Finally, the Concat operation was
replaced with the element-wise operation, Add, corresponding to Conclusion 4. A comparison of
Figure 8b,d was essentially the same. Figure 8b,d is mainly used to reduce the scale and increase the
number of channels.
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Figure 8. Basic units of the ShuffleNet (DWConv: depth-wise convolution; GConv: group convolution):
(a) basic unit of ShuffleNet v1, (b) basic unit for scaling down in ShuffleNet v1, (c) basic unit of
ShuffleNet v2, and (d) basic unit for scaling down in ShuffleNet v2.

Figure 9 shows the network structure of ShuffleNet v2, where each stage consists of basic units (c)
and (d) shown in Figure 8. The number of each basic unit corresponds to the Repeat column shown in
Figure 9.
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2.4. Improved YOLOv3 Loss Function

During the training process, the YOLOv3 loss function is divided into three major parts,
i.e., coordinate loss, confidence loss and classification loss, which can be expressed with the
following equation:

Loss =
10647∑
i=0

(CoordLoss + Co f idenceLoss + ClassLoss), (1)

where CoordLoss is the coordinate loss, ConfidenceLoss is the confidence loss, and ClassLoss is the
classification loss. The coordinate loss is the XY loss plus WH loss in prediction box. In YOLOv1
version, X, Y, W, and H directly predict the actual value of the object, where small changes in the
predicted value expand to the entire range of the image, resulting in large coordinate fluctuations
and inaccurate predictions. YOLOv2 improved upon these problems, and can be expressed with the
following equation:

X = σ(tx) + cx, (2)

Y = σ
(
ty
)
+ cy, (3)

W = pwetw , (4)

H = pheth , (5)

where tx and ty are the network prediction values, which are scaled to between 0 and 1 via the Sigmoid
operation, cx and cy are the cell coordinates on the feature map, i.e., the offset from the upper left
corner, tw and th are also the network prediction value, and pw and ph represent the width and height,
respectively, of the cell corresponding to the anchor box.

Based on Equations (2) and (3), we found that the center point coordinates X and Y of the prediction
box are activated by the sigmoid function. Figure 10 shows the characteristics of the sigmoid function
and its derivative curve. When the output of the neural network is large, the derivative of the sigmoid
function becomes exceedingly small. At this time, the error value obtained using the squared error is
exceedingly small, leading to a slow convergence speed for the network.
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To solve the above problem when the real value can only be 0 or 1, the common method is to
adopt the cross-entropy loss function, which can be expressed with the following equation:

Loss = − 1
n
∑n

i=1[ai ∗ log(âi) + (1− ai) ∗ log(1− âi)], (6)
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where ai is the true value and âi is the output value after the Sigmoid function. When the true value, ai,
can only take 0 or 1, the cross-entropy loss function meets the requirements. In other words, when ai
and âi are equal to 0, the error can be obtained from Equation (6), which is near 0. Similarly, when
ai = 1 and âi = 1, the error is also near 0. For the prediction box center point coordinate, XY, however,
the true value is neither 0 or 1 but, rather, a value between 0 and 1. For example, when ai = âi = 0.6,
the cross entropy loss is −0.6× log(0.6) − 0.4× log(0.4) = 0.29, not 0. Therefore, the loss function for
the center point coordinate, XY, can be improved.

To improve the loss function of the center coordinate, XY, we used the generalized intersection
over union (GIoU) [30]. GIoU is an improved version of the traditional intersection over union (IoU),
which can replace the regression parameters for the distance loss of the prediction box. There are
two reasons as to why we have proposed the use of the GIoU as the regression loss function for the
prediction box rather than an IoU for the loss function. The first is that, when IoU(A, B) = 0, we cannot
know if A and B are adjacent to each other or far apart. The other reason is that the IoU cannot reflect
the overlap situation for the two rectangular boxes. For example, the three cases shown in Figure 11
have different overlapping situations, i.e., the GIoU values, from left to right, are 0.33, 0.24, and −0.1,
whereas the IoU value is 0.33.
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However, the IoU still has several advantages. For example, the IoU can be used as the distance
and has scale invariance. Therefore, to resolve the disadvantages of the IoU and retain its advantages,
we used the GIoU, which can be calculated as follows:

GIoU = IoU − |C\(A∪B)|
|C| , (7)

where C is the minimum enclosing rectangle of A and B, and C\(A∪ B) is C minus (A∪ B). The GIoU
has the following properties. First, it has the scale invariance property. Second, the GIoU is less than or
equal to the IoU. Third, the GIoU can better reflect the overlap between the two rectangular boxes
shown in Figure 11. Fourth, −1 ≤ GIoU ≤ 1. When A = B, GIoU = IoU = 1. When A does not
intersect B and is far away, GIoU tends to be −1. Therefore, we selected 1−GIoU as the loss function,
which ranged from 0 to 2.

3. Experimental Settings

3.1. Evaluation Indicators

To quantitatively evaluate the performance of the selected models, we adopted the average
precision (AP) and precision recall curve (PRC). In addition, the F1 score [31] and FPS (frames per
second) were used to evaluate the model’s performance and detection speed.
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3.1.1. Precision Recall Curve

The precision recall curve is characterized by precision as the Y-axis and recall as the X-axis, such
that before generating the PRC, we must calculate the precision and recall [32]. The equations for the
precision, P, and recall rate, R, are as follows:

P = TP
FP+TP , (8)

R = TP
FN+TP , (9)

where TP, FP, and FN are listed in Table 2, i.e., the confusion matrix. Here, TP is the number of correctly
detected positive samples, FP is the number of negative samples detected by error as positive samples,
and FN is the number of positive samples not detected. If the area overlap ratio between the predicted
bounding box and ground-truth bounding box is larger than 0.5, we set the predicted bounding box
as a TP. Otherwise, it is set as a FP. Additionally, if several predicted bounding boxes overlap with
the same ground-truth bounding box, only the box with a maximum overlap is regarded as a TP. The
values of precision and recall rate have an inverse relationship.

Table 2. Confusion matrix for predicted results and ground truth.

Ground Truth

Collapsed Building Others

Collapsed building True Positive (TP) False Positive (FP)
Others False Negative (FN) True Negative (TN)

3.1.2. Average Precision

As normally defined, the average precision refers to the average precision value within the interval
from 0 to 1 for the recall rate, which is also the area under the precision recall curve. Normally,
higher average precision results in better model performance. Currently, there are two methods to
calculate the average precision: the first is to interpolate only 11 equidistant points and the second is to
interpolate all the data points. In this study, we used the second method, i.e., the interpolation of all
the data points using the following equation:

AP =
∑1

R=0(Rn+1 −Rn)·Pinterp(Rn+1), (10)

Pinterp(Rn+1) = max
R̃:R̃≥Rn+1

P(R̃), (11)

where P(R̃) represents the precision when the recall rate is R̃, and Pinterp(Rn+1) is the maximum
precision when the recall rate conforms to a certain condition, i.e., R̃ ≥ Rn+1.

3.1.3. F1 Score

The F1 score is used to evaluate the comprehensive performance of the model. The equation for
calculating the F1 score is as follows:

F1 = 2P·R
P+R . (12)

3.1.4. FPS

FPS is a definition in the image field that refers to the number of frames transmitted per second.
Higher FPS values result in more frames per second, yielding an increasingly smoother display. In this
study, we used the FPS as an indicator of the algorithm processing speed, defined as the number of
pictures processed per second in f/s. In general, real-time processing speed can be achieved when the
FPS of the algorithm exceeds 30.
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3.2. Implement Environment and Model Training

For this study, we used the following hardware environment for the experiment: an RTX2080Ti
graphics, Intel i7-8700k processor, and 32 GB of memory.

For the model software environment both the original and improved YOLOv3 models were
implemented with Keras, which is a high-level neural network API written in pure Python and backed
by the TensorFlow or Theano deep learning libraries. TensorFlow was used as the backend for the
Keras in this study. TensorFlow was developed by the Google Brain team as an open source software
library for dataflow programming across a range of tasks.

In this study, the YOLOv3 network model, reproduced by the Keras, was first used for basic model
training. Then, we used the ShuffleNet v2 network reproduced by the Keras to connect to the original
YOLOv3 and replace the Darknet53 network. The new model was named the YOLOv3-ShuffleNet.
Finally, based on the YOLOv3-ShuffleNet model, the XY loss and WH loss in the loss function were
replaced by the GIoU loss, which was named the YOLOv3-S-GIoU. During the training process,
the parameters were gradually optimized and adjusted. Finally, the optimizer was selected as Adam
and the batch size was 8. The initial learning rate was set at 10−3. In the training process, if the loss value
on the verification set did not decrease after 20 epochs (each epoch refers to the forward propagation
of all training images), the learning rate should be reduced by 0.1-fold, where the lowest learning rate
was 10−6. Finally, the original YOLOv3, improved YOLOv3-ShuffleNet, and YOLOv3-S-GIoU models
were each trained for approximately 600 epochs.

4. Results

4.1. Quantitative Evaluation

The three models, i.e., YOLOv3, YOLOv3-ShuffleNet, and YOLOv3-S-GIoU, compared in this
study were trained with the same dataset. Figure 12 shows their loss change curves for the validation
set during training. The loss change curves for the validation set shows that the three models had both
similarities and differences. First, the general trend in the three models was roughly the same, i.e.,
the loss value rapidly decreased during early training stages, with a large jitter range. This was due
to a large learning rate in the early stage, which was able to produce a relatively fast learning speed
and reduce the loss value to a relatively low point as soon as possible. In the middle and later stages
of training, the learning rate gradually decreased, the change in the loss value tended to be stable,
and the decline in the speed was much slower. Second, the loss curves for the three models also had
several differences, i.e., the timing of the violent jitter for the YOLOv3-S-GIoU’s loss value during the
early stage was shorter than that of the other two models, with a smaller jitter amplitude. The loss
value was much lower than that of the other two models because the change in the loss function for
the YOLOv3-S-GIoU caused a large change in the loss value.

After the training, the two improved models were compared with the original YOLOv3 model,
whose results are listed in Table 3. The precision, P, and recall rate, R, in Table 3 were obtained by
adjusting the threshold to maximize the F1 score. The final improved YOLOv3-S-GIoU model used
in this study had a precision of 93%, a recall rate of 88%, an average precision of 90.89%, and an FPS
of 29.23 f/s on the test set. Compared with the original YOLOv3 model, we significantly improved
these parameters by 5, 10, 5.05, and 5.28 f/s, respectively. First, the improvement in precision and
recall rate can be attributed to the improvement in the loss function. By replacing the center point
loss and width and height loss of the prediction box in the loss function with the GIoU loss, we were
able to more accurately evaluate the relationship between the prediction box and real box, such that
we could accurately evaluate the loss of the prediction box relative to the real box. The loss function
value decreased in a more accurate direction and the model precision was improved. Second, the
improvement in the detection speed benefited from improvements to the network structure. The
lightweight ShuffleNet v2 network replaced the basic Darknet53 convolutional network, which reduced
the number of network parameters and improved the model’s running speed. Benefit from the clever
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design of the ShuffleNet v2 network, the network maintained high precision while reducing the
number of parameters and increasing the speed.
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Table 3. Performance comparison between YOLOv3 and the two improved models.

P (%) R (%) F1 (%) AP (%) FPS (f/s) Parameter Size (M)

YOLOv3 88 78 82.7 85.84 23.95 241
YOLOv3-ShuffleNet 87 81 83.89 85.98 29.16 146
YOLOv3-S-GIoU 93 88 90.43 90.89 29.23 146

4.2. PRC Evaluation

For the object detection method, the PRC is one of the basic indicators of robustness and
effectiveness. Figure 13 shows the PRC of the three YOLOv3 models used in this study. We could observe
based on the curve that, with an increase in the recall rate, there is a gradual decrease in the precision.
When the recall rate was approximately 0.88, the precision of YOLOv3 and YOLOv3-ShuffleNet
declined significantly to only approximately 0.6 but the precision for YOLOv3-S-GIoU remained at
approximately 0.93. In other words, the precision of the improved model had clear advantages at an
identical recall rate, which indicates that using the GIoU as the loss function could better and more
fully train the model, as well as improve the model’s detection performance.

Based on the average confidence of the positive and negative samples during the training process,
there was a slight increase in the confidence of the positive and negative samples in the YOLOv3-S-GIoU
model. This increase enhanced the confidence of the positive samples, as well as yielding a good
convergence effect. Based on the results in Figure 14a,b,d,e, we could also observe that, although the
original YOLOv3 model could detect most collapsed buildings, the confidence of the test results was
lower than that of the YOLOv3-S-GIoU model. In Figure 14g,h, the original YOLOv3 model missed
numerous small targets. This all indicates that the YOLOv3-S-GIoU model was more fully trained and
had a better convergence effect than the original YOLOv3 model.

To evaluate the model’s robustness and anti-noise ability, we randomly added Gaussian noise
and salt-pepper noise into the test set for the original YOLOv3 and improved YOLOv3-S-GIoU models,
respectively. The images after adding noise are shown in Figure 15, and the test results are shown in
Table 4. The average precision of the original YOLOv3 model after adding noise was only 44.3% while
the average precision of the improved YOLOv3-S-GIoU model remained high, reaching 79.8%.
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salt-pepper noise.

Table 4. Performance comparison of the two YOLOv3 models after the addition of noise.

P (%) R (%) F1 (%) AP (%)

YOLOv3 63 41 49.67 44.3
YOLOv3-S-GIoU 86 74 79.55 79.8

Based on the PRC after the addition of noise in Figure 16, with an increase in the recall rate,
there was rapid decrease in the precision of the original YOLOv3 model. When the recall rate was
only 0.6, the precision was near 0. This indicates that the improved model has a stronger anti-noise
ability than the original YOLOv3 model, i.e., the improved model has a stronger generalization ability.
We could also observe from Figure 14j,k,m,n after adding the noise that numerous small targets could
not be detected in the original YOLOv3 model. The analysis shows that the lightweight CNN like
ShuffleNet v2 had better generalization and prevented over-fitting, whereas the number of parameters
in Darknet53 for this study was too large, which may lead to over-fitting.

The improved YOLOv3-S-GIoU model in this study increased model precision by replacing the
original loss function with a better GIoU loss function. Moreover, the lightweight CNN could be used
to improve the model’s generalization ability, yielding excellent precision and generalization.

Figure 17 shows examples of the detection results for the YOLOv3-S-GIoU model in test remote
sensing images. Figure 17a is a test image from the Yushu earthquake while Figure 17b is a test image
from the Wenchuan earthquake. Based on the test results, the YOLOv3-S-GIoU model could detect
most collapsed buildings in the remote sensing images but there were also certain cases of false and
missed detections. This is mainly because the background environment in the high-resolution remote
sensing images after the earthquake is far more complex than that in the natural image, which leads to
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the model’s detection of certain objects in the background environment as collapsed buildings. For
example, bare soil with similar image characteristics of collapsed buildings is easy to be detected
by mistake. In addition, the model easily misses certain collapsed buildings that are similar to the
background image features.
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5. Discussion

There have been several studies using remote sensing images to extract buildings that collapsed or
were damaged after the 2008 Wenchuan earthquake and the 2010 Yushu earthquake. Zhao et al. used
an object-oriented change detection method based on multiple classifiers to extract the information
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of building damage after the Yushu earthquake. When constructing the multi-classifier system, by
means of multi-feature extraction, selection, and integration, random subspace recognition technology
was used to integrate the limit learning machine model, multiple logistic regression model, and K
nearest model, improving the performance of the multi-classifier system and the overall accuracy to
88.45% [33]. Wen et al. used LiDAR (light detection and ranging) data and high-resolution Quickbird
remote sensing data in the Yushu disaster area, preprocessed the LiDAR data in the study area, and
extracted the information of collapsed buildings after the earthquake using a method combining
object-oriented classification and SVM technology. The total extraction accuracy was 82.21% [34].
Ji et al. extracted each building object from remote sensing images using building vector data, and
then used CNN to classify buildings that had completely collapsed and buildings that were intact
or less affected, with an average accuracy of 78.6% [22]. Of the above studies, most of them have
achieved high accuracy, but the data used in these studies are more, such as pre-earthquake remote
sensing images, LiDAR data, and building vector data. These data may not be obtained in time after
the earthquake. In this study, we used the CNN-based object detection method YOLOv3 to detect
collapsed buildings and obtained an ideal result with an accuracy of 90.89%, and our approach is more
practical than that of previous studies. First, the YOLOv3 model only requires post-earthquake remote
sensing images, thus, eliminating the trouble of obtaining pre-earthquake remote sensing images.
Second, the YOLOv3 model can extract collapsed buildings without the aid of building vector data.
Since it is often difficult to obtain building vector data in time after the earthquake, the use of building
vector data has certain limitations in practical applications, which are addressed by YOLOv3.

In this study, certain measures were taken to prevent the over-fitting phenomenon when training
the CNN. First, as the collected seismic data is relatively small, as well as the fact that it is necessary
to screen out high spatial resolution data with a resolution of 1 m or less to better detect individual
collapsed buildings, the data that conforms to the requirements is even less. These limited samples
easily lead to over-fitting when they are used to train the large convolutional neural network in the
training set. Therefore, the dataset was enhanced and expanded to increase the sample diversity.
Second, in the YOLOv3 network structure, when using the Darknet53 convolutional neural network in
this study to detect only a single class of objects appears to have too many parameters, which easily
lead to over-fitting. Therefore, we proposed the replacement of Darknet53 with the lightweight CNN
ShuffleNet v2 to significantly reduce the number of parameters and effectively improve the over-fitting
situation. Finally, during the training process, when the value of the loss function is unable to decrease
after 50 epochs, training was terminated in advance to avoid excessive learning.

In addition to the prevention of overfitting, the loss function in YOLOv3 was modified to improve
the detection precision of damaged buildings. In the original YOLOv3 loss function, using the
cross-entropy loss to predict the center point coordinates and width and height of the rectangular box
is not reasonable. When the true value is 0 or 1, the cross-entropy loss can accurately evaluate the
loss of the predicted value relative to the true value, whereas when the true value is between 0 and 1,
the loss of the predicted value relative to the true value cannot be accurately evaluated. Therefore,
the GIoU loss was used in this study to predict the center point coordinates and width and height
of the rectangular boxes instead of the cross-entropy loss. As the GIoU can accurately describe the
relationship between the prediction and true boxes, the GIoU can accurately evaluate the loss of the
prediction box relative to the true box in the training process.

6. Conclusions

In this study, a dataset of collapsed buildings in remote sensing images was self-labeled using
aerial remote sensing images after earthquakes. We then proposed the detection of the collapsed
buildings in remote sensing images after earthquakes using the YOLOv3 deep learning object detection
model, and the basic convolutional network framework and loss function of the YOLOv3 model were
improved. The experimental results show that the improved YOLOv3 model (YOLOv3-S-GIoU) had
sufficient robustness and a certain anti-noise ability when detecting collapsed buildings. While the
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speed within the test set reached 29.23 f/s, the average precision reached 90.89% and a significant
reduction in the number of parameters, i.e., only 146 MB. This study verified the feasibility and
effectiveness of the improved YOLOv3-S-GIoU model to detect collapsed buildings in high spatial
resolution remote sensing images after earthquakes. However, due to the small amount of seismic data
and certain errors in sample labeling due to a lack of ground survey data support, there were still some
errors in the comparison between the test results and the ground truth. Therefore, to obtain a better
detection effect and make the model more practical, extending the training dataset, including remote
sensing images of different types and resolutions, is the future work to be tested for improvement.
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