
remote sensing  

Article

The Influence of Different Modelling Factors on
Global Temperature and Pressure Models and Their
Performance in Different Zenith Hydrostatic Delay
(ZHD) Models

Fei Yang 1,2,3, Xiaolin Meng 2 , Jiming Guo 1,* , Junbo Shi 1, Xiangdong An 2, Qiyi He 2 and
Lv Zhou 4

1 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China; coffeeyang@whu.edu.cn (F.Y.);
jbshi@sgg.whu.edu.cn (J.S.)

2 Nottingham Geospatial Institute, University of Nottingham, Nottingham NG7 2TU, UK;
xiaolin.meng@nottingham.ac.uk (X.M.); xdan@whu.edu.cn (X.A.); qiyi.he@nottingham.ac.uk (Q.H.)

3 Guangxi Key Laboratory of Spatial Information and Geomatics, Guilin 541004, China
4 College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China;

zhoulv@glut.edu.cn
* Correspondence: jmguo@sgg.whu.edu.cn

Received: 5 November 2019; Accepted: 16 December 2019; Published: 20 December 2019 ����������
�������

Abstract: Surface temperature and pressure are indispensable variables in Global Navigation Satellite
System (GNSS) meteorology. The lack of meteorological observations located at or near the GNSS
sites is a big challenge for the calculation of accurate zenith hydrostatic delay (ZHD). Therefore,
various empirical models with different model forms were established to provide temperature and
pressure values. In this study, the influence of different modelling factors, including model forms,
temporal resolution of the data sources, and the spatial resolution of the data sources, is evaluated
and the temperature and pressure model with the best performance is developed. On the basis of the
meteorological parameters estimated by the above model, we analyzed the global performance of
the three most commonly used ZHD models, that is, the Saastamoinen, Hopfield, and Black models.
The numerical results show that the model with the idea of time-segmented modelling performs
best, of which the global mean root mean square (RMS), mean absolute error (MAE), and standard
deviation (SD) are 7.87/6.33/7.17 hPa and 2.95/2.31/2.79 K for pressure and temperature, respectively,
using the data sources with temporal resolution of 2 h and spatial resolution of 2.5◦ × 2◦ in the
reanalysis data comparison. In comparison with the radiosonde data, the mean RMS/MAE/SD are
7.02/5.24/6.46 hPa and 4.05/3.17/3.86 K for pressure and temperature, respectively. The Saastamoinen
model with a global mean bias/RMS of 1.01/16.9 mm achieved the best ZHD estimated values
compared with the other two ZHD models.

Keywords: GNSS meteorology; temperature and pressure; zenith hydrostatic delay; ECMWF data;
GGOS Atmosphere

1. Introduction

The tropospheric delay of incoming signals remains one of the major influencing factors on the
accuracy of Global Navigation Satellite System (GNSS) observations [1–3]. A common approach to
treating the tropospheric delay is to map the delay into the zenith direction (zenith tropospheric delay,
ZTD) through mapping functions, which contains the hydrostatic (zenith hydrostatic delay, ZHD) and
wet (zenith wet delay, ZWD) terms. In the high-accuracy geodetic data processing, accurate a priori
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ZHD is usually needed [4,5]. In addition, accurate ZHD is a prerequisite for obtaining water vapor
information in GNSS meteorology, as ZWD is achieved by subtracting ZHD from ZTD [6–11].

ZHD can be derived with millimeter-level accuracy from meteorological parameters and position
at an observation station using a model, such as the Saastamoinen, Hopfield, and Black models [12–14].
However, most GNSS sites are not equipped with meteorological sensors, and there are often no
collocated weather stations available for those GNSS sites. Thus, a standard model for providing
precise and unbiased global pressure and temperature values is often used, for example, the global
pressure and temperature (GPT) series models, TropGrid2 model, and the improved tropospheric grid
(ITG) model [15–19].

The GPT model is proposed by Boehm et al. [15], which is developed from three-year European
Center for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA)-40 products, and provides
temperature and pressure based on spherical harmonics up to degree and order 9, leading to coarse
horizontal resolution of about 20º. A more precise ECMWF ERA-interim product was applied by Lagler
et al. to establish the GPT2 model [16,20], in which the semi-annual harmonics was incorporated to better
account for regions where very rainy periods or very dry periods dominate, making it an improved
model to provide meteorological parameters resting upon a global 5º grid of mean values, annual,
and semi-annual variations. TropGrid2 is based on more than nine years of global data assimilation
system (GDAS) 3D weather fields, which takes diurnal variations into consideration, but ignores the
influence of the semi-annual variations [18]. The ITG model improved the performance of estimating
meteorological parameters by considering the annual, semi-annual, and diurnal variations [19].

However, the model form determination, as well as the data source used for the model on a global
scale, is a key issue for the construction of the empirical model [21]. Different model forms have
different considerations. For example, some models only account for the annual and semi-annual
cycles [15–17], some models add the diurnal cycles [18], and some models even consider the seasonal
variations of diurnal amplitudes and diurnal phases [19]. We compared the different model forms and
selected the most suitable one in this paper. Moreover, the latest climate reanalysis (ERA5) produced
by ECMWF provides hourly meteorological parameters for the first time, making it possible to perform
the analysis of accuracy using data sources with different temporal resolutions. In addition, the results
with different spatial resolutions of data sources were compared in the form of a grid.

On the basis of the above comparisons, the temperature and pressure model with the best
performance is selected to compute ZHD using different ZHD models, for example, the Saastamoinen,
Hopfield, and Black models, which are proved to achieve ZHD values with high accuracy using
measured meteorological parameters [8,22–28]. However, the accuracies of the temperature and
pressure estimated by the models vary from area to area, which may result in different performances
of the ZHD models using the estimated meteorological parameters. In this paper, the accuracy of three
most commonly used ZHD models, which were tested by measured parameters in previous articles,
are explored in the case of estimated parameters.

The remainder of this paper is organized as follows. Section 2 introduces the data sources
and model forms, while Section 3 presents the evaluation of the models from three aspects, that is,
the model forms, the temporal resolution of the data sources, and the spatial resolution of the data
sources. Section 4 discusses the accuracy of the three ZHD models using the estimated meteorological
parameters, and Section 5 presents the conclusions.

2. Materials and Methods

Owing to the advantages of spatial integrity, temporal continuity, and high accuracy, meteorological
reanalysis products, such as ECMWF and National Centers for Environmental Prediction (NCEP),
are very suitable for constructing empirical pressure and temperature models. They can provide
comprehensive global records of historical atmosphere status spanning an extended period, using
a single consistent assimilation scheme throughout. The accuracy of NCEP and ECMWF has been
compared by several studies [29], and it is shown that products of ECMWF are more accurate [30–33].
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Thus, in this paper, ERA5 surface products will be utilized for modelling pressure and temperature,
while ERA5 pressure level products will be used for modelling temperature lapse rate and specific
humidity, which are necessary parameters for temperature and pressure computation.

For pressure and temperature, only annual and semi-annual cycles were considered in most of
the commonly used models. The ITG model adopted 15 parameters, considering the diurnal cycles
and even the seasonal variations of diurnal amplitudes and diurnal phases. Theoretically, the increase
of parameters in one model is beneficial to improve the accuracy of the model, but it also increases the
complexity, which is not conductive to its applications. In this work, the performance of four traditional
model forms in constructing temperature and pressure models was explored comprehensively, and
a type of model based on the idea of time-segmented modelling was compared with the traditional
ones. The most suitable model form was then selected from the following five kinds of model forms.

The first form, as Equation (1), which only considers the annual and semi-annual cycles, is regarded
as Model #1. In this model form, a are the estimated meteorological parameters; a0 are the mean values;
a1 and a2 are the amplitudes of annual and semi-annual periodicity, respectively; c1 and c2 are the
initial phase of annual and semi-annual periodicity, respectively; and doy is the day of the year.

a = a0 + a1· cos
(

doy− c1

365.25
·2π

)
+ a2· cos

(
doy− c2

365.25
·4π

)
(1)

When the basic form of diurnal periodicity is considered, that is, the fixed amplitude a3 and
diurnal phase c3 are added, the model form as Equation (2) with seven coefficients is regarded as
Model #2. hod refers to the hour of the day.

a = a0 + a1· cos
(

doy− c1

365.25
·2π

)
+ a2· cos

(
doy− c2

365.25
·4π

)
+ a3· cos

(
hod− c3

24
·2π

)
(2)

The amplitude and initial phase of diurnal variation can also be estimated as periodic functions
with annual and semi-annual periodicity. The coefficients a3 and c3 can be further expanded and
expressed as a function of time as follows. Model #3 contains 11 coefficients, and only considers the
amplitude of diurnal variation as periodic functions, while Model #4 contains 15 coefficients, and takes
a3 and c3 as a function of time.

a3 = A0 + A1· cos
(

doy−C1

365.25
2π

)
+ A2· cos

(
doy−C2

365.25
4π

)
(3)

c3 = Ac0 + Ac1· cos
(

doy−Cc1

365.25
2π

)
+ Ac2· cos

(
doy−Cc2

365.25
4π

)
(4)

On the basis of the idea of time-segmented modelling, we can establish models using data at
different UTC times separately, for example, only the data of UTC 0:00 are selected to build a model for
UTC 0:00 and the data of other time are used for models of other time. The specific choice of which time
to model is determined by the temporal resolution of the source data. Thus, Model #5 is as follows:

ahod1 = ahod1
0 + ahod1

1 cos
(

doy−c
hod1
1

365.25 2π
)
+ ahod1

2 cos
(

doy−c
hod1
2

365.25 4π
)

ahod2 = ahod2
0 + ahod2

1 cos
(

doy−chod2
1

365.25 2π
)
+ ahod2

2 cos
(

doy−chod2
2

365.25 4π
)

...

ahodn = ahodn
0 + ahodn

1 cos
(

doy−chodn
1

365.25 2π
)
+ ahodn

2 cos
(

doy−chodn
2

365.25 4π
)

, (5)

where N refers to the number of modelling epochs we choose. hod1, hod2, hod3, · · · and hodn represent
the different UTC epochs. To calculate the meteorological parameters at a certain epoch, the 10 adjacent
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epochs near the time to be calculated were searched first, and the parameters of the 10 epochs could be
estimated by Equation (5). Then, the value of the time to be calculated can be achieved by interpolating
using the Lagrange polynomial. This model can well express the annual, semi-annual, and diurnal
cycle characteristics of the meteorological parameters.

3. Evaluation of the Empirical Models

In this section, the influence of different factors on the modelling of meteorological parameters is
analyzed, for example, the influence of model forms, the temporal resolution of the data sources, and
the spatial resolution of the data sources.

3.1. Influence of Model Forms

The six years (2011–2016) of global surface products for temperature and pressure, as well as
the six years (2011–2016) of global profiles containing 37 levels for temperature, specific humidity,
and geopotential, were retrieved from ERA5, which was discretized at 5◦ from 90◦N to 90◦S for latitude
and from 180◦W to 180◦E for longitude. The five years (2011–2015) of retrieved data with 6 h temporal
resolution are used to establish the five kinds of models in Section 2, one year (2016) of the data with
1 h temporal resolution is used to evaluate the accuracy of the models.

The root mean squares (RMSs) of the four meteorological parameters calculated by different
models are counted and grouped into different latitude bins, separated by a 5◦ interval from 90◦N to
90◦S. To better show the difference between models, the differences of the RMS of four meteorological
values with respect to the RMS of Model #1 were shown in Figure 1. From the bottom panel, it is
clear that the models considering the diurnal cycles (Model #2–#5) have no obvious improvement in
accuracy of temperature lapse rate and specific humidity calculation compared with Model #1, which
only considers the annual and semi-annual cycles. This indicates that the diurnal cycle can be ignored
when modelling temperature lapse rate and specific humidity. From the upper panel, the improvement
to temperature and pressure of models considering the diurnal cycles can be observed, especially
in the low latitudes. It is observed that Model #4 performs worse than the other three models, and
the improvement of Model #5 is larger than the other three models, especially in the low latitudes
for pressure.Remote Sens. 2019, 11, x FOR PEER REVIEW 5 of 20 
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Figure 1. The differences of the root mean square (RMS) of four meteorological values with respect to
the RMS of Model #1 in each latitude range.
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To further show the different performance of the models with and without considering the daily
cycle in different regions, we selected 21 grid points distributed at longitude of 90◦W, 0◦, and 90◦E and
latitude of 90◦N, 60◦N, 30◦N, 0◦, 30◦S, 60◦S, and 90◦S. The time-series of true temperature extracted
from the reanalysis data of 2016, as well as the time-series of estimated temperature by the five models,
is depicted in Figure 2. The yellow line representing Model #1 is a smooth curve in all regions, it does
not present the fluctuations in temperature well. When the diurnal cycle is considered in the model,
the estimated temperature can well describe the daily change of true temperature, especially in the low
latitudes. In this stage, we cannot determine the best model to perform the diurnal cycle. The figure
for pressure is similar to Figure 2 and is not repeated here.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 20 
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of year.

Table 1 lists the global mean RMS, mean absolute error (MAE), and standard deviation (SD)
of differences for four meteorological parameters calculated by different models. For temperature
lapse rate and specific humidity, the accuracy of the five kinds of models is comparable and almost
unchanged, which is consistent with the result of Figure 1. This illustrates that the time-series of the
two meteorological parameters do not contain obvious diurnal cycles. Model #1, only considering
the annual and semi-annual cycles, is sufficient to describe the change of these two meteorological
parameters. For temperature and pressure, the RMS, MAE, and SD of the models considering the daily
cycle are improved in different degrees compared with Model #1. We can find that the RMS/MAE/SD of
temperature decrease from 3.22/2.51/3.10 K to 2.98/2.30/2.86 K and then to 2.96/2.29/2.84 K using Model
#1, Model #2, and Model #3, respectively, but the accuracy of Model #4 is not improved and worse than
that of Model #2. This phenomenon also occurs in the case of pressure validation. The performance of
the four traditional models implies that the adoption of sophisticated models (multiple coefficients in
one model) does not necessarily improve the accuracy of the temperature and pressure. It is observed
that the statistical results achieved by Model #5 are slightly better than those of the others, which
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indicates the advantages of the time-segmented modelling. Note that the time-segmented model is
different from the four traditional models, and does not complicate the model of each epoch.

The empirical distribution functions of the RMS, MAE, and SD of differences for temperature
calculated by different models are plotted in Figure 3, in which colors represent different models
indicating the percentage of each range of the RMS, MAE, and SD. We can see that the yellow lines
representing Model #1 perform worse than the other models in RMS, MAE, and SD. The percentage of
RMS/MAE/SD smaller than 5 K is 77%/94%/81% for Model #1; this percentage becomes 82%/95%/84%
for Model #4, which has the smallest improvement. Model #5, considering the daily cycle, achieves
slightly better results, with a percentage of 85%/97%/86%, than the other two models.

Table 1. The root mean square (RMS), mean absolute error (MAE), and standard deviation (SD) of the
differences for four meteorological parameters calculated by different models, validated by the data
of 2016.

Temperature (K) Pressure (hPa) Temperature Lapse
Rate (K/km)

Specific
Humidity (g/kg)

RMS MAE SD RMS MAE SD RMS MAE SD RMS MAE SD

Model #1 3.22 2.51 3.10 7.57 6.01 7.42 0.44 0.35 0.43 1.28 1.01 1.24
Model #2 2.98 2.30 2.86 7.45 5.89 7.35 0.44 0.35 0.43 1.28 1.00 1.23
Model #3 2.96 2.29 2.84 7.45 5.89 7.35 0.44 0.35 0.43 1.27 1.00 1.23
Model #4 3.05 2.35 2.92 7.46 5.90 7.35 0.44 0.35 0.43 1.27 1.00 1.23
Model #5 2.96 2.28 2.83 7.42 5.86 7.31 0.44 0.35 0.43 1.27 1.00 1.23
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3.2. Influence of Temporal Resolution

The ERA5 reanalysis products provide hourly meteorological data, which makes it possible to
analyze the influence of temporal resolution of data sources on pressure and temperature. Apart from
the data sources with 6 h temporal resolution used in previous section, the five years’ data from 2011
to 2015 with 3 h and 2 h temporal resolution are selected to establish the meteorological model. In each
model, 5◦ × 5◦ is selected as the spatial resolution. The meteorological parameters of 2016 with 1 h
temporal resolution are regarded as true value for validation.

The global mean RMS of temperature and pressure calculated by models with different temporal
resolution is counted and listed in Table 2. It proves again that the consideration of the diurnal cycle for
modelling temperature and pressure is important at any temporal resolution. Moreover, it is apparent
that the accuracy of Model #1, as well as that of Model #2, #3, and #4, does not change as the temporal
resolution of the data sources increases. This illustrates that the 6 h temporal resolution data sources
can effectively play the ability of the first four kinds of models, and the higher temporal resolution data
sources are not necessary. For Model #5, however, based on the idea of the time-segmented modelling,
the statistical results including RMS, MAE, and SD are slightly improved with the increase of the
temporal resolution. The improvement from 6 h to 3 h temporal resolution is larger than that from 3 h
to 2 h temporal resolution.

Table 2. The global mean RMS, MAE, and SD of the difference for temperature and pressure calculated
by models with different temporal resolution data sources, validated by the reanalysis data of 2016.

6 h Temporal
Resolution

3 h Temporal
Resolution

2 h Temporal
Resolution

RMS MAE SD RMS MAE SD RMS MAE SD

Temperature
(K)

Model #1 3.22 2.51 3.10 3.22 2.51 3.10 3.22 2.51 3.10
Model #2 2.98 2.30 2.86 2.98 2.30 2.86 2.98 2.30 2.86
Model #3 2.96 2.29 2.84 2.96 2.28 2.84 2.96 2.28 2.84
Model #4 3.05 2.35 2.92 3.05 2.35 2.92 3.05 2.35 2.92
Model #5 2.96 2.28 2.83 2.94 2.27 2.82 2.93 2.26 2.81

Pressure
(hPa)

Model #1 7.57 6.01 7.42 7.57 6.01 7.42 7.57 6.01 7.42
Model #2 7.45 5.89 7.35 7.45 5.89 7.35 7.45 5.89 7.35
Model #3 7.45 5.89 7.35 7.45 5.89 7.35 7.45 5.89 7.35
Model #4 7.46 5.90 7.35 7.46 5.90 7.35 7.46 5.90 7.35
Model #5 7.42 5.86 7.31 7.39 5.84 7.28 7.38 5.83 7.26

To better show the performance of the models using different temporal resolution of data sources
at a certain day, the point with latitude of 30◦N and longitude of 0◦ was selected owing to its obvious
diurnal variation. The time-series of temperature with a temporal resolution of 1 h containing
120 epochs from DOY 15 to 20, 2016, is described in Figure 4, in which the true value from reanalysis
data and the estimated value derived from the five kinds of models are included. The value of
Model #1 is almost unchanged during a day and cannot reflect the real-time variation in temperature.
The difference between Model #2, #3, and #4 is small, and the changes of temperature during a day are
represented by a relatively smooth periodic curve. However, the fluctuation of temperature at some
epoch are difficult to express using these models. Moreover, the lines of the first four kinds of models
are almost unchanged with three different temporal resolution of data sources. Model #5, represented
by the red lines, performs best in each case to describe the variation and fluctuation of temperature.
In addition, it can be seen that the data sources with higher temporal resolution make Model #5 better
to describe the changes of temperature. The situation of pressure is shown in Figure 5, which indicates
the same conclusion as the situation of temperature that Model #5 using high temporal resolution of
data sources is the best choice to describe the change of pressure. More important is that only Model
#5 can well reflect the bimodality of pressure during a day.
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3.3. Influence of Spatial Resolution

To analyze the influence of spatial resolution of the data sources, a denser grid, that is, a 2.5◦

interval from 180◦W to 180◦E for longitude and a 2◦ interval from 90◦N to 90◦S for latitude, is discretized
in this section to compare with the case of 5◦ spatial resolution. The temporal resolution is set to 2 h,
which works better for Model #5 according to the above analysis. The five years’ data from 2011 to
2015 with the two different spatial resolutions are selected to establish the meteorological models.
The temperature and pressure value of 2016 with 1 h temporal resolution is regarded as the true value
for validation. In this validation, a different set of grid points is chosen, which is from 177◦W to 177◦E
with a 5◦ interval for longitude and from 87.5◦N to 87.5◦S with a 5◦ interval for latitude. In this section,
two kinds of models considering the diurnal cycle, Model #2 and #4, are not established, owing to their
relatively worse performance in the previous analysis.

The global mean RMS, MAE, and SD of the differences for temperature and pressure calculated by
models with different spatial resolution are counted and listed in Table 3. It is observed that the models
with the consideration of diurnal cycles obviously achieve higher accuracy than the one (Model #1)
without the diurnal cycle in each spatial resolution for the calculation of pressure and temperature, and
Model #5 performs best. Compared with the case of 5◦ × 5◦ spatial resolution, all models improve the
accuracy for pressure and temperature when using the data sources with 2.5◦ × 2◦ spatial resolution.

Table 3. The global mean RMS, MAE, and SD of differences for temperature and pressure calculated by
models using different spatial resolution data sources.

Pressure (hPa) Temperature (K)

5◦ × 5◦ 2.5◦ × 2◦ 5◦ × 5◦ 2.5◦ × 2◦

RMS MAE SD RMS MAE SD RMS MAE SD RMS MAE SD

Model #1 8.54 6.96 7.33 8.09 6.52 7.28 3.38 2.67 3.15 3.25 2.55 3.10
Model #3 8.36 6.78 7.28 7.94 6.39 7.25 3.17 2.49 2.93 3.01 2.34 2.84
Model #5 8.29 6.73 7.21 7.87 6.33 7.17 3.12 2.45 2.88 2.95 2.31 2.79

In Figure 6, the RMS of the difference for temperature and pressure calculated by different models
with two spatial resolutions is shown in the form of a boxplot. The characteristic values marked in
the box plots are Q1, Q2, Q3, and upper bound, respectively. Q1 and Q3 are located at the bottom
and top of the box and represent the first and third quartiles, respectively. Q2 refers to the median
located inside the box. The upper bound is the maximum value in a set of data. The length of box
and the range of bound with the spatial resolution of 2.5◦ × 5◦ are smaller than the corresponding one
with the spatial resolution of 5◦ × 5◦, which illustrates a better RMS distribution in the case of high
spatial resolution. For the upper panel, the Q2 values of the six cases are 3.19, 2.88, 2.69, 2.38, 2.60, and
2.28 K, respectively. For the lower panel, the Q2 values of the six cases are 9.36, 8.68, 9.15, 8.57, 9.09,
and 8.51 hPa, respectively.
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3.4. Evaluation of the Selected Model

It is easily acceptable that the accuracy of the model for calculating pressure and temperature
is improved with the increasing of the spatial resolution of the data sources, as the meteorological
parameters of the point to be estimated are based on the values of the nearest four model points,
and their correlation becomes strong with the higher spatial resolution of the data sources. Considering
the long-time consumption and high-quality hardware requirements, a higher spatial resolution,
for example, 1◦ × 1◦, is not modelled in this paper. The above analysis indicates that it is necessary
to consider the diurnal cycle when establishing the model for temperature and pressure; therefore,
Model #1 is not suitable for this work. Model #4 is also excluded owing to its complicated model form
containing 15 coefficients and its worse performance than the other models considering the diurnal
cycle. Compared with Model #2 and #3, the advantage of Model #5 is that it can better represent the
variation and fluctuation of the meteorological parameters when the temporal resolution of source
data is improved. In all the experiments above, Model #5 with 2 h temporal resolution and 2.5◦ × 2◦

spatial resolution achieved the best performance; therefore, it is selected to construct the pressure and
temperature model.

Figure 7 illustrates the mean values, annual amplitudes, and semi-annual amplitudes of
temperature in Model #5; only the cases of UTC 0:00, 4:00, 8:00, 12:00, 16:00, and 20:00 are shown in
the figure owing to the space limitation. The distribution of mean values is latitude-dependent and
altitude-dependent; significantly small values appear at the poles and large values appear near the
equator. The annual amplitudes become larger as the latitude increases, and the amplitudes at the
land area are larger than those that at the ocean area. The maximum annual amplitude appears in the
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Siberian region because of its largest annual temperature difference. Affected by the phenomena of polar
day and polar night, the Antarctic and Arctic regions exhibit large semi-annual amplitudes. Moreover,
it is observed that changes of the mean values, annual amplitudes, and semi-annual amplitudes exist
in different modelling epochs. This ensures that Model #5 can take good care of the diurnal variations.
The model for pressure is similar to the case of temperature and will not be repeated in this paper.

The global distribution of RMS and MAE of the differences for pressure and temperature calculated
by Model #5 is described in Figure 8, which shows the different performance of the model in various
regions. For pressure, the accuracy decreased with the increasing of the latitude. For temperature,
the low latitudes have better accuracy than the high latitudes and the ocean area performs better than
the land area.
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Moreover, the radiosonde data containing the surface’s temperature and pressure can be retrieved
from the archive at the website of University of Wyoming (available on http://weather.uwyo.edu/

ypperair/sounding.html). A total of 541 globally distributed radiosonde stations that contain available
data over half a year of 2016 were selected. The surface temperature and pressure values of each station
at UTC 0:00 and 12:00 every day in 2016 were regarded as the references to validate the accuracy of the
meteorological parameters estimated by Model #5.

The statistical results of RMS for the two parameters are shown in Figure 9, in which the spatial
variation in the accuracy of the model can be seen. It is observed that the accuracy of pressure and
temperature calculated by Model #5 changes with the latitude. In low latitudes (<30º), the percentage
of stations with pressure RMS less than 5 hPa is greater than 90% and the percentage reaches to 99%
when focusing on the station with temperature RMS less than 5 K. An accuracy of better than 10 hPa for
pressure RMS has been achieved at most stations worldwide; the percentage is 86% and the maximum
RMS is 13.91 hPa. For the temperature RMS, most stations can achieve an accuracy of better than 6 K;
the percentage reaches 89% and the maximum RMS is 8.4 K. In addition, the statistical results of the
differences for temperature and pressure calculated by Model #5, including mean RMS, MAE, and SD,
at the selected radiosonde stations are listed in Table 4, which shows that Model #5 can obtain pressure
and temperature values that are consistent with the radiosonde data.

Table 4. Statistics of the differences for temperature and pressure calculated by Model #5 at the selected
radiosonde stations.

RMS MAE SD

Pressure (hPa) 7.02 5.24 6.46
Temperature (K) 4.05 3.17 3.86

http://weather.uwyo.edu/ypperair/sounding.html
http://weather.uwyo.edu/ypperair/sounding.html
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4. Discussion of the ZHD Accuracy Based on the Modelled Pressure and Temperature

In the GNSS sites without meteorological sensors equipped and co-located weather stations,
the meteorological parameters estimated by above model can be used to calculate the ZHD. The most
commonly used ZHD models, the Saastamoinen, Hopfield, and Black models, are selected in this paper
to discuss the ZHD accuracy of different models based on the estimated pressure and temperature.
In previous research, the three kinds of models were proved to achieve ZHD with high accuracy using
measured meteorological data, and were widely used in GNSS meteorology [8,22–28]. The formulas
are shown as follows [12–14,34,35]:

ZHDS = 0.002277× P/(1− 0.00266 cos 2ϕ− 0.00028h), (6)

ZHDH = 1.522× 10−5
× (40136 + 148.72× (T − 273.16) − h)

P
T

, (7)

ZHDB = 0.002343(T − 4.12)
P
T

, (8)

where ZHDS, ZHDH, and ZHDB are the ZHD (unit: m) calculated by the Saastamoinen, Hopfield,
and Black models, respectively. P and T refer to the estimated pressure and temperature, respectively.
ϕ is the latitude and h (unit: km) is the altitude. It can be seen that the Saastamoinen model only
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requires the pressure P (unit: hPa), but considers the effects of latitude and altitude. The temperature
T (unit: K) and pressure P are included in the Hopfield and Black models, but the effect of latitude
is not considered. The effect of altitude is considered in the Hopfield model, which is the difference
between it and the Black model. Therefore, it is necessary to discuss the differences in calculating ZHD
using various models based on estimated meteorological parameters on a global scale.

The website of global geodetic observing system (GGOS) Atmosphere (http://vmf.geo.tuwien.ac.at)
can provide global atmospheric delay grid data including ZHD at a temporal resolution of 6 h, which
is regarded as the true values of ZHD [36]. On the basis of the meteorological parameters estimated
by Model #5, three kinds of computed ZHD values are obtained using the ZHD models mentioned
above. The bias and RMS of the differences between the ZHD derived from the GGOS Atmosphere
data and the ZHD calculated by the models at all grid points are counted and their global distribution
is shown in Figure 10. Obviously, the distribution of bias and RMS of the Hopfield model is worse than
the other two models, especially in the regions with high altitude, such as the Himalayas Mountains,
the Andes Mountains, the Rocky Mountains, Greenland, and the Antarctic regions. This is mainly
because the accuracy of the estimated temperature is relatively poor in these regions, and the accuracy
of the Hopfield model is heavily dependent on temperature. It can be seen that the Saastamoinen
and Black models can achieve good global accuracy in terms of RMS and bias. Their distributions of
RMS and bias are latitude-dependent, where the larger and smaller values appear in higher and lower
latitudes, respectively.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 20 
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The statistical results of the different ZHD models are listed in Table 5, in which the mean values
of bias and RMS, as well as the maximum and minimum values, are shown. The Saastamoinen model
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with a mean bias of 1.01 mm and a mean RMS of 16.9 mm performs much better than the Hopfield
model. The performance of the Black model with a mean bias of 1.61 mm and a mean RMS of 17.3 mm is
slightly worse than that of the Saastamoinen model. The ranges of bias and RMS, that is, the maximum
and minimum values, also prove the same conclusion.

Table 5. Statistical results of different zenith hydrostatic delay (ZHD) models validated using global
geodetic observing system (GGOS) Atmosphere data from 2016.

Bias (mm) RMS (mm)

Max. Min. Mean Max. Min. Mean

Saastamoinen
model 61.1 −14.7 1.01 62.7 2.0 16.9

Hopfield
model 78.5 −172.5 −13.0 172.6 2.5 30.7

Black model 62.4 −15.0 1.61 64.0 2.4 17.3

In some grid points, the Hopfield and Black model can achieve better results than the Saastamoinen
model. Therefore, the RMS differences at all grid points between the Saastamoinen and Hopfield
model, as well as the Saastamoinen and Black model, are counted and their empirical distribution
functions are plotted in Figure 11. Colors represent comparisons for different models in the figure,
which indicates the percentage of each range of the RMS differences. It is observed that the percentage
of grid points, of which the RMS of the Hopfield model is smaller than that of the Saastamoinen model,
is more than 15%. For the case of the Black model, the percentage is more than 25%. The percentage of
the RMS differences greater than 1 mm is 1.1% and 1.6% for the case of the the Hopfield and Black
models, respectively. The largest RMS differences are 4.18 and 3.80 mm for the Hopfield and Black
models, respectively. This illustrates that the specific analysis is needed in some regions to choose the
appropriate ZHD model.
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5. Conclusions

In this work, we analyzed the influence of different modelling factors on the global temperature
and pressure model. Five kinds of model forms with different number of model coefficients were
adopted to establish the models first, which indicated that there no obvious daily cycles existed
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in temperature lapse rate and specific humidity, and the daily cycle needs to be considered in the
construction of the temperature and pressure model. The three kinds of model forms with consideration
of daily cycles (Model #2, #3, and #4) implied that the adoption of sophisticated models (multiple model
coefficients) did not necessarily improve the accuracy of the temperature and pressure. Model #5, with
the idea of time-segmented modelling, performs best in this comparison. When the time resolution of
the data sources is increased, from 6 h to 3 h and then to 2 h, only the accuracy of Model #5 is slightly
improved. In this comparison, it is demonstrated that Model #5 can well describe the variation and
fluctuation of temperature and the bimodality of pressure during a day. When the spatial resolution of
the data source is increased, from 5◦ × 5◦ to 2.5◦ × 2◦, the global mean RMS/MAE/SD of temperature
and pressure are improved from 8.54/6.96/7.33 hPa and 3.38/2.67/3.15 K to 8.09/6.52/7.28 hPa and
3.25/2.55/3.10 K, from 8.36/6.78/7.28 hPa and 3.17/2.49/2.93 K to 7.94/6.39/7.25 hPa and 3.01/2.34/2.84 K,
and from 8.29/6.73/7.21 hPa and 3.12/2.45/2.88 K to 7.87/6.33/7.17 hPa and 2.95/2.31/2.79 K, for Model #1,
Model #3 and Model #5, respectively. To further show the accuracy of the Model #5 in the calculation
of pressure and temperature, the comparison with radiosonde data was conducted and the mean
RMS/MAE/SD are 7.02/5.24/6.46 hPa and 4.05/3.17/3.86 K for pressure and temperature, respectively.
On the basis of the meteorological parameters estimated by Model #5, we analyzed the accuracy of the
three most commonly used ZHD models without measured temperature and pressure. The numerical
results showed that the Saastamoinen model with a global mean bias/RMS of 1.01/16.9 mm achieved
the best performance. In the follow-up research, models with higher spatial resolution should be
established to further improve the accuracy. For some certain grid points, the Saastamoinen model
should be refined to better describe the ZHD values. Moreover, further research on how different the
ZHD models would perform if the meteorological parameters were driven by different temperature
and pressure models could be conducted.
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